JPS58151393A - Production of silicon crystal - Google Patents

Production of silicon crystal

Info

Publication number
JPS58151393A
JPS58151393A JP3109082A JP3109082A JPS58151393A JP S58151393 A JPS58151393 A JP S58151393A JP 3109082 A JP3109082 A JP 3109082A JP 3109082 A JP3109082 A JP 3109082A JP S58151393 A JPS58151393 A JP S58151393A
Authority
JP
Japan
Prior art keywords
crystal
ingot
coil
silicon crystal
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3109082A
Other languages
Japanese (ja)
Other versions
JPH021119B2 (en
Inventor
Kunihiko Wada
邦彦 和田
Masamichi Yoshida
正道 吉田
Kazunori Imaoka
今岡 和典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3109082A priority Critical patent/JPS58151393A/en
Publication of JPS58151393A publication Critical patent/JPS58151393A/en
Publication of JPH021119B2 publication Critical patent/JPH021119B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain an Si crystal having uniform density of internal defects, by subjecting the Si crystal to high frequency induction heating while moving a high-frequency coil provided concentrically around the Si crystal in the axial direction of pulling the crystal at the speed corresponding to the oxygen concn. in the axial direction of the Si crystal. CONSTITUTION:An Si crystal 1 is rotated as shown by an arrow 3 and while a coil 2 is moved from the top part of the Si crystal ingot 1 toward the bottom part as shown by an arrow 4, high-frequency electric power is supplied from the coil 3 and the Si crystal ingot is heated by an induction heating method, whereby the ingot is subjected to a low-temp. heating treatment. The moving speed of the coil 2 is so controlled as to be proportional to the oxygen concn. in the ingot 1 in each position. The ingot is thereafter subjected to two stages of ordinary heating treatments, whereby the ingot is formed to have the density of internal defects approximately uniform over the entire length thereof.

Description

【発明の詳細な説明】 (♂) 発明の技術分野 本発明はシリコン結晶の製造方法に係り、〜特にシリコ
ン結晶内部に一様に結晶欠陥核を形成する方法に関する
DETAILED DESCRIPTION OF THE INVENTION (♂) Technical Field of the Invention The present invention relates to a method of manufacturing a silicon crystal, and more particularly to a method of uniformly forming crystal defect nuclei within a silicon crystal.

(bl  技術の背景 近年益々高集積化する超LSIの製造に当っては、半導
体結晶にある種の加熱処理を施すことにより半導体結晶
内部に含まれる微量の重金属等が結晶の内部欠陥に析出
する所謂イントリンシック・ゲッタリング(以下IGと
略記する)効果が、積極的に利用される趨勢にある。
(bl Technology background) In the production of ultra-LSIs, which have become increasingly highly integrated in recent years, by subjecting semiconductor crystals to a certain type of heat treatment, trace amounts of heavy metals contained within the semiconductor crystals are precipitated into internal defects in the crystals. There is a tendency for the so-called intrinsic gettering (hereinafter abbreviated as IG) effect to be actively utilized.

IcI  従来技術と問題点 上述の半一体結晶の内部欠陥は、当該半導体結晶を60
0〜900(℃)で加熱処理(以後これを低温処理と称
する)することにより、結晶内部に含まれる格子間酸素
が析出して欠陥核が形成され、更に1100(t)程度
で加熱処理(以後これを高温処理と称する)する211
階の加熱処理により、上記欠陥核が成長して形成される
IcI Prior Art and Problems The internal defects in the semi-integral crystal described above cause the semiconductor crystal to
By heat treatment at 0 to 900 (°C) (hereinafter referred to as low temperature treatment), interstitial oxygen contained within the crystal precipitates to form defect nuclei, and further heat treatment at approximately 1100 (t) ( 211 (hereinafter referred to as high temperature treatment)
Due to the heat treatment, the defect nuclei grow and are formed.

