JPH0224797B2 - - Google Patents

Info

Publication number
JPH0224797B2
JPH0224797B2 JP60084218A JP8421885A JPH0224797B2 JP H0224797 B2 JPH0224797 B2 JP H0224797B2 JP 60084218 A JP60084218 A JP 60084218A JP 8421885 A JP8421885 A JP 8421885A JP H0224797 B2 JPH0224797 B2 JP H0224797B2
Authority
JP
Japan
Prior art keywords
crucible
ppm
silicon
concentration
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60084218A
Other languages
Japanese (ja)
Other versions
JPS61242984A (en
Inventor
Katsuhiko Kenmochi
Kyoichi Inagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd, Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP8421885A priority Critical patent/JPS61242984A/en
Publication of JPS61242984A publication Critical patent/JPS61242984A/en
Publication of JPH0224797B2 publication Critical patent/JPH0224797B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は溶融シリコンの引上げにより単結晶を
製造する場合に使用されるルツボに関するもので
ある。 (従来の技術と問題点) シリコンウエハを大量生産するための単結晶引
上げ方法は大別してFZ(フローテイングゾーン)
法とCZ(チヨクラルスキ)法とがある。CZ法は、
石英ガラスルツボ中で溶融したシリコンから単結
晶を凝固させながら引上げるもので、この時、石
英ガラス(SiO2)が溶融シリコンに溶け込み、
その結果単結晶中に酸素が含まれることとなる、
(ref、W.Zulehner and D.Huber;「Crystals」
Vol.8“Czockralski−Grown Silicon”
p.1Springer−Verlag(1982))。 この酸素は、不純物としてきらうべきものでは
なく、ウエハの耐熱性を高めるなど大切な役割を
持つている。従つて、CZ法による単結晶製造の
際には、ルツボ回転数、結晶回転数、雰囲気な
ど、いわゆる結晶引上げ条件を制御して所要濃度
の酸素がシリコンウエハに導入されるようにする
ことが広く行われている(W.Zulehner et al.前
出の文献)。 他方、石英ガラスルツボに要求される特性とし
て、その使用温度が1500℃程度に達することか
ら、耐熱性が第一に挙げられる。半導体工業用石
英ガラスにおいては、耐熱性はガラス中のOH基
濃度に1対1で対応すると近似できるためOH基
含有量の低いルツボを造ることがルツボメーカー
の課題であつた。 このようなOH基含有量の低いルツボは、粘度
が高く、形状安定性も良く、不純物の拡散も遅い
ので、ルツボ内の溶融シリコンが清浄に保たれる
点で優れているが、その反面最適の操業条件を設
定しても、それを維持するために高精度の制御を
必要とし、しかも使用時間が長くなるとルツボ内
面より石英小片が突如として剥離し、これが単結
晶の成長界面に達して結晶を乱してしまうので、
繰り返し使用(いわゆるマルチプリング)が非常
に困難であるという不利があつた。これに対し、
OH基含有量の高い従来の透明石英ガラスルツボ
を使用すると、ヒーターやグラフアイトサセプタ
からの不純物の拡散浸透などがあるため良質の単
結晶が得られないし、これをマルチプリングに使
用しようとしてもほとんど不可能で、繰り返し使
用はできないのが実情であつた。マルチプリング
は単にルツボの繰り返し使用によるルツボの節約
効果をあげ得るだけではなくて、単結晶の品質の
均一性を高め、稼動率を高めるといつた飛躍的な
効果をもつ技術であることが予測されているにも
かかわらず、これを可能にするルツボは従来存在
しなかつたので、その出現が望まれていた。 (発明の目的と構成) 本発明者らは、シリコン単結晶引上げ用ルツボ
をマルチプリングに用いるにあたり、従来の問題
点を解決するため種々検討した結果、ルツボの内
表面層のOH基濃度を高くし、より外側を低くし
て、OH基濃度に分布をもつルツボを使用する
と、長時間使用により、ルツボ内面の石英ガラス
が変質して石英化(結晶化)した層が適度に溶融
シリコンと反応し、いつも清浄なルツボ面が保た
れ、またこの結晶化を促進させるヒーターやグラ
フアイトサセプタからの不純物の拡散浸透が少な
いこともルツボ内面を清浄に保つことに寄与し、
その複合効果として、石英小片がルツボ内表面か
ら剥離して単結晶を乱れさせることがなくなり、
その結果マルチプリングの回数を飛躍的に増加さ
せ得ることに想到した。内表面の変質速度は不純
物の侵入速度に依存するので、この変質層が順次
溶出されるよう溶出速度を適合させる必要があ
る。本発明者らは、この適合の最適化をOH基濃
度分布を制御することで実現できることを新たに
知見し、濃度と層の厚さについて実験を重ねて本
発明を完成した。 すなわち、本発明は内表面に接して0.2mm以上
の厚さのOH基含有量が60ppm以上195ppm以下
の高OH濃度領域と、内表面に接しない厚さ0.5mm
以上の部分にOH基含有量が厚さ0.3mmの内表層に
おける平均濃度より20ppm以上少ない低OH濃度
領域とをもつ構成としたシリコン単結晶引上げ用
ルツボに係るものである。本発明のルツボは、前
記のように、ルツボの内側にOH基の高濃度領域
を設けることによつて、ルツボ内の溶融シリコン
とルツボ壁(SiO2)との反応を適度に制御しや
すくするとともに、使用温度である1480℃前後
で、優れた形状安定性と不純物の拡散浸透を阻止
する能力を併せもつことによつて常に清浄なルツ
ボ内面を保てるようにしたものである。 このため本発明では、ルツボの内表面より0.2
mm以上の範囲をOH基含有量が60ppm以上
195ppm以下、好ましくは80〜170ppmである高濃
度領域とし、領域の最適な厚さを0.6〜1.5mmとす
るのである。 このような条件は、第1図に示すOH基分布曲
線OがA部を通らないこと、好ましくはB,C部
をも通らないことを意味する。これを具体的に第
1図について説明すると次のとおりである。分布
曲線O1は、通常の低OH基濃度ルツボに対するも
のであり、いわゆる半透明ルツボと呼ばれる電気
溶融ルツボに対するものである。この場合は、領
域Aを通り、内表面もOH基濃度が低いので本発
明のルツボとは異なつている。分布曲線O2は、
透明天然石英ガラスルツボに対するものである。
内表面のOH基濃度は上述の最適範囲内ではある
が、後に述べる本発明のもう1つの条件である低
OH領域をもたないので本発明の範囲外のもので
ある。 分布曲線O3は、本発明の例であり、最も好ま
しいルツボである。分布曲線O4は、O3の最適例
に似ているが、OH基含有量が60ppm以上の内表
層の厚さが0.2mm以下であるため、本発明の効果
が充分でなく、満足できるものではない。 上記条件と同時に、本発明では、内表層0.3mm
の平均OH基濃度より20ppm以上OH基が少ない
層が、前記高濃度領域の外側にあることが必要で
あり、この領域はルツボの外表面に接していても
よい。 第2図に示すように、内表層0.3mmの平均OH基
濃度C1とこれより20ppm少ない層のOH基濃度C2
とがOH分布曲線Oと交わる点AとBまでの内表
面からの距離をそれぞれXA,XBとする。 本発明のルツボではXB−XA≧0.5(mm)であこ
とが第2の条件である。この場合交点Bがなく、
Aより外側ですべてC2より低ければB点は外表
面上にあるとして考えることができる。なおC2
はC1より40ppm以上小さい方が望ましい。XB
XAは1.5mm以上であることが望ましい。上記2つ
の条件を具備する構成が、ルツボ全体の内表面の
1/4以上あるいはシリコン溶融時に、溶融シリコ
ンに接する内表面の1/3以上を占める(通常内表
面の75%が溶融シリコンに接する)ことも、本発
明にとつて必要な条件である。 OH基の高濃度領域をルツボ内側に設ける方法
としては、 (i) 回転モールド中で成型した石英ガラスルツボ
1の内側にOH基の多い石英ガラス板2を溶接
する(内張り)、(第3図)、 (ii) 回転モールド3中に粉体を成型し、電気アー
クでその粉体層を溶融してルツボ1を製造する
際、内側にOH基の多い石英ガラス粉4を成型
し二重粉体層とする(二重粉体成型)(第4
図)、 (iii) 回転モールド中の粉体層を電気溶融するに際
し、水分を含んだ雰囲気(通常の大気)で長時
間溶融状態を保持する、 などの方法があるが、前記(i),(ii)の方法は製造プ
ロセスが複雑であること、石英ガラス粉が石英粉
に比して高価であることから実用的でない。本発
明者らは回転モールド法による従来の溶融方法を
変えることで内層のOH基含有量を変える実験を
行つた結果、(iii)の方法により、通常の大気中で長
時間溶融すると予期せざることに内層のOH基含
有量が増加することがわかつた。従来の方法でそ
のまま溶融時間を延長すると厚すぎるルツボにな
るが、冷却条件の変更によつて所定の厚さに制御
できる。 上記の方法で得られる本発明のルツボは、従来
のルツボがOH基含有量が30ppmであるのに対
し、最適な例では生地が約60ppm、内表面は
110ppmであり、両者を比較すると次の効果が挙
げられる。 (発明の効果) (1) 従来はSiO2(ガラス)が溶融シリコンに溶け
難く、そのため比較的速い対流が生じるような
操業条件が設定されていた。本発明のルツボを
用いるとSiO2(ガラス)が溶けやすいため、お
だやかな溶湯の動きで所定の酸素濃度が達成さ
せられると共に、使用時間が延びるにつれて生
ずるルツボ内壁の変質層すなわち結晶化した層
がその成長を相殺するよう適度に溶出し、ルツ
ボの外側から侵入して内面の結晶化を促進する
アルカリ元素の侵入も少ないので、内面の結晶
