JPS58165392A - Substrate for printed circuit board - Google Patents

Substrate for printed circuit board

Info

Publication number
JPS58165392A
JPS58165392A JP4707682A JP4707682A JPS58165392A JP S58165392 A JPS58165392 A JP S58165392A JP 4707682 A JP4707682 A JP 4707682A JP 4707682 A JP4707682 A JP 4707682A JP S58165392 A JPS58165392 A JP S58165392A
Authority
JP
Japan
Prior art keywords
resin
film
thickness
heat
printed circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4707682A
Other languages
Japanese (ja)
Inventor
大石 直明
清水 規之
孝志 荘司
原田 章治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkan Industries Co Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Nikkan Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Nikkan Industries Co Ltd filed Critical Showa Denko KK
Priority to JP4707682A priority Critical patent/JPS58165392A/en
Priority to US06/479,236 priority patent/US4492730A/en
Publication of JPS58165392A publication Critical patent/JPS58165392A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は熱放散性、電気絶縁性、耐熱性等に優れた印刷
回路用基板に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a printed circuit board having excellent heat dissipation properties, electrical insulation properties, heat resistance, etc.

電子機器の小型化、薄型化の傾向に伴ない、プリント配
線板への部品実装は高密度化の傾向を深めている。
BACKGROUND OF THE INVENTION As electronic devices become smaller and thinner, there is a growing trend toward higher density mounting of components on printed wiring boards.

このため熱放散性、寸法安定性等の特性に関して従来以
上の厳しい要請があり、特に高密度実装に際しては熱放
散性が問題になる。
For this reason, there are stricter requirements than ever before regarding properties such as heat dissipation and dimensional stability, and heat dissipation becomes a problem especially when high-density packaging is performed.

従来、金属板をベースにした熱放散性基板としてA/板
等の表面に合成樹脂層を設け、その層中に熱伝導のよい
無機充填剤を分散させたものが知られている。しかしこ
の構造のものは樹脂層が薄い場合は耐電圧が十分でなく
、反面厚くすると熱放散性、寸法安定性が悪くなる欠点
をもっている。
Conventionally, a heat dissipating substrate based on a metal plate is known, in which a synthetic resin layer is provided on the surface of an A/plate, etc., and an inorganic filler with good thermal conductivity is dispersed in the layer. However, this structure has the disadvantage that when the resin layer is thin, the withstand voltage is insufficient, and when the resin layer is thick, heat dissipation and dimensional stability deteriorate.

またA/板等の上にガラスクロスを熱硬化性樹脂で接着
したものもあり、その場合ガラスクロスと一諸に無機充
填剤の粉末を併用したものもある。
There are also cases in which a glass cloth is bonded onto the A/plate etc. using a thermosetting resin, in which case inorganic filler powder may be used in combination with the glass cloth.

これらは前記のものに比べて寸法安定性はよいが、ガラ
スクロスは長繊維束を織ったものであるので、これに熱
硬化性樹脂を塗工する段階で繊維束内に空気及び溶剤の
巻き込みがあり、AJ板に接着する工程ですべての空気
及び溶剤を取除くことが出来ず電気絶縁性が完全でない
事が起り、不良品発生頻度が高くなる。そのため接着剤
層を2枚合せる方法や熱硬化性樹脂の付着量を多くして
前記絶縁性の問題の解決を図ろうとする方法もあるが、
熱伝導性の面より考えると望ましい事ではない。
These have better dimensional stability than the above-mentioned ones, but since glass cloth is woven from long fiber bundles, air and solvent may be trapped in the fiber bundles when the thermosetting resin is applied to it. However, it is not possible to remove all the air and solvent during the process of adhering to the AJ board, resulting in incomplete electrical insulation, which increases the frequency of defective products. Therefore, there are methods that try to solve the insulation problem by combining two adhesive layers or by increasing the amount of thermosetting resin attached.
This is not desirable from the standpoint of thermal conductivity.

