JP4715528B2 - Semi-insulating GaAs wafer for electronic devices and manufacturing method thereof - Google Patents

Semi-insulating GaAs wafer for electronic devices and manufacturing method thereof Download PDF

Info

Publication number
JP4715528B2
JP4715528B2 JP2006017348A JP2006017348A JP4715528B2 JP 4715528 B2 JP4715528 B2 JP 4715528B2 JP 2006017348 A JP2006017348 A JP 2006017348A JP 2006017348 A JP2006017348 A JP 2006017348A JP 4715528 B2 JP4715528 B2 JP 4715528B2
Authority
JP
Japan
Prior art keywords
wafer
crystal
gaas
less
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006017348A
Other languages
Japanese (ja)
Other versions
JP2007182361A (en
Inventor
伸司 矢吹
三千則 和地
幸司 大宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006017348A priority Critical patent/JP4715528B2/en
Publication of JP2007182361A publication Critical patent/JP2007182361A/en
Application granted granted Critical
Publication of JP4715528B2 publication Critical patent/JP4715528B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半絶縁性GaAsウェハ及びその製造方法に係り、特にウェハの転位密度(EPD:Etch Pit Density)及び残留歪値を規定することにより、GaAsウェハを用いて電子デバイスを製造する過程で行われるイオン注入(ion implantation)後の活性化アニールの如き熱処理においてスリップ転位の発生をなくした半絶縁性GaAsウェハ及びその製造方法に関するものである。   The present invention relates to a semi-insulating GaAs wafer and a manufacturing method thereof, and more particularly, in a process of manufacturing an electronic device using a GaAs wafer by defining a dislocation density (EPD) and a residual strain value of the wafer. The present invention relates to a semi-insulating GaAs wafer that eliminates the occurrence of slip dislocations in a heat treatment such as activation annealing after ion implantation and a method for manufacturing the same.

半絶縁性GaAsウェハの製造方法としては、LEC法(液体封止引き上げ法)及び縦型融液法(垂直ブリッジマン法(VB法)、垂直温度勾配凝固法(VGF法))の2通りが一般的な手法である。以下、各手法について説明する。   There are two methods of manufacturing a semi-insulating GaAs wafer: LEC method (liquid sealing pulling method) and vertical melt method (vertical Bridgman method (VB method), vertical temperature gradient solidification method (VGF method)). This is a general technique. Hereinafter, each method will be described.

LEC法によるGaAs単結晶の製造方法を図1によって説明する。   A method for producing a GaAs single crystal by the LEC method will be described with reference to FIG.

LEC法のGaAs単結晶製造装置1は、炉体部分であるチャンバー2、結晶を引き上げる為の引上軸3、原料の容器であるルツボ5、該ルツボを受ける為のルツボ軸4を有する構造となっている。   The LEC GaAs single crystal manufacturing apparatus 1 has a structure having a chamber 2 as a furnace part, a pulling-up shaft 3 for pulling up a crystal, a crucible 5 as a material container, and a crucible shaft 4 for receiving the crucible. It has become.

LEC法によるGaAs単結晶の製造方法については、先ず原料の容器となるルツボ5(ルツボの材質にはPBNを用いるのが一般的である)に、GaとAs及びAsの揮発防止材である三酸化硼素6を入れ、これをチャンバー2内にセットする。また、引上軸3の先端に結晶の元となる種結晶7を取りつける。この種結晶7はGaAs融液と接する面を(100)面としているのが一般的である。   Regarding a method for producing a GaAs single crystal by the LEC method, first, a crucible 5 serving as a raw material container (usually PBN is used as the material of the crucible) is used as a volatilization preventive material for Ga, As and As. Boron oxide 6 is put and set in the chamber 2. In addition, a seed crystal 7 as a crystal base is attached to the tip of the pull-up shaft 3. In general, the seed crystal 7 has a (100) plane in contact with the GaAs melt.