化が溶出を上まわつて石英小片の生成に至つて
しまうようなことがない。この結果予期せざる
結晶の乱れが起こらないで安定してマルチプリ
ングを行うことができる。 アルカリ原子はOH基のH原子と置換しなが
ら拡散するため、OH基含有量の少ない生地層
はアルカリ元素の拡散を選択的に阻止している
ものと考えられる。内面の結晶化を促進する点
で最も有害な元素はアルカリ元素なので、低
OH基濃度層を拡散阻止層に用いることは本発
明の目的に照らして合理的なものである。 このように不純物の作用を考え得る限り低減
しても、溶融シリコンとシリカルツボの界面の
結晶化を皆無にはできなかつたが、内表面を高
OH基濃度とすることによつてその結晶を効果
的に溶出させてしまうことができた。 (2) この結果、減圧CZ法によるルツボのマルチ
プリングが従来は2〜3回が限度であつたのに
対し、本発明では6〜8回になり、このため稼
動率を著しく高める結果となつた。同時に品質
の均一性が向上した。 つぎに、本発明によるルツボと、従来の方法に
よるルツボを試作し、内表面に垂直方向のOH基
濃度分布を比較した。第5図、第1表はその結果
を示すもので、ルツボはいずれも口径25cm高さ20
cmである。 は回転モールド中に石英粉を成型し、内側よ
りアークで加熱する従来方法で作られたルツボで
あり,およびは本発明によるルツボであ
る。すなわちこれらはそれぞれ前記(ii)二重粉体成
型、(iii)長時間溶融および(i)内張りの方法によるの
もである。 の従来法のルツボでは、OH基はルツボの生
地と内層にわたつて30〜40ppmとほぼ均一分布で
あるが、〜は内表面で190ppmにまで達する
ような著しく高濃度な領域をもつ分布である。
では60〜70ppmの領域が生地となつたが、この場
合、0.3mmの内表面層の平均値が110ppmであつ
た。の内張り法は工数がかかり、量産性に乏し
いが内表面の何%がOH基分布構造である必要が
あるかを知るには良いサンプルであるので、内張
り率30%のサンプルの他に内張り率15%のサン
プルを試作した。さらに、内層を合成石英ガラ
スとした二重粉体成型サンプルおよび、ガラス
細工で製作した全透明石英ガラスルツボのサンプ
ルを追加して、これらルツボを実際に使用し、
マルチプリング数と使いやすさを比較した。 実験方法について以下説明する。 本実験のために、試作された直径25cm×高さ20
cmの各種石英ルツボを第6図のごとくセツトし、
この中に高純度多結晶シリコン塊約20Kgを充填溶
融し、アルゴンガスを入口5より流量30/min
で導入し、かつ引上室6内の圧力を10mbに保ち
ながら直径110mmφのシリコン単結晶7を引上げ
た。この他の第6図の各部分は、引上げられるシ
リコン単結晶7の上端に種結晶8を介して、上方
に回転しつつ上昇する引上軸9、石英ルツボとこ
れに内接する炭素材からなるルツボ保護体10で
あり、保護体を囲繞したヒーター11により石英
ルツボ1内に充填された高純度多結晶シリコン塊
を加熱溶融し、溶融後はシリコン単結晶7の引上
行程の進捗にあわせて、加熱エネルギーが適当に
なるよう交流または直流電源と制御装置(いずれ
も図示されていない)が付属する。12は高純度
シリコンの溶融体であり、13は流入したガスの
引上室6からの出口である。 シリコン溶融体12から単結晶シリコン7が引
上げられるときに、使用ルツボに応じて、種結晶
8の回転数および石英ルツボ1の回転数を適宜制
御する必要があるが、従来品の石英ルツボを用い
る場合は、方向が互いに逆で、種結晶が15rpm、
石英ルツボが2rpmの回転が用いられる。しかし、
長時間溶融品あるいは、内張り品を用いた場合、
あるいは二重成型品を用いた場合には、特に種結
晶の回転数を10乃至5rpmまで低減でき、この結
果シリコン溶融体の撹拌がおだやかになり、ルツ
ボ内壁の変質あるいは、その結果おこるルツボ壁
から剥離する石英小片のシリコン単結晶成長界面
への接触による、単結晶乱れを著しく防止でき
る。 シリコン単結晶引上においては、その中に意図
的に導電型、ならびに抵抗率の制御のために添加
されるリンまたはボロンの濃度をある範囲に制御
するために、石英ルツボ1の中のシリコン溶融体
を一回引上行程で、全量単結晶化することは少な
く、ある程度たとえば全シリコン量の半分すなわ
ち10Kgが引上げられた後、再び最高10Kg追加され
て、第2回引上行程が行われる。引上行程は、理
論的には無限に行われることが好ましいが、回数
を増すにつれて、シリコン溶融体中に残留する不
純物が蓄積するので、高々10回が限度とみられ
る。これらの実験結果は第1表に示すとおりであ
る。
(Industrial Application Field) The present invention relates to a crucible used when producing a single crystal by pulling molten silicon. (Conventional technology and problems) Single crystal pulling methods for mass production of silicon wafers can be broadly divided into FZ (floating zone)
There are two methods: the CZ method and the CZ (Cyochralski) method. The CZ method is
A single crystal is pulled from molten silicon in a quartz glass crucible while being solidified. At this time, quartz glass (SiO 2 ) melts into the molten silicon,
As a result, oxygen is included in the single crystal.
(ref, W. Zulehner and D. Huber; "Crystals"
Vol.8 “Czockralski−Grown Silicon”
p.1 Springer-Verlag (1982)). This oxygen is not an impurity that should be avoided, but plays an important role, such as increasing the heat resistance of the wafer. Therefore, when manufacturing single crystals using the CZ method, it is widely necessary to control so-called crystal pulling conditions such as the crucible rotation speed, crystal rotation speed, and atmosphere so that the required concentration of oxygen is introduced into the silicon wafer. (W. Zulehner et al., supra). On the other hand, the first characteristic required of a silica glass crucible is heat resistance, since its operating temperature reaches approximately 1500°C. In quartz glass for the semiconductor industry, the heat resistance can be approximated by a one-to-one correspondence with the OH group concentration in the glass, so creating a crucible with a low OH group content has been a challenge for crucible manufacturers. Such a crucible with a low OH group content has high viscosity, good shape stability, and slow diffusion of impurities, so it is excellent in that the molten silicon inside the crucible is kept clean, but on the other hand, it is not optimal. Even if the operating conditions are set, high-precision control is required to maintain them, and as the operating time increases, small pieces of quartz will suddenly peel off from the inner surface of the crucible, and this will reach the growth interface of the single crystal and cause the crystal to grow. Because it disturbs
The disadvantage was that repeated use (so-called multiplexing) was extremely difficult. On the other hand,