電気絶縁性を完全に保つだけなら熱可塑性樹脂のフィル
ムを用いて熱圧接着して絶縁層を作製する事も可能であ
る。しかし、これは絶縁性は良好であるが耐熱性が悪く
、プリント回路板加工後の部品実装工程(ハンダ付工程
、ボンデング工程など)、高温加工工程に於いて接着層
が劣化破壊する。この場合、熱可塑性樹脂フィルムに代
えて耐熱性のある熱硬化性フィルムを用いれば接着層の
劣化の問題はなくなるが、熱圧接着することかできない
ので、フィルムの両面にベース金属板及びプリント回路
用金属箔を接着する為の熱硬化性樹脂層を設ける必要が
ある。そして実際の工業的生産においては生産性を上げ
るためかなり大きなものを作製しなければならず―、、
そのすべての而に無接着層が存在しないように接着する
には樹脂層の・′:(。
If the electrical insulation is to be completely maintained, it is also possible to fabricate the insulating layer by using a thermoplastic resin film and bonding it under heat and pressure. However, although this has good insulation properties, it has poor heat resistance, and the adhesive layer deteriorates and breaks during the component mounting process (soldering process, bonding process, etc.) and high-temperature processing process after printed circuit board processing. In this case, if a heat-resistant thermosetting film is used instead of the thermoplastic resin film, the problem of deterioration of the adhesive layer will be eliminated, but since it is only possible to bond with heat and pressure, the base metal plate and the printed circuit are attached to both sides of the film. It is necessary to provide a thermosetting resin layer for adhering the metal foil. In actual industrial production, in order to increase productivity, it is necessary to manufacture something quite large.
The resin layer must be bonded so that there is no non-adhesive layer in all of them.

厚みはある程度以上必要となる。その結果は熱伝導性が
劣ることになる。
A certain level of thickness is required. The result is poor thermal conductivity.

本発明はこの様な事情に鑑みてなされたもので、その目
的は熱放散性に優れ、電気絶縁性、耐熱性のよい印刷回
路用基板を提供することにある。
The present invention has been made in view of these circumstances, and its purpose is to provide a printed circuit board with excellent heat dissipation, electrical insulation, and heat resistance.

これらの目的のため本発明においては、金属板上に設け
た合成樹脂層中に熱伝導性のよい無機充填剤を含めると
共に耐熱性樹脂フィルムを介在させて電気絶縁性を完全
にしたものである。
For these purposes, in the present invention, an inorganic filler with good thermal conductivity is included in the synthetic resin layer provided on the metal plate, and a heat-resistant resin film is interposed to provide complete electrical insulation. .

以下、本発明の1例である図面を参考番こしな力(ら本
発明の詳細な説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings, which are examples of the present invention.

第1図、第2図は本発明に係る基板の断面図である。1 and 2 are cross-sectional views of a substrate according to the present invention.

図において、1は金属板、2.3は合成樹脂層でその中
に無機充填剤21.31を含んでいる。4は耐熱性樹脂
フィルム、5は金属箔である。
In the figure, 1 is a metal plate, 2.3 is a synthetic resin layer containing an inorganic filler 21.31. 4 is a heat-resistant resin film, and 5 is a metal foil.

金属板1はAI!、Cu、Fe等及びこれらを含む合金
が使用可能であ・−カ′・軽量4′″し7熱伝導性′)
1いAlが実用上は最も適する。金属板の厚さは使川口
的によって  されるが、一般には0.5〜25、−で
ある。 パ゛′I′ 金属板は樹脂層との接着性をよくするため表面粗化して
おくことが好ましいが、金属板の種類Gこよっては表面
粗化しなくてもよい。表面粗化は最大表面粗さく Rm
ax )で5μ〜40μの範囲が適当である。表面粗化
の方法は機械的方法でも化学的方法でもよい。
Metal plate 1 is AI! , Cu, Fe, etc. and alloys containing these can be used.
1 Al is most suitable for practical use. The thickness of the metal plate is determined by Kawaguchi's specifications, but it is generally between 0.5 and 25 mm. The surface of the metal plate is preferably roughened to improve adhesion to the resin layer, but depending on the type of metal plate G, the surface may not be roughened. Surface roughening is maximum surface roughness Rm
ax ) is suitably in the range of 5μ to 40μ. The surface roughening method may be a mechanical method or a chemical method.

合成樹脂層2の樹脂としてはエポキシ、フェノール、ポ
リイミド、不飽和ポリエステル、BT レジン等の熱硬
化性樹脂が好ましいが、熱可塑性でも耐熱性のある変性
ポリエチレン、ポリスルホン酸、ポリフェニレンサルフ
ァイド等は使用可能である。
As the resin for the synthetic resin layer 2, thermosetting resins such as epoxy, phenol, polyimide, unsaturated polyester, and BT resin are preferred, but thermoplastic and heat-resistant modified polyethylene, polysulfonic acid, polyphenylene sulfide, etc. can also be used. be.

この樹脂層2には無機充填剤21が含まれている。無機
充填剤としてはkl、、 OB 、  5i02 、 
ZrO2。
This resin layer 2 contains an inorganic filler 21. Inorganic fillers include kl, OB, 5i02,
ZrO2.