チャンバー2に原料をセットした後、チャンバー2内を真空にし、不活性ガスを充填する。その後、チャンバー2内に設置してある抵抗加熱ヒータ8に通電してチャンバー2内の温度を昇温させ、GaとAsを合成しGaAsを作製する。その後、更に昇温させGaAsを融液化させ、GaAs融液9とする。続いて、引上軸3、ルツボ軸4を回転方向が逆になるように回転させる。この状態で、引上軸3を先端に取り付けてある種結晶7がGaAs融液9に接触するまで下降させる。続いて、抵抗加熱ヒータ8の設定温度を徐々に下げつつ引上軸3を一定の速度で上昇させることで、種結晶7から徐々に結晶径を太らせながら結晶肩部を形成する。結晶肩部の形成後、目標とする結晶外径となったならば、外径を一定に保つように外形制御を行いつつ、GaAs単結晶10の製造を行う。   After setting the raw material in the chamber 2, the inside of the chamber 2 is evacuated and filled with an inert gas. Thereafter, the resistance heater 8 installed in the chamber 2 is energized to raise the temperature in the chamber 2, and GaAs is produced by synthesizing Ga and As. Thereafter, the temperature is further raised to melt GaAs to obtain a GaAs melt 9. Subsequently, the pull-up shaft 3 and the crucible shaft 4 are rotated so that the rotation directions are reversed. In this state, the pull-up shaft 3 is lowered until the seed crystal 7 attached to the tip contacts the GaAs melt 9. Subsequently, by raising the pulling shaft 3 at a constant speed while gradually lowering the set temperature of the resistance heater 8, a crystal shoulder is formed while gradually increasing the crystal diameter from the seed crystal 7. After the formation of the crystal shoulder, if the target crystal outer diameter is reached, the GaAs single crystal 10 is manufactured while controlling the outer shape so as to keep the outer diameter constant.

次に、縦型融液法によるGaAs単結晶の製造方法を図2によって説明する。   Next, a method for producing a GaAs single crystal by the vertical melt method will be described with reference to FIG.

縦型融液法(VB法、VGF法)のGaAs単結晶製造装置21は、炉体部分であるチャンバー22と、原料の容器であるルツボ25を受ける為のルツボ軸24を有する構造となっている。   A vertical melt method (VB method, VGF method) GaAs single crystal manufacturing apparatus 21 has a structure having a chamber 22 as a furnace body portion and a crucible shaft 24 for receiving a crucible 25 as a raw material container. Yes.

VB法(若しくはVGF法)によるGaAs単結晶の製造方法については、先ず原料の容器となるルツボ25(ルツボの材質にはPBNを用いるのが一般的である)に、GaAs多結晶及びAsの揮発防止材である三酸化硼素26を入れる。また、ルツボ25の先端細径部内に、結晶の元となる種結晶27を取りつける。この種結晶27はGaAs融液と接する面を(100)面としているのが一般的である。これらをチャンバー22内にセットする。   Regarding the method for producing a GaAs single crystal by the VB method (or VGF method), first, the crucible 25 serving as a raw material container (usually PBN is used as the material of the crucible) is used to volatilize GaAs polycrystal and As Boron trioxide 26, which is a preventive material, is added. In addition, a seed crystal 27 that is the base of the crystal is attached in the small diameter portion of the tip of the crucible 25. The seed crystal 27 generally has a (100) plane in contact with the GaAs melt. These are set in the chamber 22.

続いて、チャンバー22内を真空にし、不活性ガスを充填する。その後、チャンバー22内に設置してある抵抗加熱ヒータ28に通電し、チャンバー22内の温度を下部から上部に向かって温度が高くなる様に温度勾配を設定した状態で昇温し、GaAs多結晶を融液化させ、GaAs融液29とする。更に、ルツボ25の先端に設置した種結晶27にGaAs融液29が接触するまで炉内温度を昇温し種付けを行なう。   Subsequently, the chamber 22 is evacuated and filled with an inert gas. Thereafter, the resistance heater 28 installed in the chamber 22 is energized, and the temperature in the chamber 22 is raised with the temperature gradient set so that the temperature increases from the lower part to the upper part. Is melted to obtain a GaAs melt 29. Further, seeding is performed by raising the furnace temperature until the GaAs melt 29 comes into contact with the seed crystal 27 installed at the tip of the crucible 25.

