JPH07187899A - Silicon wafer having uniform oxygen density and its prduction - Google Patents
Silicon wafer having uniform oxygen density and its prductionInfo
- Publication number
- JPH07187899A JPH07187899A JP33677093A JP33677093A JPH07187899A JP H07187899 A JPH07187899 A JP H07187899A JP 33677093 A JP33677093 A JP 33677093A JP 33677093 A JP33677093 A JP 33677093A JP H07187899 A JPH07187899 A JP H07187899A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- crystal
- uniform
- single crystal
- silicon wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体デバイス製造時
において重要な役割を演ずる、シリコンウェーハ中の酸
素濃度の均一化技術に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for uniformizing the oxygen concentration in a silicon wafer, which plays an important role in manufacturing semiconductor devices.
【0002】[0002]
【従来の技術】チョクラルスキー法(以下CZ法とい
う)でシリコン単結晶棒を引上げる場合、石英ルツボか
ら溶出する酸素が単結晶中に格子間不純物として取り込
まれることはよく知られている。かかる格子間酸素不純
物は、シリコン融液中の対流による不均一温度変動等の
ため単結晶中に不均一に取り込まれ、いわゆる成長縞を
引き起こす。この成長縞は、結晶中の不均一な分布によ
るものであるが、成長方向での変動幅(最大濃度−最低
濃度)は通常 0.3〜 0.8×1017atoms/cm3 (79年AST
M換算,以下同じ)もあり、変動の周期は 0.4〜1.2mm
程度である(図1、2参照)。このような結晶棒から製
造されるウェーハは、6”φであれば1枚の厚さが約
0.6mmであるから、上記のような酸素濃度の変動をウェ
ーハ内及び各ウェーハ間でもつこととなる。さらに、C
Z法によるシリコン単結晶棒の成長においては、その成
長界面は平らではないため(上に凸)、成長縞に沿って
分布する酸素の変動は結局において、単結晶棒から切り
出されるウェーハの面内においても生じていることとな
る。2. Description of the Related Art It is well known that when a silicon single crystal ingot is pulled by the Czochralski method (hereinafter referred to as the CZ method), oxygen eluted from a quartz crucible is incorporated as an interstitial impurity in the single crystal. Such interstitial oxygen impurities are nonuniformly incorporated into the single crystal due to nonuniform temperature fluctuations due to convection in the silicon melt, causing so-called growth fringes. This growth fringe is due to the uneven distribution in the crystal, but the fluctuation range (maximum concentration-minimum concentration) in the growth direction is usually 0.3 to 0.8 × 10 17 atoms / cm 3 (1979 AST
M conversion, the same applies below), and the fluctuation cycle is 0.4 to 1.2 mm
It is about the degree (see FIGS. 1 and 2). A wafer manufactured from such a crystal rod has a thickness of about 6 "φ.
Since it is 0.6 mm, the above-mentioned fluctuation of oxygen concentration is caused within the wafer and between the wafers. Furthermore, C
In the growth of a silicon single crystal ingot by the Z method, the growth interface is not flat (convex upward), so that the fluctuation of oxygen distributed along the growth fringes is ultimately in the plane of the wafer cut out from the single crystal ingot. Will also occur in.
【0003】ところで、シリコンウェーハ中に取り込ま
れた酸素はIC製造工程における熱処理により酸素析出
物を作り、重金属不純物のゲッター源となるため、結晶
中酸素濃度はIC歩留りに大きな影響を与えることがよ
く知られている。By the way, the oxygen taken in the silicon wafer forms an oxygen precipitate by the heat treatment in the IC manufacturing process and serves as a getter source of heavy metal impurities. Therefore, the oxygen concentration in the crystal often greatly affects the IC yield. Are known.