TiO,、、BeO等の金属酸化物、BN、Si3N4
゜1?N等の窒化物、Si、C,Tic、ZrC等の炭
化物、不織のガラス短繊維、同鉱物繊維等の無機繊維の
外、ここで使用される無機充填剤の目的は熱伝導性を高
めるためであり、電気絶縁性は次に述べる爵1熱性樹脂
フィルムで持たせであるので、Fe、A/+Ni、Cu
、Ag  等の金属あるいは合金の粉末、炭素粉末、さ
らには不織の金属短繊維、同炭素繊維等も使用可能であ
り、本発明でいう 図21の無機充填剤にはこれらも含
む。
Metal oxides such as TiO, , BeO, BN, Si3N4
゜1? In addition to inorganic fibers such as nitrides such as N, carbides such as Si, C, Tic, and ZrC, nonwoven short glass fibers, and mineral fibers, the purpose of the inorganic fillers used here is to increase thermal conductivity. The electrical insulation properties are provided by the heat-resistant resin film described below, so Fe, A/+Ni, Cu
It is also possible to use powders of metals or alloys such as , Ag, carbon powders, nonwoven short metal fibers, carbon fibers, etc., and the inorganic filler shown in FIG. 21 in the present invention includes these.

また無機充填剤の樹脂との密着性を向上させ、かつプリ
ント基板としての耐湿性を向上させる目的で表面処理を
行なって樹脂に混入させることができ、同様の効果を樹
脂の中に表面処理剤を入れても得ることができる。
In addition, in order to improve the adhesion of inorganic fillers to resins and improve the moisture resistance of printed circuit boards, surface treatment can be performed and mixed into resins. You can also get it by putting .

無機充填剤は粒状粉末の場合は30μ以下がよい。粉末
は通常粒度分布を有するので、この場合の30μ以下と
は通常全体の粒子の中で90%以上が30μ以下からな
っている。30μを越えると樹脂層が厚くなり、熱放散
性の効果が少なくなる他、貼り合せ作業がやりにくくな
る。しかし、アルミ粉末等ではフレーク状になる場合が
あり、フレーク状のものは樹脂中で層状に重なるので、
30μを越えるような大きなものも使用可能である。
When the inorganic filler is a granular powder, it is preferably 30 μm or less. Since powder usually has a particle size distribution, 30μ or less in this case usually means that 90% or more of the entire particles are 30μ or less. If the thickness exceeds 30μ, the resin layer becomes thick, the heat dissipation effect is reduced, and the bonding work becomes difficult. However, aluminum powder may form flakes, and flakes overlap in layers in the resin, so
Large ones exceeding 30μ can also be used.

樹脂と無機充填剤の混合割合は熱放散性の効果と貼り合
せの作業性によって決まるが、容積比で樹脂100部に
対し、無機充填剤10〜300部の範囲が適当である。
The mixing ratio of the resin and the inorganic filler is determined by the effect of heat dissipation and the workability of bonding, but the appropriate volume ratio is in the range of 10 to 300 parts of the inorganic filler to 100 parts of the resin.

無機充填剤がこの範囲未満では熱放散性が顕著に改善さ
れず、またこの範囲を越えると貼り合せ作業が悪くなる
上に充分な接着強度が得られなくなる。
If the amount of the inorganic filler is less than this range, the heat dissipation property will not be significantly improved, and if it exceeds this range, the bonding operation will be poor and sufficient adhesive strength will not be obtained.

無機充填剤を含む合成樹脂層2の厚さは貼り合せの接着
強度、熱放散性、作業性等を考慮し、10〜60μの範
囲が適当である。
The thickness of the synthetic resin layer 2 containing an inorganic filler is suitably in the range of 10 to 60 μm, taking into account bonding strength, heat dissipation, workability, etc.

合成樹脂層2の上には耐熱性の樹脂フィルムが接着され
ている。基板は部品実装に際し、通常へンダ付工程を伴
なうので、このフィルムはその温度に耐えることが必要
である。また印刷回路は使用中その目的によってはかな
り高温になる。これらのため樹脂フィルムはポリイミド
、ポリパラバン酸などの耐熱性フィルムが望ましい。し
かし、ハンダ付も低温へンダが開発されており、また印
刷回路も使用目的によってあi゛り高温にならないこと
もあるので、そのような場:合はポリエステル:・□、
A heat-resistant resin film is adhered onto the synthetic resin layer 2. When mounting components on a board, a soldering process is usually involved, so this film needs to be able to withstand that temperature. Printed circuits also become quite hot during use, depending on their purpose. For these reasons, the resin film is preferably a heat-resistant film made of polyimide, polyparabanic acid, or the like. However, low-temperature soldering has been developed, and printed circuits may not reach very high temperatures depending on the purpose of use, so in such cases, polyester:・□,
.