If a conventional transparent quartz glass crucible with a high OH group content is used, it is difficult to obtain a high-quality single crystal due to the diffusion and permeation of impurities from the heater and graphite susceptor. The reality was that it was impossible and could not be used repeatedly. Multi-pulling is predicted to be a technology that not only saves money on crucibles through repeated use, but also has dramatic effects in improving the uniformity of single crystal quality and increasing operating rates. However, there was no crucible that could do this, so the creation of one had been awaited. (Objective and Structure of the Invention) The present inventors have conducted various studies to solve the conventional problems when using a crucible for pulling silicon single crystals for multiple pulling. However, if you use a crucible with a lower outside surface and a distribution of OH group concentration, the quartz glass on the inner surface of the crucible will change in quality and the quartzized (crystallized) layer will react moderately with molten silicon after long-term use. However, the surface of the crucible is always kept clean, and the fact that impurities from the heater and graphite susceptor that promote crystallization are less likely to diffuse and permeate also contributes to keeping the inner surface of the crucible clean.
The combined effect is that the quartz particles no longer peel off from the inner surface of the crucible and disturb the single crystal.
As a result, we came up with the idea that the number of times of multiplexing can be dramatically increased. Since the rate of deterioration of the inner surface depends on the rate of penetration of impurities, it is necessary to adapt the elution rate so that the deterioration layer is sequentially eluted. The present inventors newly discovered that optimization of this adaptation can be achieved by controlling the OH group concentration distribution, and completed the present invention after repeated experiments regarding the concentration and layer thickness. That is, the present invention provides a high OH concentration region with an OH group content of 60 ppm or more and 195 ppm or less, which is in contact with the inner surface and has a thickness of 0.2 mm or more, and a region with a thickness of 0.5 mm that is not in contact with the inner surface.
This relates to a crucible for pulling silicon single crystals having a structure in which the above portion has a low OH concentration region in which the OH group content is 20 ppm or more lower than the average concentration in the inner surface layer with a thickness of 0.3 mm. As described above, the crucible of the present invention makes it easy to appropriately control the reaction between the molten silicon in the crucible and the crucible wall (SiO 2 ) by providing a region with a high concentration of OH groups inside the crucible. At the same time, it has excellent shape stability and the ability to prevent impurities from diffusing and penetrating at the operating temperature of around 1480°C, making it possible to maintain a clean crucible inner surface at all times. Therefore, in the present invention, 0.2
OH group content is 60ppm or more in the range of mm or more
The high concentration region is 195 ppm or less, preferably 80 to 170 ppm, and the optimal thickness of the region is 0.6 to 1.5 mm. Such conditions mean that the OH group distribution curve O shown in FIG. 1 does not pass through part A, and preferably does not pass through parts B and C either. This will be specifically explained with reference to FIG. 1 as follows. The distribution curve O 1 is for a normal low OH group concentration crucible, and is for an electric melting crucible called a so-called translucent crucible. In this case, the crucible passes through region A and the inner surface also has a low concentration of OH groups, so it is different from the crucible of the present invention. The distribution curve O 2 is
This is for a transparent natural silica glass crucible.
Although the OH group concentration on the inner surface is within the above-mentioned optimum range, it is low enough to satisfy another condition of the present invention described later.
Since it does not have an OH region, it is outside the scope of the present invention. Distribution curve O 3 is an example of the invention and is the most preferred crucible. The distribution curve O 4 is similar to the optimal example of O 3 , but since the thickness of the inner surface layer with an OH group content of 60 ppm or more is 0.2 mm or less, the effect of the present invention is not sufficient and is not satisfactory. isn't it. At the same time as the above conditions, in the present invention, the inner surface layer is 0.3 mm