【0004】しかるに、従来のシリコンウェーハは、前
記酸素の成長縞を有するためIC製造工程における熱処
理で縞状の酸素析出を起こし、重金属のゲッター効果も
ウェーハ内、ウェーハ間で均一でないものとなってい
た。However, since the conventional silicon wafer has the above-mentioned growth fringes of oxygen, striped oxygen precipitation occurs in the heat treatment in the IC manufacturing process, and the getter effect of heavy metals is not uniform within the wafer or between the wafers. It was
【0005】かかる問題に対し特開平 5-97584号では、
そもそも従来は前記酸素濃度の変動を精度よく測定でき
なかったことから、高精度測定のできるフーリエトラン
スフォーム計算機能の付いた赤外分光器に顕微鏡を付け
たいわゆる顕微FTIRを用い、従来法で製造されたウ
ェーハの中から比較的酸素濃度変動の少ないウェーハを
選別する発明が開示されている。しかし、この方法では
ウェーハの中から比較的変動の少ないものを選び出せる
だけで、酸素濃度の変動がある事に変りないし、結晶棒
から酸素変動の少ないウェーハの取れる割合がきわめて
低いこととなる。To address this problem, Japanese Patent Laid-Open No. 5-97584 discloses that
In the first place, since the fluctuation of the oxygen concentration could not be measured accurately in the first place, it was manufactured by the conventional method using a so-called microscopic FTIR in which an infrared spectroscope with a Fourier transform calculation function capable of highly accurate measurement was equipped with a microscope. An invention is disclosed in which a wafer having a relatively small variation in oxygen concentration is selected from the produced wafers. However, with this method, only wafers with relatively small fluctuations can be selected from the wafers, and the fluctuation in oxygen concentration does not change, and the ratio of wafers with small oxygen fluctuations that can be obtained from the crystal rod is extremely low.
【0006】一方、通常のCZ法において、シリコン単
結晶棒を育成するときに均一に酸素を取り込むようにす
ることは、酸素の変動が成長時の融液対流の影響による
ものなので非常に困難である。融液対流を抑制する方法
としては磁場印加によるCZ法(MCZ法)があるが、
この方法をもってしてもシリコン結晶中の酸素が極低濃
度になるような条件で結晶成長を行う場合のみ、酸素の
変動をある程度抑制することができるだけである。極低
酸素の場合以外は通常法と同程度の酸素変動がある。On the other hand, in the ordinary CZ method, it is extremely difficult to uniformly take in oxygen when growing a silicon single crystal ingot because the fluctuation of oxygen is due to the influence of melt convection during growth. is there. As a method of suppressing melt convection, there is a CZ method by applying a magnetic field (MCZ method).
Even with this method, the fluctuation of oxygen can be suppressed to some extent only when the crystal growth is performed under the condition that the oxygen concentration in the silicon crystal is extremely low. Except in the case of extremely low oxygen, oxygen fluctuations are similar to those in the conventional method.
【0007】[0007]
【発明が解決しようとする課題】本発明が解決しようと
する課題は前記問題点に鑑み、ウェーハ間およびウェー
ハ内で酸素濃度の変動のない、均一なシリコンウェーハ
を得ることである。より具体的に言えば、酸素変動幅を
当初の半分以下とすることを目的とする。SUMMARY OF THE INVENTION In view of the above problems, the problem to be solved by the present invention is to obtain a uniform silicon wafer having no variation in oxygen concentration between wafers and within a wafer. More specifically, the purpose is to reduce the oxygen fluctuation range to half or less of the initial value.
【0008】[0008]
【課題を解決するための手段】本発明者らは、結晶成長
時において取り込まれる酸素を均一とすることは困難な
ことから、結晶成長後高温の熱処理を加えることによっ
て酸素を拡散させ均一化することを着想し、本発明を完
成させるに至った。即ち、通常のCZ法によるシリコン
結晶の酸素の成長方向での変動周期が 0.4〜1.2mm 程度
であるので、その半分の長さである 0.2〜0.6mm 程度酸
素を拡散させることが出来れば結晶内の酸素濃度を完全
に均一化できることになる。Since it is difficult for the present inventors to make oxygen taken in during crystal growth uniform, oxygen is diffused and made uniform by applying high temperature heat treatment after crystal growth. With this in mind, the present invention has been completed. That is, since the fluctuation period in the oxygen growth direction of the silicon crystal by the ordinary CZ method is about 0.4 to 1.2 mm, if the oxygen can be diffused by about 0.2 to 0.6 mm, which is half that length, the inside of the crystal can be diffused. Therefore, the oxygen concentration can be completely made uniform.