フィルムなど熱可塑性フィルム女ども使用できる。Films such as thermoplastic films can be used.

フィルムの厚さはボイドの発生がなく耐電圧を保持でき
る範囲で薄い方がよいが、製造上の問題もあり、一般に
は10〜30μの範囲が好適である。
The thickness of the film is preferably as thin as possible without generating voids and maintaining a withstand voltage; however, since there are manufacturing problems, a range of 10 to 30 μm is generally suitable.

フィルムの上にはさらに無機充填剤31を含む樹脂層3
を接着する。この層には印刷回路が設けられるので、配
線間の絶縁性、即ち第1図で樹脂層3の表面層の絶縁性
が必要になる。このためここで用いられる無機充填剤に
は電気伝導性のもの、例えば金属、カーボン、炭化物等
は使用できない。
Further on the film is a resin layer 3 containing an inorganic filler 31.
Glue. Since a printed circuit is provided in this layer, insulation between the wirings, that is, insulation of the surface layer of the resin layer 3 in FIG. 1 is required. For this reason, electrically conductive materials such as metals, carbon, carbides, etc. cannot be used as the inorganic fillers used here.

その他の無機充填剤、その配合量、樹脂層の厚さ等は前
記2の場合と殆んど同じでよい。樹脂の種類については
表面粗化のし易いものを選ぶことが好ましい。第1図に
示す基板は一般的には無電解メッキ等によって印刷回路
が組まれるので、メッキ金属と樹脂との接着性をよくす
るため樹脂面を化学的方法等によって゛粗化する必要が
あるからである。        :1′;・ −、:、。
The other inorganic fillers, their blending amounts, the thickness of the resin layer, etc. may be almost the same as in case 2 above. As for the type of resin, it is preferable to select one that easily roughens the surface. Since printed circuits are generally assembled on the board shown in Figure 1 by electroless plating, etc., it is necessary to roughen the resin surface by chemical methods to improve the adhesion between the plated metal and the resin. Because there is. :1';・-, :,.

第2図に示すものは1.、声脂層3に金属箔5が接着し
てあり、そのままフ□″1〕−ント配線加工に供するこ
とができる。金属箔は通常使用されている銅、アルミ、
ニッケル等で、厚さは0.005〜0.3順のものであ
る。
What is shown in Figure 2 is 1. , a metal foil 5 is adhered to the vocal fat layer 3, and can be used as is for □″1]-foot wiring processing.The metal foil can be made of commonly used copper, aluminum,
Made of nickel or the like, the thickness is in the order of 0.005 to 0.3.

第2図のような構成からなる基板は、例えばフィルムの
両面に無機充填剤を含む樹脂液を塗布し、これに金属板
と金属箔を貼り合せ、熱圧着し、樹脂を硬化させれば一
度に製作することができる。
A substrate with the structure shown in Figure 2 can be created by, for example, applying a resin solution containing an inorganic filler to both sides of a film, bonding a metal plate and metal foil to this, thermo-compression bonding, and curing the resin. can be produced.

第1図に示すものはフィルムの片面に金属板を上記同様
に接着し、他面に樹脂液を塗布し、硬化させればよい。
In the case of the film shown in FIG. 1, a metal plate may be adhered to one side of the film in the same manner as described above, and a resin liquid may be applied to the other side and cured.

そして最後に化学液等で処理して表面粗化する。Finally, the surface is roughened by treatment with a chemical solution or the like.

図示のものは金属板の片面に絶縁層を設けた場合である
が、全く同様に両面に設けることも可能である。
Although the illustrated example shows an insulating layer provided on one side of the metal plate, it is also possible to provide the insulating layer on both sides in the same way.

本発明による印刷回路用基板は電気絶縁性のよいフィル
ムを挾んで両側に熱伝導性のよい無機充填剤を含有して
いるので、耐電圧に優れているばかりでなく、熱放散性
が高く、特にこの特性が重視される用途には好適である
The printed circuit board according to the present invention sandwiches a film with good electrical insulation properties and contains an inorganic filler with good thermal conductivity on both sides, so it not only has excellent withstand voltage but also has high heat dissipation. It is particularly suitable for applications where this characteristic is important.

尚本発明によってフィルムを接着層に用いる事は電卓な
どの薄型化に伴ない、プリント回路板自体を絞り加工す
ることによって外形を作製する事が容易に出来、ガラス
クロスを接着層に用いた場合に比ベコーナ一部を鋭角に
作製出来る。又その部分の電気的なリークも起らない。
In addition, the use of a film as an adhesive layer according to the present invention makes it possible to easily create an external shape by drawing the printed circuit board itself as calculators and the like become thinner, and when glass cloth is used as an adhesive layer. Compared to this, it is possible to create a part of the corner with an acute angle. Also, no electrical leakage occurs in that part.