上述のIG効果の積極的利用とは、このように結晶中に
内部欠陥を形成し、その間の加熱処理工程、または以後
の加熱処理工程において、結晶内部に含まれる重金属を
上記内部欠陥に析出せしめ、半導体装置の製作に適合し
た結晶特性を得ようとするものである。
Active use of the above-mentioned IG effect means that internal defects are formed in the crystal in this way, and heavy metals contained within the crystal are precipitated into the internal defects in the heat treatment process during or in the subsequent heat treatment process. , which aims to obtain crystal characteristics suitable for manufacturing semiconductor devices.

上記結晶欠陥核の密度は、結晶内部に含まれる酸素(0
1:添字のiはInterstitial即ち格子間に
存在することを意味する)濃度と上記低温処理時間に依
存する。即ち内部欠陥核密度は、酸素濃度が大である程
、また低温処理時間が長い程大となる。
The density of the crystal defect nuclei mentioned above is the oxygen (0
1: The subscript i means interstitial (interstitial) depending on the concentration and the low temperature treatment time. That is, the density of internal defect nuclei increases as the oxygen concentration increases and as the low temperature treatment time increases.

一方上記シリコン(St)結晶中に含まれる酸素(Oj
) ハ、シリコン(Si)結晶をチeクラルスキ(CZ
)法により引き上げる際に、石英ルツボより内部の溶融
シリコン(Si)中に混入するもので、その濃度分布は
一様でなく、第1図及び第2図(後述)に示すように、
シリコン(Si)結晶インゴットlのシード側(Top
)が^(、他端(B。
On the other hand, oxygen (Oj) contained in the silicon (St) crystal
) H, check the silicon (Si) crystal (CZ
) method, it mixes into the molten silicon (Si) inside the quartz crucible, and its concentration distribution is not uniform, as shown in Figures 1 and 2 (described later).
Seed side of silicon (Si) crystal ingot l (Top
) is ^(, the other end (B.

Ltom)側に行くにつれて低くなる。そのためIG効
果も一様とならず、結晶インゴットのT。
It becomes lower as it goes toward the Ltom) side. Therefore, the IG effect is not uniform, and the T of the crystal ingot.

p側で強く、Bo、ttom側程弱くなる。It is strong on the p side and becomes weaker on the Bo and ttom sides.

通常使用されているシリコン(St)結晶はこのような
酸素((1:)濃度分布を有するため、内部欠陥密度が
一様とならず、従ってIG効果を一様にすることが出来
ない。
Since commonly used silicon (St) crystals have such an oxygen ((1:) concentration distribution), the internal defect density is not uniform, and therefore the IG effect cannot be made uniform.

(dl  発明の目的 本発明の目的は上記問題点を解消して、内部欠陥密度を
一様にし得るシリコン(Si)結晶の製造方法を提供す
ることにある。
(dl) OBJECTS OF THE INVENTION An object of the present invention is to provide a method for manufacturing a silicon (Si) crystal that can eliminate the above-mentioned problems and make the internal defect density uniform.

(8)  発明の構成 本発明のシリコン結晶の製造方法の特徴は、高周波コイ
ルをシリコン結晶と同心状に周設し、該高周波コイルま
たはシリコン結晶を前記シリコン結晶の引き上げ軸方向
に前記シリコン結晶の軸方向の酸素濃度に対応した速度
で移動せしめながら、高周波誘導加熱法により前記シリ
コン結晶に加熱処理を施す工程を含むことにある。
(8) Structure of the Invention The feature of the method for manufacturing a silicon crystal of the present invention is that a high frequency coil is provided concentrically around the silicon crystal, and the high frequency coil or the silicon crystal is moved in the direction of the pulling axis of the silicon crystal. The present invention includes the step of subjecting the silicon crystal to a heat treatment using a high frequency induction heating method while moving the silicon crystal at a speed corresponding to the oxygen concentration in the axial direction.

(fl  発明の実施例 以下本発明のシリコン結晶の製造方法の一実施例を第1
図〜第4図を用いて説喫する。
(fl Embodiments of the Invention Below, an embodiment of the method for manufacturing silicon crystal of the present invention will be described in the first embodiment.
Explain using Figures 4 to 4.