It is necessary that a layer containing less OH groups by 20 ppm or more than the average OH group concentration exists outside the high concentration region, and this region may be in contact with the outer surface of the crucible. As shown in Figure 2, the average OH group concentration C 1 in the inner surface layer 0.3 mm and the OH group concentration C 2 in the layer 20 ppm lower than this.
Let the distances from the inner surface to points A and B where and intersect with the OH distribution curve O be X A and X B, respectively. In the crucible of the present invention, the second condition is that X B −X A ≧0.5 (mm). In this case, there is no intersection B,
If all points outside A are lower than C 2 , point B can be considered to be on the outer surface. Note that C 2
It is desirable that C1 be at least 40 ppm smaller. X B
It is desirable that X A is 1.5 mm or more. A configuration that satisfies the above two conditions occupies 1/4 or more of the inner surface of the entire crucible or 1/3 or more of the inner surface that comes into contact with molten silicon during silicon melting (usually 75% of the inner surface comes into contact with molten silicon) ) is also a necessary condition for the present invention. Methods for providing a region with a high concentration of OH groups inside the crucible include: (i) welding a quartz glass plate 2 containing a large amount of OH groups to the inside of a quartz glass crucible 1 molded in a rotary mold (inner lining); (Fig. 3); ), (ii) When manufacturing the crucible 1 by molding powder in a rotary mold 3 and melting the powder layer with an electric arc, quartz glass powder 4 with many OH groups is molded inside and double powder is formed. Body layer (double powder molding) (4th
(Fig.), (iii) When electrically melting the powder layer in a rotary mold, there are methods such as maintaining the molten state for a long time in a moisture-containing atmosphere (normal atmosphere). Method (ii) is not practical because the manufacturing process is complicated and quartz glass powder is more expensive than quartz powder. The present inventors conducted an experiment to change the OH group content of the inner layer by changing the conventional melting method using rotary molding, and found that method (iii) results in unexpected melting in normal atmosphere for a long time. In particular, it was found that the OH group content in the inner layer increased. If the melting time is extended using the conventional method, the crucible will become too thick, but by changing the cooling conditions, the thickness can be controlled to a predetermined value. The crucible of the present invention obtained by the above method has an OH group content of 30 ppm in conventional crucibles, but in the optimal example, the dough has a content of about 60 ppm, and the inner surface has an OH group content of about 60 ppm.
It is 110ppm, and the following effects can be cited when comparing the two. (Effects of the Invention) (1) Conventionally, SiO 2 (glass) was difficult to dissolve in molten silicon, and therefore operating conditions were set such that relatively fast convection occurred. When the crucible of the present invention is used, SiO 2 (glass) is easily melted, so the gentle movement of the molten metal allows the desired oxygen concentration to be achieved, and the altered layer, that is, the crystallized layer, that forms on the inner wall of the crucible as the usage time increases is eliminated. Moderate elution is carried out to offset the growth, and there is little intrusion of alkaline elements that enter from the outside of the crucible and promote crystallization on the inner surface, so crystallization on the inner surface exceeds elution and leads to the formation of quartz particles. There's nothing to put away. As a result, multiplexing can be performed stably without causing unexpected crystal disturbances. Since alkali atoms diffuse while substituting H atoms in OH groups, it is thought that the dough layer with a low OH group content selectively blocks the diffusion of alkali elements. The most harmful elements in terms of promoting internal crystallization are alkali elements, so
It is reasonable to use the OH group concentration layer as the diffusion prevention layer in light of the purpose of the present invention. Even if the effects of impurities were reduced as much as possible in this way, crystallization at the interface between molten silicon and silica crucible could not be completely eliminated;