続いてVB法の場合は、この状態から抵抗加熱ヒータ28の設定値を固定した状態のまま、ルツボ軸24を一定の速度で降下させることで、種結晶27からGaAs融液29を固化させてGaAs単結晶の製造を行う。また、VGF法の場合は、種付け後に、ルツボ軸24は移動させず、抵抗加熱ヒータ28の設定値を一定の割合で降温させることで、種結晶27からGaAs融液29を固化させてGaAs単結晶の製造を行う。   Subsequently, in the case of the VB method, the GaAs melt 29 is solidified from the seed crystal 27 by lowering the crucible shaft 24 at a constant speed while the set value of the resistance heater 28 is fixed from this state. Manufacture of GaAs single crystal. In the case of the VGF method, the crucible shaft 24 is not moved after seeding, and the set value of the resistance heater 28 is lowered at a certain rate, so that the GaAs melt 29 is solidified from the seed crystal 27 and the GaAs single crystal is solidified. Crystal production is performed.

上述したLEC法及び縦型融液法(VB法、VGF法)には、それぞれに長所、短所がある。   The LEC method and the vertical melt method (VB method and VGF method) described above have advantages and disadvantages, respectively.

LEC法の場合、急峻な温度勾配の条件のもとで結晶成長が行なわれる。その為、結晶の冷却が安易であり、結晶成長の高速化に適しており、スループットの面で非常に有利である。しかし、急温度勾配のもとでの結晶成長により、ウェハの面内転位密度がVB、VGF法と比較して高い(直径φ15.24cm(6インチ)サイズのウェハで面内平均転位密度が50,000〜100,000個/cm2)という点がある。ただし注釈を加えるならば、半絶縁性GaAsウェハの転位密度が電子デバイス特性に与える影響については未だ調査段階であり、単純に転位密度が低いものが良いという結論には到っていない。 In the case of the LEC method, crystal growth is performed under conditions of a steep temperature gradient. Therefore, the cooling of the crystal is easy, and it is suitable for increasing the speed of crystal growth, which is very advantageous in terms of throughput. However, due to crystal growth under a steep temperature gradient, the in-plane dislocation density of the wafer is higher than that of the VB and VGF methods (the in-plane average dislocation density is 50 for a wafer having a diameter of φ15.24 cm (6 inches)). , 1,000 to 100,000 pieces / cm 2 ). However, if an annotation is added, the effect of the dislocation density of the semi-insulating GaAs wafer on the electronic device characteristics is still in the investigation stage, and it has not been concluded that a low dislocation density is good.

一方、VB、VGF法の場合、緩やかな温度勾配のもとで結晶成長が行なわれる。よって、LEC法とは逆に、結晶成長の高速化に不向きであり、スループット面では不利である。しかし、ウェハの転位密度の低転位化には有利である(直径φ15.24cm(6インチ)サイズで面内平均転位密度が約10,000個/cm2)。 On the other hand, in the case of the VB and VGF methods, crystal growth is performed under a gentle temperature gradient. Therefore, contrary to the LEC method, it is unsuitable for speeding up crystal growth, which is disadvantageous in terms of throughput. However, it is advantageous for lowering the dislocation density of the wafer (in-plane average dislocation density of about 10,000 / cm 2 with a diameter of φ15.24 cm (6 inches)).

ところで、半絶縁性GaAsウェハは、高速動作および低消費電力を必要とする電子デバイス用の基板材料として用いられている。この電子デバイス用基板として電子デバイスメーカに供給された半絶縁性GaAsウェハは、その電子デバイス製造過程で、イオン注入後の活性化アニールに代表されるアニール処理(加熱処理)が施される。   By the way, the semi-insulating GaAs wafer is used as a substrate material for an electronic device that requires high-speed operation and low power consumption. The semi-insulating GaAs wafer supplied as an electronic device substrate to an electronic device maker is subjected to an annealing process (heating process) represented by activation annealing after ion implantation in the electronic device manufacturing process.