第1図において、lはCZ法で作成したシリコン(St
)結晶インゴット、2はSt結晶lと同心状に配設され
た高周波コイルである。
In Fig. 1, l is silicon (St
) Crystal ingot, 2 is a high frequency coil arranged concentrically with the St crystal l.

本実施例では同図に見られる如く、矢線3で示すように
Si結晶lを回転させ、且つコイル2を矢線4で示す如
<St結晶インゴットlのT o p部よりBotto
m部に向かって移動させながら、コイル3より高周波電
力を供給する誘導加熱法によりSi結結晶インフッlを
加熱し、上述の低温加熱処理を施す。温度は従って凡そ
600〜900  (’t:)の範囲で選択する。なお
本実施例は、周波数凡そ300 (kHz)の為周波電
源より約10(kW)の電力を供給して実施した。
In this embodiment, as shown in the figure, the Si crystal 1 is rotated as shown by the arrow 3, and the coil 2 is rotated from the Top part of the St crystal ingot 1 as shown by the arrow 4.
While moving toward the m section, the Si crystalline influenium is heated by an induction heating method in which high-frequency power is supplied from the coil 3, and the above-mentioned low-temperature heat treatment is performed. The temperature is therefore selected in the range of approximately 600-900°C ('t:). In this example, since the frequency was approximately 300 (kHz), approximately 10 (kW) of power was supplied from a frequency power supply.

上記Si結晶インゴット1は第2図に見られる如く酸l
A一度分布を有するので、上記コイル2の移動速度は、
第3図に示す如く各位置における結晶インゴットl内部
の酸素濃度に比例するよう制御する。このようにコイル
2の掃引速度を酸素濃度の高い所では速く、低い所では
遅くする。即ちSi結晶インゴットl各部の加熱処理時
間を、SS結晶インゴット1のT o p側は短く、B
ottom側に行くにつれて長くする。
As shown in FIG. 2, the Si crystal ingot 1 is
Since A has a one-time distribution, the moving speed of the coil 2 is
As shown in FIG. 3, the oxygen concentration is controlled to be proportional to the oxygen concentration inside the crystal ingot l at each position. In this way, the sweep speed of the coil 2 is made faster in areas where the oxygen concentration is high and slowed in areas where the oxygen concentration is low. That is, the heat treatment time for each part of the Si crystal ingot 1 is shorter on the T o p side of the SS crystal ingot 1, and shorter on the B side of the SS crystal ingot 1.
Make it longer towards the ottom side.

この後前述した通常の2段階の加熱処理を施すことによ
り、内部欠陥密度を全インゴット長にわたって略一様に
形成することが出来た。
Thereafter, by carrying out the usual two-step heat treatment described above, it was possible to form a substantially uniform internal defect density over the entire length of the ingot.

第4図に本実施例により得られたSi結晶インゴットの
内部欠陥密度(曲線A)を、従来の2段階の加熱処理の
みを施したSi結晶インゴットの内部欠陥密度(曲線B
)と比較して示す。なル上記2段階加熱処理は両者とも
、第1ステツプを凡そ650(’C)の温度で約3〔時
間〕、第2ステツプを凡そ1100(℃)の温度で約5
〔時間〕とした。
Figure 4 shows the internal defect density (curve A) of the Si crystal ingot obtained in this example, and the internal defect density (curve B) of the Si crystal ingot that was subjected to only the conventional two-step heat treatment.
). In both of the above two-step heat treatments, the first step was performed at a temperature of approximately 650 (°C) for approximately 3 hours, and the second step was performed at a temperature of approximately 1100 (°C) for approximately 5 hours.
It was set as [time].