By adjusting the OH group concentration, the crystals could be effectively eluted. (2) As a result, the crucible can be multiplied only 6 to 8 times using the reduced pressure CZ method, whereas in the past, the limit was 2 to 3 times, and this results in a significant increase in the operating rate. Ta. At the same time, quality uniformity improved. Next, a crucible according to the present invention and a crucible according to a conventional method were prototyped, and the OH group concentration distribution in the direction perpendicular to the inner surface was compared. Figure 5 and Table 1 show the results, and the crucibles were 25 cm in diameter and 20 cm in height.
cm. 1 is a crucible made by the conventional method of molding quartz powder in a rotary mold and heating it from the inside with an arc, and 1 is a crucible according to the present invention. That is, these are based on the methods of (ii) double powder molding, (iii) long-term melting, and (i) lining, respectively. In the conventional crucible, the OH group is distributed almost uniformly at 30 to 40 ppm throughout the crucible fabric and inner layer, but the distribution in ~ is markedly high concentration reaching 190 ppm on the inner surface. .
In this case, the average value of the 0.3 mm inner surface layer was 110 ppm. Although the lining method requires a lot of man-hours and is not suitable for mass production, it is a good sample to know what percentage of the inner surface needs to have an OH group distribution structure, so in addition to the sample with a lining ratio of 30%, A 15% sample was prototyped. Furthermore, we added a sample of double powder molding with an inner layer of synthetic quartz glass and a sample of a completely transparent quartz glass crucible made with glasswork, and we actually used these crucibles.
We compared the number of multiples and ease of use. The experimental method will be explained below. For this experiment, a prototype was made with a diameter of 25 cm and a height of 20 cm.
Set up various quartz crucibles of cm as shown in Figure 6,
Approximately 20 kg of high-purity polycrystalline silicon is filled and melted in this, and argon gas is supplied from inlet 5 at a flow rate of 30/min.
A silicon single crystal 7 having a diameter of 110 mmφ was pulled while maintaining the pressure inside the pulling chamber 6 at 10 mb. The other parts shown in FIG. 6 consist of a pulling shaft 9 that rotates upward and rises via a seed crystal 8 at the upper end of the silicon single crystal 7 to be pulled, a quartz crucible, and a carbon material inscribed therein. The crucible protector 10 heats and melts the high-purity polycrystalline silicon block filled in the quartz crucible 1 using a heater 11 surrounding the protector. , an AC or DC power supply and control device (not shown) are included to provide appropriate heating energy. 12 is a high-purity silicon melt, and 13 is an outlet from the drawing chamber 6 for the gas that has flowed in. When the single crystal silicon 7 is pulled from the silicon melt 12, it is necessary to appropriately control the rotation speed of the seed crystal 8 and the rotation speed of the quartz crucible 1 depending on the crucible used, but a conventional quartz crucible is used. If the directions are opposite to each other and the seed crystal is at 15 rpm,
A quartz crucible rotated at 2 rpm is used. but,
When using long-term melting products or lined products,
Alternatively, when a double molded product is used, the rotational speed of the seed crystal can be reduced to 10 to 5 rpm, and as a result, the stirring of the silicon melt becomes gentler, resulting in damage to the inner wall of the crucible or damage to the crucible wall that occurs as a result. It is possible to significantly prevent single crystal disorder due to contact of exfoliating quartz pieces with the silicon single crystal growth interface. In pulling a silicon single crystal, the silicon melt in the quartz crucible 1 is heated to control the concentration of phosphorus or boron, which is intentionally added to the silicon single crystal to control the conductivity type and resistivity, within a certain range. It is rare that the entire amount of silicon is converted into a single crystal in one pulling process, and after a certain amount, for example, half of the total amount of silicon, or 10 kg, has been pulled, a maximum of 10 kg is added again and a second pulling process is performed. Theoretically, it is preferable that the pulling process be carried out infinitely, but as the number of pulling processes increases, impurities remaining in the silicon melt accumulate, so it seems that the limit is 10 times at most. The results of these experiments are shown in Table 1.