イオン注入(ion implantation)は、GaAsウェハ表面に例えばSiイオンを打ち込むことで、ウェハの導電性を向上させることを目的とする。しかし、イオン注入プロセスで結晶の格子配列に乱れが発生し、そのため電気伝導率の向上も不十分な状態となる。そこで、結晶格子をきれいに再配列させる為に活性化アニール処理を実施する。   The purpose of ion implantation is to improve the conductivity of the wafer by implanting, for example, Si ions on the surface of the GaAs wafer. However, the crystal lattice arrangement is disturbed by the ion implantation process, and the electrical conductivity is not improved sufficiently. Therefore, an activation annealing process is performed to neatly rearrange the crystal lattice.

このアニール処理は各電子デバイスメーカで独自の条件で行なっているが、基本的には温度を約500〜900℃付近まで急昇温し、その後急冷するという方法が一般的に取られている手法である。   This annealing process is performed under the unique conditions of each electronic device manufacturer. Basically, a method is generally employed in which the temperature is rapidly raised to about 500 to 900 ° C. and then rapidly cooled. It is.

アニール処理技術に関しては、従来、LEC法と縦型融液法(VB法、VGF法)を比較考量し、LEC法よりも縦型融液法で製造したGaAs結晶によるウェハの方が低転位密度、低残留歪であることに着目して、これをイオン注入用基板として活用する試みがなされている(特許文献1参照)。ただし、実際に大量生産のレベルで縦型融液法で得た結晶を用いると、従来のLEC法によるGaAs結晶(LEC結晶)に較べ、安定した特性が得られないことがある。また、この縦型融液法で得たGaAs結晶の場合、従来からのLEC法によるGaAs結晶(LEC結晶)で行われていたのと同様の熱処理を施すと、特に直径7.62cm(3インチ)以上の大口径の結晶では、転位密度および残留歪が増加してしまうし、また均一化メカニズムもLEC結晶と異なる可能性がある。そこで特許文献1では、より安定して均一な電気特性が得られるGaAs結晶の製造条件、及び結晶の特性を絞り込むことにより、実際に生産に用いることのできる高品質なGaAsウェハを実現し、更には最適な熱処理条件を新たに検討するとしている。
特開平11-268997号公報
Regarding the annealing treatment technology, the LEC method and the vertical melt method (VB method, VGF method) have been conventionally weighed, and the dislocation density of the wafer made of GaAs crystal produced by the vertical melt method is lower than that of the LEC method. In view of the low residual strain, attempts have been made to utilize this as a substrate for ion implantation (see Patent Document 1). However, when a crystal obtained by the vertical melt method is actually used at a mass production level, stable characteristics may not be obtained as compared with a GaAs crystal (LEC crystal) by a conventional LEC method. In the case of a GaAs crystal obtained by this vertical melt method, when a heat treatment similar to that performed by a conventional GaAs crystal (LEC crystal) by the LEC method is performed, the diameter is especially 7.62 cm (3 inches). ) In the crystal having a large diameter as described above, the dislocation density and the residual strain increase, and the homogenization mechanism may be different from that of the LEC crystal. Therefore, Patent Document 1 realizes a high-quality GaAs wafer that can be actually used for production by narrowing down the manufacturing conditions of the GaAs crystal that can obtain more stable and uniform electrical characteristics and the characteristics of the crystal. Intends to newly examine optimum heat treatment conditions.
JP 11-268997 A

ところで、従来技術の問題点として、従来技術に記載したLEC法や縦型融液法(VB法、VGF法)で得たGaAs結晶を基板として用いる電子デバイスの製造では、イオン注入後の活性化アニール処理において、アニール処理後のGaAsウェハにスリップ転位が発生し、製品として使用出来ないという不具合が発生している。   By the way, as a problem of the prior art, in the manufacture of an electronic device using a GaAs crystal obtained by the LEC method or the vertical melt method (VB method, VGF method) described in the prior art as a substrate, activation after ion implantation is performed. In the annealing process, slip dislocation occurs in the GaAs wafer after the annealing process, causing a problem that it cannot be used as a product.

スリップ転位が発生する最大の要因は、アニール処理時のウェハ面内の温度不均一が挙げられる。この点においては、各電子デバイスメーカでアニールの手法の改良を進めている。   The greatest cause of slip dislocation is temperature non-uniformity in the wafer surface during annealing. In this regard, each electronic device manufacturer is improving the annealing method.