【0009】本発明の一態様は、CZ法により育成され
たシリコン単結晶に結晶中の酸素の拡散長(√(D
t))が 0.1mm以上となる熱処理を加えるというもので
ある。熱処理は一般の方法に従い行えば足りるのであり
(例えば、石英チューブ内で不活性ガス雰囲気下、高周
波加熱やランプ加熱による)、結晶形態も原則としてウ
ェーハであるとインゴットであるとを問わない。しか
し、ウェーハであると高温熱処理を余り長く加えると、
スリップが入り易いのでインゴットの形態で行うのが好
ましい。本発明のもう一つの態様は、CZ法による結晶
育成時において、育成界面での酸素変動が生じても、引
上速度を 0.1mm/min以下という低速にすることによっ
て、成長結晶棒に高温の熱履歴を与え、結晶内酸素の拡
散長を 0.1mm以上とすることによって、単結晶棒全体で
酸素の均一化を計るものである。One aspect of the present invention is that the diffusion length of oxygen in the crystal (√ (D
t)) is added to heat treatment of 0.1 mm or more. It suffices to carry out the heat treatment according to a general method (for example, by high frequency heating or lamp heating in an inert gas atmosphere in a quartz tube), and in principle, the crystal form does not matter whether it is a wafer or an ingot. However, if a wafer is subjected to high temperature heat treatment for too long,
Since it easily slips, it is preferably performed in the form of an ingot. Another aspect of the present invention is that when a crystal is grown by the CZ method, even if oxygen changes at the growth interface, the pulling speed is set to a low speed of 0.1 mm / min or less, so that By applying a heat history and setting the diffusion length of oxygen in the crystal to 0.1 mm or more, oxygen is made uniform in the entire single crystal rod.
【0010】[0010]
【作用】まず、目安としてシリコン結晶内の酸素の拡散
長Lを 0.2mm=0.02cm以上とするための条件を下記の数
式により計算によって求めた。First, as a guide, the conditions for setting the diffusion length L of oxygen in the silicon crystal to 0.2 mm = 0.02 cm or more were calculated by the following formula.
【0011】[0011]
【数1】L=√(Dt)≧ 0.2×10-1 (cm)[Equation 1] L = √ (Dt) ≧ 0.2 × 10 −1 (cm)
【数2】D=0.13exp(−Q/kT) (cm2/s)[Equation 2] D = 0.13exp (-Q / kT) (cm 2 / s)
【0012】ここで、Dは拡散係数(cm2/s)、tは時
間(s)、Qは実験により得られる定数で2.53(e
V)、kはボルツマン定数 0.863×10-4(eV・
K-1)、Tは絶対温度(K)。(The diffusivity and
solubility of oxygen in silicon, Materials Researc
h Society Symposium Proceeding vol.59 1986 p19-p30
参照)これらの数式に数値を代入し、温度と時間の関係
を求めると 1,350℃では約59時間以上、 1,250℃では約
195時間以上とすることで、酸素の拡散長が 0.2mm以上
となる計算となる。もちろん、温度・時間はこれらの値
に限定されるものではなく、酸素の拡散長が 0.2mm以上
となる範囲で種々の組合せが出来る。但し、シリコンの
融点約 1,420℃以上とすることは出来ず、また余り低温
とすると処理時間が長くなるため、生産性が低くなって
しまう。Here, D is a diffusion coefficient (cm 2 / s), t is time (s), and Q is an experimentally obtained constant of 2.53 (e).
V) and k are Boltzmann constants 0.863 × 10 -4 (eV ・
K -1 ) and T are absolute temperatures (K). (The diffusivity and
solubility of oxygen in silicon, Materials Researc
h Society Symposium Proceeding vol.59 1986 p19-p30
Substituting numerical values into these formulas and calculating the relationship between temperature and time, it is about 59 hours or more at 1350 ° C and about 1250 ° C.
When the time is 195 hours or more, the oxygen diffusion length is calculated to be 0.2 mm or more. Of course, the temperature and time are not limited to these values, and various combinations can be made as long as the oxygen diffusion length is 0.2 mm or more. However, it is impossible to raise the melting point of silicon to about 1,420 ° C or higher, and if the temperature is too low, the processing time becomes long, resulting in low productivity.