又この事はプリント回路板の形態も平板使用のみでなく
曲面使用や折り曲げて使用する事も出来る。
This also means that the printed circuit board can be used not only as a flat board but also as a curved board or bent.

次に本発明の態様を明確にするため、実施例と比較例を
示し説明する。 ここに示す実施例はあくまでも1例で
あって、これにより本発明の範囲を限定するものではな
い。
Next, in order to clarify aspects of the present invention, examples and comparative examples will be shown and explained. The embodiment shown here is just one example, and does not limit the scope of the present invention.

実施例 1 下記のエポキシ樹脂ワニス(配合例1)に平均粒度4μ
、全体が25μ以下のα−アルミナ(A1203)を1
00重量%加えてよく攪拌しメチルエチルケトン(ME
K)を混入して所定の粘度に調整し、ポリイミドフィル
ム厚さ25μの両面に厚さ40μになる様に塗工し16
0℃にて加熱乾燥してセミキュア状態の両面接着剤性の
シートを作製した。 一方211+1L厚のアルミ板の
一方表面を塩酸で処理して活性化させその面に前述のシ
ートを載置してさらに厚さ35μの銅箔を重ね約160
℃約40kg10n2で熱圧接着させ、アルミベースの
銅張板を作製した。
Example 1 The following epoxy resin varnish (formulation example 1) had an average particle size of 4μ.
, 1 α-alumina (A1203) with a total size of 25μ or less
Add 00% by weight and stir well to add methyl ethyl ketone (ME
K) was mixed in to adjust the viscosity to a specified level, and coated on both sides of a 25μ thick polyimide film to a thickness of 40μ.
A semi-cured double-sided adhesive sheet was prepared by heating and drying at 0°C. On the other hand, one surface of a 211+1L thick aluminum plate is treated with hydrochloric acid to activate it, the above-mentioned sheet is placed on that surface, and then a 35μ thick copper foil is further layered for approximately 160mm.
A copper-clad aluminum-based board was produced by heat-pressure bonding at about 40 kg and 10 n2.

樹脂ワニス配合(配合例1) (1)エポキシ樹脂(AER−661L、tIJM圏壱
声)100部 \ミ/ (2)ジシアンジアダド         4部(3)
ジメチルホルムアミド     20部(4)ベンジル
ジメチルアミン     03部(5)メチルエチルケ
トン      100部実施例 2 平均粒度8μ、全体が25μ以下のα−アルミナ(AI
!203)をシランカップリング剤で表面処理し、配合
例1のエポキシ樹脂ワニスに100重ji % ”IE
加えてよく攪拌しメチルエチルケトン(MEK)を混入
して所定の粘度に調整してポリパラバン酸フィルム厚さ
25・、μの両面に厚さ50μに□−。
Resin varnish formulation (formulation example 1) (1) Epoxy resin (AER-661L, tIJM Kankoku Ichisei) 100 parts\mi/ (2) Dicyandiadad 4 parts (3)
Dimethylformamide 20 parts (4) Benzyldimethylamine 03 parts (5) Methyl ethyl ketone 100 parts Example 2 α-Alumina (AI
! 203) with a silane coupling agent, and added 100 wt.
In addition, stir well and mix methyl ethyl ketone (MEK) to adjust the viscosity to a predetermined value, and form a polyparabanic acid film with a thickness of 25 μm and a thickness of 50 μm on both sides.

なる様に塗工し16 o、(tニて加熱乾燥してセミキ
ュア状態の両面接着削材のシートを作製した。
It was coated and dried under heat for 16 o's (t) to produce a semi-cured double-sided adhesive cutting material sheet.

一方厚さ2闘厚のアルミ板の一方表面をブラスト加工し
て活性化させ、その面に前述のシートを60℃約40k
g/cm2で熱圧着させアルミベースアルミ張板を作製
した。
On the other hand, one surface of the 2-thickness aluminum plate was activated by blasting, and the above-mentioned sheet was applied to that surface for about 40k at 60℃.
An aluminum base aluminum clad plate was produced by thermocompression bonding at g/cm2.

実施例 3 下記の無溶剤エポキシワニス(゛配合例2)に平均粒度
4μ、全体が30μ以下のBN(窒化硼素)を100重
量%加えてよく攪拌し塗工時の樹脂の温度を一定に保ち
粘度を調製する。
Example 3 Add 100% by weight of BN (boron nitride) with an average particle size of 4μ and a total of 30μ or less to the following solvent-free epoxy varnish (Blend Example 2), stir well, and keep the temperature of the resin constant during coating. Adjust viscosity.