しかし、近年、ウェハの大口径化が進んで来ており、GaAsウェハも従来の直径10.16cm(4インチ)サイズから直径15.24cm(6インチ)サイズへと主流が変わりつつあり、従来に増してアニール時のウェハ面内温度均一化に、より高度な制御を要する状況となっており、従来に増して大きな課題点となっている。   However, in recent years, the diameter of wafers has been increasing, and the mainstream of GaAs wafers is changing from the conventional diameter of 10.16 cm (4 inches) to the diameter of 15.24 cm (6 inches). In addition, a higher level of control is required to make the temperature in the wafer surface uniform during annealing, which is a greater problem than before.

上述した特許文献1の場合、LEC法よりも縦型融液法(VB法、VGF法)の方が低転位密度、低残留歪のGaAs結晶が得られることから、これをイオン注入用基板として活用しようと試みている。   In the case of Patent Document 1 described above, a GaAs crystal having a lower dislocation density and a lower residual strain can be obtained by the vertical melt method (VB method, VGF method) than by the LEC method. I am trying to use it.

しかし、縦型融液法(VB法、VGF法)ではLEC法によるGaAs結晶(LEC結晶)に較べ安定した特性が得られず、また、LEC結晶で行われていたのと同様の熱処理を施すことができず、最適な熱処理条件を新たに検討する必要がある。   However, the vertical melt method (VB method, VGF method) does not provide stable characteristics compared to the GaAs crystal (LEC crystal) by the LEC method, and the same heat treatment as that performed by the LEC crystal is performed. Therefore, it is necessary to newly examine optimum heat treatment conditions.

さらに、これが最も重要な点であるが、「縦型融液法(VB法、VGF法)の結晶の方が残留応力が低い」ということは、直ちにスリップ転位の発生も少ない、ということにはならない点である。本発明者等が鋭意研究努力した結果から言えば、活性化アニール後のスリップ転位の発生は単に残留応力だけに起因するものではない。   Furthermore, this is the most important point. The fact that “the crystals of the vertical melt method (VB method, VGF method) have lower residual stress” means that less slip dislocations occur immediately. It is a point that must not be. Speaking from the results of diligent research efforts by the present inventors, the occurrence of slip dislocation after activation annealing is not simply caused by residual stress.

従来通りのLEC法であっても、スリップ転位の発生率の少ないGaAs結晶の特性、例えばウェハ面内転位密度(EPD値)や残留応力の値を絞り込むことができれば、実際にイオン注入用基板の生産に用いることのできる高品質なGaAsウェハを実現することができる。   Even with the conventional LEC method, if the characteristics of a GaAs crystal with a low incidence of slip dislocations, for example, the in-wafer in-plane dislocation density (EPD value) and the value of residual stress can be narrowed down, the actual ion implantation substrate A high-quality GaAs wafer that can be used for production can be realized.

そこで、本発明の目的は、上記課題を解決し、LEC法により又は縦型融液法(VB法、VGF法)であってもよいが、これらにより得られるGaAs結晶について、ウェハの面内転位密度(EPD値)及び残留応力を一定範囲に絞り込むことにより、イオン注入後の活性化アニールの如き熱処理においてスリップ転位の発生をなくした半絶縁性GaAsウェハ及びその製造方法を提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems and may be the LEC method or the vertical melt method (VB method, VGF method). An object of the present invention is to provide a semi-insulating GaAs wafer in which generation of slip dislocation is eliminated in a heat treatment such as activation annealing after ion implantation by narrowing the density (EPD value) and residual stress to a certain range, and a method for manufacturing the same.

上記目的を達成するため、本発明の電子デバイス用半絶縁性GaAsウェハは、LEC法により製造された直径10.16cm(4インチ)以上の電子デバイス用半絶縁性GaAsウェハであって、応力の大きさによって偏向面が回転する光弾性現象を利用した測定によるウェハ面内残留歪値(|Sr-St|)が、1.0×10-5以下の範囲にあり、かつウェハ面内の転位密度(EPD)が、50,000個/cm2以上100,000個/cm2以下にあることを特徴とする。 In order to achieve the above object, a semi-insulating GaAs wafer for electronic devices according to the present invention is a semi-insulating GaAs wafer for electronic devices having a diameter of 10.16 cm (4 inches) or more manufactured by the LEC method . The residual strain value in the wafer surface (| Sr-St |) measured by using the photoelastic phenomenon in which the deflecting surface rotates depending on the size is in the range of 1.0 × 10 −5 or less, and the dislocation within the wafer surface The density (EPD) is 50,000 / cm 2 or more and 100,000 / cm 2 or less.