【0013】一方、結晶成長時の融点からの冷却過程に
おける高温の熱履歴を制御することによっても、熱処理
によると同様の効果が得られる。酸素の拡散に効果のあ
る温度帯は特に 1,300℃以上であるが、そのような高温
の熱履歴を制御するには、成長速度を制御するのが最も
望ましく、炉内の構造物によって制御するのは非常に困
難である。なぜならば、図3にCZ法における成長界面
近傍の温度分布のシュミレーションを示したが、結晶棒
が 1,300℃以上となる領域は、成長界面上、結晶径の3
分の1の高さにも満たず(図3は相対比率で長さが示さ
れる)、このような成長界面直上の領域の温度分布は、
融液からの熱伝導と直接輻射及び固化潜熱によるものが
支配的となるからである。この分布を基礎に計算する
と、成長速度が 1.0mm/min以上では、酸素の拡散長は0.
03mm、 0.4mm/minでは、 0.04mm 、0.1mm/min では 0.1
mmとなる熱履歴を結晶が負うことになる。On the other hand, by controlling the thermal history of high temperature in the cooling process from the melting point during crystal growth, the same effect as in the heat treatment can be obtained. The temperature range that is effective for oxygen diffusion is especially above 1,300 ℃, but in order to control the thermal history of such high temperature, it is most desirable to control the growth rate, and to control by the structure inside the furnace. Is very difficult. This is because Fig. 3 shows a simulation of the temperature distribution near the growth interface in the CZ method.
The height distribution is less than one-half the height (the length is shown in the relative ratio in FIG. 3), and the temperature distribution in the region just above the growth interface is
This is because heat conduction from the melt, direct radiation, and latent heat of solidification dominate. Based on this distribution, the diffusion length of oxygen is 0 when the growth rate is 1.0 mm / min or higher.
03 mm, 0.4 mm / min 0.04 mm, 0.1 mm / min 0.1
The crystal bears a thermal history of mm.
【0014】[0014]
【実施例】つぎに本発明の実施例をあげる。 (実施例1、2)成長軸方位〈100〉で育成したCZ
シリコン単結晶に 1,350℃で熱処理時間を徐々に伸ば
し、酸素分布の変化を顕微FTIRで測定した(実施例
1)。結果を表1、図1に示した。つぎに、熱処理時間
を48時間とし、処理温度を変化させたものを同様に測定
した(実施例2)。結果を表2、図2に示した。EXAMPLES Next, examples of the present invention will be given. (Examples 1 and 2) CZ grown in the growth axis direction <100>
The heat treatment time was gradually extended to a silicon single crystal at 1,350 ° C., and the change in oxygen distribution was measured by microscopic FTIR (Example 1). The results are shown in Table 1 and FIG. Next, the heat treatment time was set to 48 hours and the treatment temperature was changed and the same measurement was performed (Example 2). The results are shown in Table 2 and FIG.
【0015】[0015]
【表1】 [Table 1]
【表2】 [Table 2]
【0016】表1、図1から判かるように熱処理時間を
長くするにつれて、酸素の拡散が進み結晶中酸素濃度が
均一化する。熱処理条件を 1,350℃/60時間とすれば略
完全に均一化することが出来るが、1,350℃/15時間で
も、当初の半分に酸素変動を改善することが出来る。こ
の 1,350℃/15時間の処理では、前記数式から計算する
と、酸素の拡散長は 0.1mmとなる。As can be seen from Table 1 and FIG. 1, as the heat treatment time is lengthened, oxygen diffusion progresses and the oxygen concentration in the crystal becomes uniform. If the heat treatment condition is 1,350 ° C./60 hours, it will be possible to achieve almost complete homogenization, but even at 1,350 ° C./15 hours, oxygen fluctuations can be reduced to half of the initial value. In the treatment at 1,350 ° C./15 hours, the diffusion length of oxygen is 0.1 mm calculated from the above formula.
【0017】表2、図2から判かるように処理時間が同
じであればより熱処理温度を高くした方が酸素の拡散が
早いため、結晶中酸素濃度の均一化が進む。但し、余り
高い温度とすると炉や試料を痛めてしまう。この場合も
1,250℃/48時間処理すれば(酸素の拡散長は 0.1mmに
相当する)酸素の変動を、当初の半分にすることができ
る。As can be seen from Table 2 and FIG. 2, if the treatment time is the same, the higher the heat treatment temperature, the faster the diffusion of oxygen, and the more uniform the oxygen concentration in the crystal. However, if the temperature is too high, the furnace and the sample will be damaged. Also in this case
By treating at 1,250 ° C for 48 hours (oxygen diffusion length is equivalent to 0.1 mm), the fluctuation of oxygen can be halved.