これにポリイミドフィルム厚さ25μを通し厚さ40μ
の接着層を両面に作製し、表面を塩酸で活性化させた2
W011厚のアルミ板上に引き出しさらに厚さ35μの
銅箔を乗せ加熱ロールで加熱圧着させ、アルミベース銅
張板を作製した。
A polyimide film with a thickness of 25μ is passed through this to a thickness of 40μ.
An adhesive layer was prepared on both sides, and the surface was activated with hydrochloric acid2.
A copper foil with a thickness of 35 μm was placed on an aluminum plate with a thickness of W011 and heated and pressed with a heated roll to produce an aluminum-based copper-clad plate.

樹脂ワニス(配合例2) (1)エポキシ與脚 (エヒクロン850、大日本インキ■製)/・:): □:、、        100部 (2)硬化剤 (HN−2200、日立化成■製)  79部(2部4
MZ、四国vtsatm裂) 実施例 4 下記不飽和ポリエステル樹脂ワニス(配合例3)に平均
粒度8μ全体が25μ以下のα−アルミナ(AJ2os
 )  を50重量%と平均粒度10μ全体が30μ以
下のシリカ(SiO□)を50重量%加えてよく攪拌し
ポリイミドフィルム厚さ25μの −両面に厚さ40μ
の接着層を作製する。表面を塩酸で活性化させ、さらに
アルマイト層を9μ付けたA7?板上に前述のシートを
載置してさらに40μのニツ々ル箔を重ね約160℃約
、i o kg / cm2で熱圧接着させ、アルミベ
ースニッケル張板を作製した。
Resin varnish (formulation example 2) (1) Epoxy toe (Ehikron 850, manufactured by Dainippon Ink ■) /:): □:,, 100 parts (2) Hardening agent (HN-2200, manufactured by Hitachi Chemical ■) 79 Part (2 parts 4
Example 4 The following unsaturated polyester resin varnish (formulation example 3) was coated with α-alumina (AJ2os
) and 50% by weight of silica (SiO□) whose average particle size is 10μ or less overall is added and stirred well to form a polyimide film with a thickness of 25μ and -40μ on both sides.
Create an adhesive layer. A7 whose surface was activated with hydrochloric acid and an alumite layer of 9μ was added? The above-mentioned sheet was placed on the plate, and a 40 μm Nitsutsu foil was further layered and bonded under heat and pressure at about 160° C. and io kg/cm 2 to produce an aluminum-based nickel-clad plate.

樹脂ワニス(配合例 3) (2)  ターシャルブチルパーベンゾエイト    
 1部実施例 5 配合例1のエポキシ樹脂ワニスに、アクリルニトリルゴ
ム(商品名ハイカー1072)を・30部加えて、無電
解メッキ密着用ワニスを作製する。
Resin varnish (formulation example 3) (2) Tertiary butyl perbenzoate
1 Part Example 5 30 parts of acrylonitrile rubber (trade name Hiker 1072) is added to the epoxy resin varnish of Formulation Example 1 to prepare a varnish for electroless plating.

これに平均粒度4μのα−アルミナ(AI!203)を
100重量部加えて攪拌しさらにMEK(メチ!#=2 ルエチルケトン)を加えて所定の検疫としてポリイミド
フィルム厚さ25μの片面に30μの厚さになる様塗工
し130℃に加熱乾燥し離型フイルムトシてポリプロピ
レンフィルムを一時的に貼り合わせる。
To this, 100 parts by weight of α-alumina (AI! 203) with an average particle size of 4μ was added and stirred, and then MEK (Methi!#=2 ethyl ketone) was added and a 30μ thick polyimide film was coated on one side of the 25μ thick polyimide film as a predetermined quarantine. The film was coated in a uniform pattern, dried by heating at 130°C, and a release film was applied to temporarily attach a polypropylene film.

又、配合例1のエポキシ樹脂ワニス中に平均40μのA
I!粉を80重量%加えてよく攪拌し前記のポリイミド
フィルムの逆面に厚さ50μになる様塗工し、160℃
で加熱しセミキュア状態の接着層を作製する。
In addition, an average of 40μ of A in the epoxy resin varnish of Formulation Example 1
I! Add 80% by weight of powder, stir well, coat on the opposite side of the polyimide film to a thickness of 50μ, and heat at 160°C.
to create a semi-cured adhesive layer.