【表】 以上の結果より、サンプルの長時間溶融タイ
プのOH基分布が最も望ましいことが明らかであ
る。またサンプルとサンプルとよりOH基濃
度の高い内層領域は25%以上ないと効果がでない
ことも推定される。サンプルの例では、内表面
のOH基が170ppmと適当であるにもかかわらず
結果が悪いのは、OH基低含有量領域の生地がな
いために、短時間のうちに溶融シリコンが汚染し
てしまい、ルツボ内壁が変質したりルツボ壁から
の石英小片の剥離が増したりしてその後の使用に
耐えられなくなるものと推定される。
[Table] From the above results, it is clear that the OH group distribution of the long-time melting type of the sample is the most desirable. It is also estimated that the inner layer region with a higher OH group concentration than the sample will not be effective unless it is 25% or more. In the example of the sample, the reason why the results are poor even though the OH group on the inner surface is appropriate at 170 ppm is because there is no fabric in the low OH group content area, so the molten silicon gets contaminated in a short time. It is presumed that the inner wall of the crucible deteriorates or the number of quartz pieces peels off from the crucible wall, making it impossible to withstand subsequent use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図,第2図はルツボの内表面からの深さ方
向におけるOH基含有量の分布を示す線図、第3
図,第4図はルツボの製作説明図、第5図は各種
タイプのルツボの内表面からの深さ方向における
OH基含有量分布を示す曲線図、第6図はCZ法に
よる単結晶引上装置の断面図である。 1…ルツボ、2…ガラス板、3…回転モール
ド、4…OH基含有量の高いガラス粉体、5…入
口、6…引上室、7…単結晶、8…種結晶、9…
引上軸、10…ルツボ保護体、11…ヒーター、
12…溶融体、13…出口。
Figures 1 and 2 are diagrams showing the distribution of OH group content in the depth direction from the inner surface of the crucible.
Figure 4 is an explanatory diagram of crucible manufacturing, and Figure 5 shows the depth direction from the inner surface of various types of crucibles.
A curve diagram showing the OH group content distribution, and FIG. 6 is a cross-sectional view of a single crystal pulling apparatus using the CZ method. DESCRIPTION OF SYMBOLS 1... Crucible, 2... Glass plate, 3... Rotating mold, 4... Glass powder with high OH group content, 5... Inlet, 6... Pulling chamber, 7... Single crystal, 8... Seed crystal, 9...
Pulling shaft, 10... Crucible protector, 11... Heater,
12...Melted body, 13...Outlet.