同図の縦軸は酸素濃度の減少量を示すが、内部欠陥は前
述した如くインゴット中に含まれていた格子間酸素が析
出して形成されるので、酸素濃度の減少量を形成された
内部欠陥密度と着像して良い。
The vertical axis of the figure shows the amount of decrease in oxygen concentration, but since internal defects are formed by precipitation of interstitial oxygen contained in the ingot as described above, the amount of decrease in oxygen concentration is It can be imaged as defect density.

同図の曲線Bに示す従来の製造方法により製作したSi
結晶インゴットの内部欠陥密度が、場所により著しく異
なるのに対し、曲線Aに示す本実施例により製作したS
i結晶インゴットは、どの部分を取っても内部欠陥密度
のバラツキは小さく、略一様となる。従って本実施例に
よれば、得られた開所インゴットを全長にわたって前記
IG効果が一様となるので、結晶インゴットを有効に使
用することが可能となる。
Si manufactured by the conventional manufacturing method shown in curve B in the same figure
While the internal defect density of the crystal ingot varies significantly depending on the location, the S
In the i-crystal ingot, the internal defect density has small variations in any part and is substantially uniform. Therefore, according to this embodiment, the IG effect is uniform over the entire length of the obtained open-hole ingot, making it possible to effectively use the crystal ingot.

このあとのSi基板を作成するための結晶インゴソトの
切断、研磨工程或いはSi基板に所望の素子を形成する
ための素子形成工程等は総て通常の製造方法に従って進
めて良い。
The subsequent cutting and polishing of the crystal ingot for producing the Si substrate, the element forming process for forming desired elements on the Si substrate, etc. may all be carried out according to normal manufacturing methods.

なお、前記実施例においてはコイル2を移動させたが、
シリコン結晶インゴット1を移動させてもよいことは勿
論である。
In addition, although the coil 2 was moved in the above example,
Of course, the silicon crystal ingot 1 may be moved.

(明 発明の詳細 な説明したごとく本発明により内部欠陥密度を一様に形
成し得るシリコン結晶の製造方法が提供される。
DETAILED DESCRIPTION OF THE INVENTION As described above, the present invention provides a method for manufacturing a silicon crystal that can form a uniform internal defect density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す要部側面図、第2図は
シリコン結晶インゴット内部の格子間酸素濃度分布を示
す曲線図、第3図はコイルの掃引速度を示す曲線図、第
4図は本実施例により得られたSt結晶インゴットの内
部欠陥密度を従来の製造方法と比較して示す曲線図であ
る。 図において、1はシリコン(Si)結晶インゴット、2
はコイル、4はコイル2の掃引方向を示す矢線、Aは本
発明の効果としての内部欠陥密度を示す曲線である。
FIG. 1 is a side view of essential parts showing an embodiment of the present invention, FIG. 2 is a curve diagram showing the interstitial oxygen concentration distribution inside the silicon crystal ingot, and FIG. 3 is a curve diagram showing the sweep speed of the coil. FIG. 4 is a curve diagram showing the internal defect density of the St crystal ingot obtained by this example in comparison with that of the conventional manufacturing method. In the figure, 1 is a silicon (Si) crystal ingot, 2
is a coil, 4 is an arrow line indicating the sweeping direction of the coil 2, and A is a curve indicating the internal defect density as an effect of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 高周波コイルをシリコン結晶と同心状に周設し、該高周
波コイルまたはシリコン結晶を、前記シリコン結晶の引
き上げ軸方向の酸素濃度に対応した速度で前記軸方向に
移動せしめながら、高周波誘導加熱法により前記シリコ
ン結晶に加熱処理を施し、前記シリコン結晶内部に結晶
欠陥核を発生せしめる工程を含むことを特徴とするシリ
コン結晶の製造方法。
A high frequency coil is disposed concentrically around the silicon crystal, and while the high frequency coil or the silicon crystal is moved in the axial direction at a speed corresponding to the oxygen concentration in the pulling axis direction of the silicon crystal, the high frequency induction heating method is applied to the silicon crystal. 1. A method for producing a silicon crystal, comprising the step of subjecting a silicon crystal to heat treatment to generate crystal defect nuclei inside the silicon crystal.
JP3109082A 1982-02-26 1982-02-26 Production of silicon crystal Granted JPS58151393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3109082A JPS58151393A (en) 1982-02-26 1982-02-26 Production of silicon crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3109082A JPS58151393A (en) 1982-02-26 1982-02-26 Production of silicon crystal