一方2■厚のアルミ板の一方表面を塩酸で処理して活性
化させ、その上に前述のシートを重ね熱プレスを行ない
、アルミ板に絶縁層を作製前記の離型フィルムを引きは
がしアデイテププロセスのアルミベース基板を作製した
On the other hand, one surface of a 2cm thick aluminum plate was treated with hydrochloric acid to activate it, and the above-mentioned sheet was placed on top of it and heat-pressed to create an insulating layer on the aluminum plate. An aluminum base substrate for the process was fabricated.

比較例 1 配合例1のエポキシ樹脂ワニスをメチルエチルケトンで
適正粘度に調整しガラスクロス(日東紡1製 WE−1
0GBZ−2)に含浸させ約160℃にて加熱乾燥させ
て、厚さ110μのセミキュア状態のシートを作製する
。 一方2鰭厚のアルミ板の一方表面を塩酸で処理し活
性化させ、その上に前述のシートを重ねさらに厚さ35
μの銅箔を重ね、約160℃約40 kg /cm2テ
熱圧接着させアルミベース銅張板を作製した。
Comparative Example 1 The epoxy resin varnish of Formulation Example 1 was adjusted to an appropriate viscosity with methyl ethyl ketone, and glass cloth (WE-1 manufactured by Nittobo 1) was prepared.
0GBZ-2) and heat-dried at about 160° C. to produce a semi-cured sheet with a thickness of 110 μm. On the other hand, one surface of an aluminum plate with a thickness of 2 fins was treated with hydrochloric acid to activate it, and the above-mentioned sheet was layered on top of it, and the thickness was further increased to 35 mm.
An aluminum-based copper clad board was produced by stacking copper foils of .mu. and bonding them under heat and pressure at about 160.degree. C. and about 40 kg/cm.sup.2.

比較例 2 配合例1のエポキシ樹脂ワニスをポリイミドフィルム厚
さ25μの両面に厚さ40μになる様塗工し160℃に
て加熱乾燥してセミキュア状態の接着層をもつシートを
作製した。 一方15闘厚のアルミ板の一方表面を塩酸
で処理し活性化させ、その上に前述のシートを重ね厚さ
70μの銅箔を重ね約160℃約40 ky /lv’
で熱圧接着させ、璽 アルミベース銅張板を作製した。
Comparative Example 2 The epoxy resin varnish of Formulation Example 1 was applied to both sides of a polyimide film with a thickness of 25 μm to a thickness of 40 μm, and the film was heated and dried at 160° C. to produce a sheet having an adhesive layer in a semi-cured state. On the other hand, one surface of an aluminum plate with a thickness of 15 mm was treated with hydrochloric acid to activate it, and the above-mentioned sheet was layered on top of it, and a copper foil with a thickness of 70 μ was layered at about 160°C, about 40 ky/lv'.
A copper clad plate with an aluminum base was made by bonding with heat and pressure.

比較例 3 ポリエチレンフィルム50μを塩酸で活性化させた1、
 5 m厚のアルミ板の上に載置しさらにそのトに17
さ35μの銅箔を重ね、加熱圧着ロールにより溶融接着
させ、アルミベース銅張板を作製した。
Comparative Example 3 Polyethylene film 50μ activated with hydrochloric acid 1,
Place it on a 5 m thick aluminum plate and place it on top of the 17 m thick aluminum plate.
Copper foils with a thickness of 35 μm were stacked and melted and bonded using a hot pressure roll to produce an aluminum-based copper-clad board.

比較例 4 配合例1のエポキシ樹脂ワニスに平均粒度4μのα−ア
ルミナ(AI!20s )  を100重量%加えてよ
く攪拌し厚さ35μの銅箔面に80μの厚さになる様に
塗工し接着層を作製し、塩酸で活性化させた1、5震厚
のアルミ板に載置して加熱ロールで熱圧着させアルミベ
ース銅張板を作製した。
Comparative Example 4 100% by weight of α-alumina (AI!20s) with an average particle size of 4μ was added to the epoxy resin varnish of Formulation Example 1, stirred well, and coated on a 35μ thick copper foil surface to a thickness of 80μ. An adhesive layer was prepared, placed on an aluminum plate with a thickness of 1.5 times and activated with hydrochloric acid, and bonded under heat with a heating roll to produce an aluminum-based copper-clad plate.

試験結果 上記実施例および比較例について各特性を試験した結果
を第1表に示す。
Test Results Table 1 shows the results of testing each characteristic of the above Examples and Comparative Examples.