Claims (1)

【特許請求の範囲】 1 内表面に接して0.2mm以上の厚さの、OH基含
有量が60ppm以上195ppm以下の高OH濃度領域
と、内表面に接しない厚さ0.5mm以上の部分にOH
基含有量が厚さ0.3mmの内表層における平均濃度
より20ppm以上少ない低OH濃度領域とをもつ構
成としたシリコン単結晶引上げ用ルツボ。 2 前記構成がルツボ全体の内表面の4分の1以
上、もしくは原料溶融時に溶融液に接する内表面
の3分の1以上を占めることを特徴とする特許請
求の範囲第1項記載の単結晶引上げ用ルツボ。
[Claims] 1. OH in a high OH concentration region with an OH group content of 60 ppm or more and 195 ppm or less, which is in contact with the inner surface and has a thickness of 0.2 mm or more, and in a region with a thickness of 0.5 mm or more that is not in contact with the inner surface.
A crucible for pulling silicon single crystals configured to have a low OH concentration region in which the group content is 20 ppm or more lower than the average concentration in the inner surface layer with a thickness of 0.3 mm. 2. The single crystal according to claim 1, wherein the structure occupies one-fourth or more of the inner surface of the entire crucible, or one-third or more of the inner surface that comes into contact with the melt when melting the raw material. Crucible for pulling.
JP8421885A 1985-04-19 1985-04-19 Crucible for pulling up silicon single crystal Granted JPS61242984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8421885A JPS61242984A (en) 1985-04-19 1985-04-19 Crucible for pulling up silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8421885A JPS61242984A (en) 1985-04-19 1985-04-19 Crucible for pulling up silicon single crystal