【0018】実施例1、2より酸素の拡散長を 0.1mm以
上とすれば、酸素変動を当初の半分以下とすることが出
来ることが判った。もちろん、温度・時間はこれらの値
に限定されるものではなく、酸素の拡散長が 0.1mm以上
となる範囲で種々の組合せが出来る。但し、シリコンの
融点約 1,420℃以上とすることはできず、また余り低温
とすると処理時間が長くなるため、生産性が低くなって
しまう。From Examples 1 and 2, it was found that if the diffusion length of oxygen is 0.1 mm or more, the fluctuation of oxygen can be reduced to half or less of the initial value. Of course, the temperature and time are not limited to these values, and various combinations can be made as long as the oxygen diffusion length is 0.1 mm or more. However, the melting point of silicon cannot be raised above 1,420 ° C, and if the temperature is too low, the processing time becomes long and the productivity becomes low.
【0019】(実施例3)CZ法とMCZ法で、直径
6”φ、方位〈100〉の結晶を、種々の引上げ速度で
育成した。出来上がった結晶の酸素濃度の変動を顕微F
TIRで測定した。結果を表3に示した。表3から判る
ように、引上スピードを極端に低下させると(0.1mm/mi
n 以下)、高温での結晶の滞留時間が長いため酸素の拡
散が進み、結晶中酸素濃度変動幅が小さくなっている。(Example 3) Crystals having a diameter of 6 "and an orientation of <100> were grown at various pulling rates by the CZ method and the MCZ method.
It was measured by TIR. The results are shown in Table 3. As can be seen from Table 3, when the pulling speed is extremely reduced (0.1 mm / mi
(n or less), the diffusion time of oxygen progresses because the residence time of the crystal at high temperature is long, and the fluctuation range of oxygen concentration in the crystal is small.
【0020】[0020]
【表3】 [Table 3]
【0021】[0021]
【発明の効果】以上述べたように、本発明によって、従
来に比し酸素濃度変動が半分以下の均一なシリコンウェ
ーハを得ることができる。よって、デバイス工程におい
てウェーハ全面でゲッタリング効果の一様なシリコンウ
ェーハとなるため、デバイス歩留り、デバイス特性の向
上にすこぶる効果を奏する。As described above, according to the present invention, it is possible to obtain a uniform silicon wafer having an oxygen concentration fluctuation of half or less as compared with the conventional one. Therefore, a silicon wafer having a uniform gettering effect is obtained over the entire surface of the wafer in the device process, which is extremely effective in improving device yield and device characteristics.
【図1】熱処理時間に対する結晶中酸素濃度の変動の様
子を示した図である。FIG. 1 is a diagram showing how the oxygen concentration in crystals varies with heat treatment time.
【図2】熱処理温度に対する結晶中酸素濃度の変動の様
子を示した図である。FIG. 2 is a diagram showing how the oxygen concentration in the crystal varies with the heat treatment temperature.
【図3】CZ法における成長界面近傍の温度分布のシュ
ミレーション。FIG. 3 is a simulation of temperature distribution near the growth interface in the CZ method.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/324 Z (72)発明者 山岸 浩利 群馬県安中市磯部2丁目13番1号 信越半 導体株式会社半導体磯部研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location H01L 21/324 Z (72) Inventor Hirotoshi Yamagishi 2-13-1 Isobe, Annaka-shi, Gunma Shin-Etsu Semiconductor Co., Ltd. Semiconductor Isobe Laboratory
Claims (3)
単結晶であって、酸素濃度を均一化させたシリコンウェ
ーハ。1. A silicon wafer which is a silicon single crystal produced by the Czochralski method and has a uniform oxygen concentration.
単結晶に、結晶中の拡散長(√(Dt))が 0.1mm以上
となる熱処理を加えることを特徴とする請求項1に記載
のシリコンウェーハの製造方法。2. The silicon wafer according to claim 1, wherein the silicon single crystal produced by the Czochralski method is subjected to heat treatment so that the diffusion length (√ (Dt)) in the crystal is 0.1 mm or more. Manufacturing method.