:1:□ 1□□ 第    1    表 試験方法はJIS  C−6481に基づき試験した。:1:□ 1□□ Chapter 1 Table The test method was based on JIS C-6481.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の印刷回路用基板の断面図であ
る。 1・・・金属板、  2.:(・・・無機充填剤を含む
樹脂層、21.31・・・無機充填剤、  4・・・耐
熱性樹脂−ノイア【)1.5・・・金属箔。 特7i′[出願人 昭和電丁株式会r1ニツカン工業株
式会r1= 代理人 弁理士菊地精−
1 and 2 are cross-sectional views of the printed circuit board of the present invention. 1...metal plate, 2. :(...Resin layer containing inorganic filler, 21.31...Inorganic filler, 4...Heat-resistant resin-Noia [)1.5...Metal foil. Special 7i' [Applicant Showa Denko Co., Ltd. r1 Nitzkan Kogyo Co., Ltd. r1 = Agent Sei Kikuchi, patent attorney

Claims (2)

【特許請求の範囲】[Claims] (1)金属板の少なくとも一方の面に無機充填剤を含む
合成樹脂層を設けた印刷回路用基板において、該合成樹
脂層の中間部に耐熱性樹脂フィルムが介在してなる印刷
回路用基板
(1) A printed circuit board in which a synthetic resin layer containing an inorganic filler is provided on at least one surface of a metal plate, in which a heat-resistant resin film is interposed in the middle of the synthetic resin layer.
(2)金属板の少なくとも一方の面に無機充填剤を含む
合成樹脂層を介して金属箔を貼着した印刷回路用基板に
おいて、該合成樹脂層の中間部に耐熱性樹脂フィルムが
介在してなる印刷回路用基板
(2) In a printed circuit board in which metal foil is attached to at least one surface of a metal plate via a synthetic resin layer containing an inorganic filler, a heat-resistant resin film is interposed in the middle of the synthetic resin layer. Printed circuit board
JP4707682A 1982-03-26 1982-03-26 Substrate for printed circuit board Pending JPS58165392A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4707682A JPS58165392A (en) 1982-03-26 1982-03-26 Substrate for printed circuit board
US06/479,236 US4492730A (en) 1982-03-26 1983-03-28 Substrate of printed circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4707682A JPS58165392A (en) 1982-03-26 1982-03-26 Substrate for printed circuit board

Publications (1)

Publication Number Publication Date
JPS58165392A true JPS58165392A (en) 1983-09-30

Family

ID=12765073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4707682A Pending JPS58165392A (en) 1982-03-26 1982-03-26 Substrate for printed circuit board

Country Status (1)

Country Link
JP (1) JPS58165392A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013153771A1 (en) * 2012-04-13 2015-12-17 日本発條株式会社 Copper base circuit board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036963A (en) * 1973-08-09 1975-04-07
JPS5076562A (en) * 1973-11-10 1975-06-23

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036963A (en) * 1973-08-09 1975-04-07
JPS5076562A (en) * 1973-11-10 1975-06-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013153771A1 (en) * 2012-04-13 2015-12-17 日本発條株式会社 Copper base circuit board

Similar Documents

Publication Publication Date Title
US4492730A (en) Substrate of printed circuit
JP3067512B2 (en) Production method of metal foil-clad laminate and metal foil used for the production
JP5828094B2 (en) Resin sheet, metal foil with resin, board material and component mounting board
JPS58165392A (en) Substrate for printed circuit board
JP2000290613A (en) Thermosetting adhesive sheet
JPS58165391A (en) Substrate for printed circuit board
JPH03239390A (en) Metal cored board and manufacture thereof
JPS605589A (en) High thermal conductive metal base printed board
JPH07154068A (en) Adhesive sheet and production thereof, metal based wiring board employing adhesive sheet and production thereof
JP3077491B2 (en) Manufacturing method of metal-foil-clad laminate and metal foil used therefor
JPH0552873B2 (en)
JPH0552872B2 (en)
JPS61183373A (en) Adhesive composition for flexible printed circuit board
JPH0251470B2 (en)
JPS59141283A (en) Metal foil insulating adhesive sheet
JP3343330B2 (en) Method for producing insulating varnish, insulating varnish obtained by this method, and multilayer printed wiring board using this insulating varnish
JP2001152108A (en) Insulating adhesive film multi-layer printed-wiring board using the same and its manufacturing method
JPS61183374A (en) Adhesive composition for flexible printed circuit board
JP3804812B2 (en) Method for producing insulating varnish
JPS63265628A (en) Sheet obtained by plating copper on metallic base and its manufacture
JPS6260290A (en) Substrate for flexible printed circuit board
JPS61195115A (en) Adhesive composition for flexible printed circuit board
JP2633286B2 (en) Manufacturing method of electric laminate
JP3838390B2 (en) Method for manufacturing insulating varnish and multilayer printed wiring board using the insulating varnish
JPS62154690A (en) Manufacture of circuit board