Publications (2)

Publication Number Publication Date
JPS61242984A JPS61242984A (en) 1986-10-29
JPH0224797B2 true JPH0224797B2 (en) 1990-05-30

Family

ID=13824339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8421885A Granted JPS61242984A (en) 1985-04-19 1985-04-19 Crucible for pulling up silicon single crystal

Country Status (1)

Country Link
JP (1) JPS61242984A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282194A (en) * 1988-01-19 1989-11-14 Osaka Titanium Co Ltd Production of single crystal
JPH068237B2 (en) * 1988-04-28 1994-02-02 三菱マテリアル株式会社 Quartz crucible for pulling silicon single crystal
JPH08709B2 (en) * 1988-10-12 1996-01-10 信越石英株式会社 Quartz glass base material for light transmitting body, method for manufacturing the same, and light transmitting body formed using the base material
JPH0764673B2 (en) * 1990-01-10 1995-07-12 三菱マテリアル株式会社 Quartz crucible manufacturing method
JP4592037B2 (en) * 2000-05-31 2010-12-01 信越石英株式会社 Method for producing quartz glass crucible
JP4995068B2 (en) * 2007-12-28 2012-08-08 ジャパンスーパークォーツ株式会社 Silica glass crucible for pulling silicon single crystals
JP2011088755A (en) * 2008-03-14 2011-05-06 Japan Siper Quarts Corp Quartz glass crucible and method for manufacturing the same
TWI412634B (en) * 2009-09-07 2013-10-21 Japan Super Quartz Corp Silica glass crucible and method for manufacturing the same
JP5557334B2 (en) * 2010-12-27 2014-07-23 コバレントマテリアル株式会社 Silica glass crucible for silicon single crystal pulling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849519A (en) * 1981-09-07 1983-03-23 Toyota Motor Corp Body floor structure of automobile
JPS5850955A (en) * 1981-09-22 1983-03-25 株式会社フオ−ブレイン Resin capsule and apparatus for molding resin floor denture and crown
JPS58151393A (en) * 1982-02-26 1983-09-08 Fujitsu Ltd Production of silicon crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849519A (en) * 1981-09-07 1983-03-23 Toyota Motor Corp Body floor structure of automobile
JPS5850955A (en) * 1981-09-22 1983-03-25 株式会社フオ−ブレイン Resin capsule and apparatus for molding resin floor denture and crown
JPS58151393A (en) * 1982-02-26 1983-09-08 Fujitsu Ltd Production of silicon crystal

Also Published As

Publication number Publication date
JPS61242984A (en) 1986-10-29

Similar Documents

Publication Publication Date Title
US4040895A (en) Control of oxygen in silicon crystals
JPH01148718A (en) Quartz crucible and its formation
US5152867A (en) Apparatus and method for producing silicon single crystal
KR850001941B1 (en) Method for regulating concentration and distribution of oxygen in czochralski grown silicon
JPH09202694A (en) Rapid cooling of cz silicon crystal growth system
JPH0224797B2 (en)
US5260037A (en) Apparatus for producing silicon single crystal
JPH10297994A (en) Growth of silicon single crystal
JPH04317493A (en) Producing device for silicon single crystal
JPH06345584A (en) Method and apparatus for pulling monocrystal
JP2018104248A (en) Quartz glass crucible for pulling silicon single crystal
JPH03115188A (en) Production of single crystal
US5840116A (en) Method of growing crystals
JPH10167892A (en) Method for pulling silicon single crystal
TWI784314B (en) Manufacturing method of single crystal silicon
JPH06211591A (en) Method for producing single crystalline body and apparatus therefor
JP4874888B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP2520925B2 (en) Method for controlling oxygen concentration in silicon single crystal
JPH10324592A (en) Apparatus for pulling up single crystal
JPH10279391A (en) Method for growing silicon single crystal
JPH04119986A (en) Quartz crucible for pulling up silicon single crystal and its production
KR20220161166A (en) The manufacturing apparatus of silicon ingot
KR101343505B1 (en) Method and apparatus for manufacturing single crystal ingot
JPH054888A (en) Apparatus for producing silicon single crystal
JPH0692776A (en) Silicon single crystal pulling up device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term