単結晶棒の引上速度は、 0.1mm/min以下で行うことを特
徴とする請求項1記載のシリコンウェーハの製造方法。3. The method for producing a silicon wafer according to claim 1, wherein the pulling speed of the silicon single crystal ingot by the Czochralski method is 0.1 mm / min or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33677093A JP2881759B2 (en) | 1993-12-28 | 1993-12-28 | Silicon wafer with uniform oxygen concentration and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33677093A JP2881759B2 (en) | 1993-12-28 | 1993-12-28 | Silicon wafer with uniform oxygen concentration and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07187899A true JPH07187899A (en) | 1995-07-25 |
JP2881759B2 JP2881759B2 (en) | 1999-04-12 |
Family
ID=18302539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33677093A Expired - Lifetime JP2881759B2 (en) | 1993-12-28 | 1993-12-28 | Silicon wafer with uniform oxygen concentration and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2881759B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008169109A (en) * | 2008-01-18 | 2008-07-24 | Shin Etsu Handotai Co Ltd | Single crystal, single crystal wafer and epitaxial wafer |
JP2014189468A (en) * | 2013-03-28 | 2014-10-06 | Shin Etsu Handotai Co Ltd | Silicon single crystal production apparatus, and silicon single crystal production method using the same |
JP2017095296A (en) * | 2015-11-20 | 2017-06-01 | 株式会社Sumco | Oxygen concentration evaluation method of silicon single crystal, and silicon single crystal |
-
1993
- 1993-12-28 JP JP33677093A patent/JP2881759B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008169109A (en) * | 2008-01-18 | 2008-07-24 | Shin Etsu Handotai Co Ltd | Single crystal, single crystal wafer and epitaxial wafer |
JP2014189468A (en) * | 2013-03-28 | 2014-10-06 | Shin Etsu Handotai Co Ltd | Silicon single crystal production apparatus, and silicon single crystal production method using the same |
JP2017095296A (en) * | 2015-11-20 | 2017-06-01 | 株式会社Sumco | Oxygen concentration evaluation method of silicon single crystal, and silicon single crystal |
Also Published As
Publication number | Publication date |
---|---|
JP2881759B2 (en) | 1999-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3901092B2 (en) | Method for producing silicon single crystal | |
JP2826589B2 (en) | Single crystal silicon growing method | |
TWI398927B (en) | Silicon wafer and method of manufacturing the same | |
US4378269A (en) | Method of manufacturing a single crystal silicon rod | |
JPS606911B2 (en) | Single crystal manufacturing method | |
JPH10163220A (en) | Heat treatment method of semiconductor wafer, and semiconductor wafer formed thereby | |
JPH0393700A (en) | Heat treating method and device of silicon single crystal and production device thereof | |
JP4193610B2 (en) | Single crystal manufacturing method | |
KR20000006046A (en) | Production method for silicon epitaxial wafer | |
JP6135611B2 (en) | Point defect concentration calculation method, Grown-in defect calculation method, Grown-in defect in-plane distribution calculation method, and silicon single crystal manufacturing method using them | |
JP2881759B2 (en) | Silicon wafer with uniform oxygen concentration and method for producing the same | |
EP1614774A1 (en) | Process for producing single crystal | |
JP2023075200A (en) | Growth of plural sample rods to determine impurity build-up during production of single crystal silicon ingots | |
JPH04298042A (en) | Method of heat-treating semiconductor | |
JP4715528B2 (en) | Semi-insulating GaAs wafer for electronic devices and manufacturing method thereof | |
JP2528406B2 (en) | Evaluation method of interstitial oxygen growth fringes in silicon | |
JPH03184345A (en) | Silicon wafer and manufacture thereof | |
JP2003146795A (en) | High thermal impact resistant silicon wafer | |
JPS6344720B2 (en) | ||
JP2019019030A (en) | Method for evaluating silicon single crystal and method for manufacturing silicon single crystal | |
JPH0411518B2 (en) | ||
JPH08225396A (en) | Silicon wafer | |
JP4200690B2 (en) | GaAs wafer manufacturing method | |
JP3508541B2 (en) | Method for setting heat treatment conditions for silicon substrate, method for heat treating silicon substrate, and method for manufacturing silicon substrate | |
JP3171451B2 (en) | Heat treatment method for GaAs single crystal |