Publications (2)

Publication Number Publication Date
JPS58151393A true JPS58151393A (en) 1983-09-08
JPH021119B2 JPH021119B2 (en) 1990-01-10

Family

ID=12321702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3109082A Granted JPS58151393A (en) 1982-02-26 1982-02-26 Production of silicon crystal

Country Status (1)

Country Link
JP (1) JPS58151393A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242984A (en) * 1985-04-19 1986-10-29 Shinetsu Sekiei Kk Crucible for pulling up silicon single crystal
JP2020520129A (en) * 2017-05-10 2020-07-02 マクマホン, シェーン トマスMCMAHON, Shane Thomas Thin film crystallization process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130897A (en) * 1979-03-30 1980-10-11 Chiyou Lsi Gijutsu Kenkyu Kumiai Silicon single crystal
JPS5645894A (en) * 1979-09-25 1981-04-25 Nippon Telegr & Teleph Corp <Ntt> Reducing method for defect of silicon single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130897A (en) * 1979-03-30 1980-10-11 Chiyou Lsi Gijutsu Kenkyu Kumiai Silicon single crystal
JPS5645894A (en) * 1979-09-25 1981-04-25 Nippon Telegr & Teleph Corp <Ntt> Reducing method for defect of silicon single crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242984A (en) * 1985-04-19 1986-10-29 Shinetsu Sekiei Kk Crucible for pulling up silicon single crystal
JPH0224797B2 (en) * 1985-04-19 1990-05-30 Shinetsu Sekiei Kk
JP2020520129A (en) * 2017-05-10 2020-07-02 マクマホン, シェーン トマスMCMAHON, Shane Thomas Thin film crystallization process
US11810785B2 (en) 2017-05-10 2023-11-07 Lux Semiconductors Thin film crystallization process

Also Published As

Publication number Publication date
JPH021119B2 (en) 1990-01-10

Similar Documents

Publication Publication Date Title
IT9048481A1 (en) PROCEDURE FOR THE TREATMENT OF SILICON SLICES IN ORDER TO OBTAIN CONTROLLED PRECIPITATION PROFILES FOR THE PRODUCTION OF ELECTRONIC COMPONENTS.
JPH02263792A (en) Heat treatment of silicon
WO2023051695A1 (en) Crystal pulling furnace and method for manufacturing single crystal silicon rod, and single crystal silicon rod
JP4154881B2 (en) Heat treatment method for silicon semiconductor substrate
JPH0582360B2 (en)
US6277715B1 (en) Production method for silicon epitaxial wafer
JP4055343B2 (en) Heat treatment method for silicon semiconductor substrate
JPS58151393A (en) Production of silicon crystal
JP3172389B2 (en) Manufacturing method of silicon wafer
JPH03185831A (en) Manufacture of semiconductor device
JPS61201692A (en) Method for pulling and growing silicon single crystal with less generation of defect
JPH04298042A (en) Method of heat-treating semiconductor
JPH04175300A (en) Heat treatment of silicon single crystal
JPH0119265B2 (en)
JPH0818907B2 (en) Method for pulling and growing silicon single crystal with high IG effect
JPS58120591A (en) Production of single crystal
JPH05102167A (en) Heat treatment of silicon
JPS58138034A (en) Manufacture of semiconductor device
JPH023539B2 (en)
JPS6027678A (en) Method for growing single crystal
JPS6344720B2 (en)
JP2715832B2 (en) Single crystal silicon substrate
JPH03193698A (en) Silicon single crystal and its production
JPS6115335A (en) Gettering method for silicon wafer
JPH07187899A (en) Silicon wafer having uniform oxygen density and its prduction