前記ウェハ面内の転位密度(EPD)が、80,000個/cmDislocation density (EPD) in the wafer plane is 80,000 / cm 22 以上であることが好ましい。The above is preferable.

また、上記目的を達成するため、本発明の電子デバイス用半絶縁性GaAsウェハの製造方法は、LEC法によりGaAs単結晶を成長させる際の結晶中の温度勾配を20℃/cm以上150℃/cm以下とすることにより、ウェハ面内の転位密度(EPD)を、50,000個/cm2以上100,000個/cm2以下とし、前記GaAs単結晶を成長させた後、更に前記GaAs単結晶にアニールを実施し、前記アニール時の最高到達温度を900℃以上1150℃以下、かつ前記GaAs単結晶中の温度勾配を0℃/cm以上12.5℃/cm以下とすることにより、ウェハ面内残留歪値(|Sr-St|)を、1.0×10-5以下の範囲とすることを特徴とする。

In order to achieve the above object, the method for producing a semi-insulating GaAs wafer for electronic devices according to the present invention has a temperature gradient in the crystal when growing a GaAs single crystal by the LEC method. When the dislocation density (EPD) in the wafer surface is set to 50,000 / cm 2 or more and 100,000 / cm 2 or less by growing the GaAs single crystal, the GaAs single crystal is further grown. The wafer is annealed by performing annealing on the crystal, setting the maximum temperature during annealing to 900 ° C. to 1150 ° C., and setting the temperature gradient in the GaAs single crystal to 0 ° C./cm to 12.5 ° C./cm. The in-plane residual strain value (| Sr-St |) is in the range of 1.0 × 10 −5 or less.

本発明によれば、半絶縁性GaAsウェハを基板として用いる電子デバイス製造において、イオン注入後の活性化アニールに代表されるウェハ加熱処理で発生するスリップ転位による製品不良を大幅に低減することが可能となり、電子デバイス製造における歩留の向上を図ることができる。   According to the present invention, in the manufacture of electronic devices using a semi-insulating GaAs wafer as a substrate, it is possible to greatly reduce product defects due to slip dislocations generated by wafer heat treatment represented by activation annealing after ion implantation. Thus, the yield in electronic device manufacturing can be improved.

(発明の要点)
従来、半絶縁性GaAsウェハの転位密度が電子デバイス特性に与える影響については未だ調査段階であり、単純に転位密度が低いものが良いという結論には到っていない。
(Key points of the invention)
Conventionally, the influence of the dislocation density of the semi-insulating GaAs wafer on the electronic device characteristics is still in the investigation stage, and it has not been concluded that a low dislocation density is good.

この点につき、本発明者等が鋭意研究努力した結果、同じ残留応力であれば、転位が多いGaAs結晶の方が活性化アニール後のスリップ転位が発生しにくい、ということを見出した。換言すれば、同じ残留応力であれば縦型融液法(VB法、VGF法)による結晶のウェハよりも、転位の多く出るLEC法による結晶のウェハの方のが、スリップ転位が発生しにくい。   With regard to this point, as a result of diligent research efforts by the present inventors, it has been found that GaAs crystals with many dislocations are less likely to cause slip dislocation after activation annealing if the residual stress is the same. In other words, if the residual stress is the same, slip dislocations are less likely to occur in the crystal wafer produced by the LEC method in which more dislocations are generated than in the crystal wafer produced by the vertical melt method (VB method, VGF method). .

そこで本発明は、次のようにスリップ転位の発生率の少ないGaAs結晶の特性を絞り込むことにより、LEC法であっても、実際にイオン注入用基板の生産に用いることのできる高品質なGaAsウェハを製造することに成功した。すなわち、一つはウェハ面内の転位密度(以下EPDと称する)であり、これは3×104個/cm2≦EPD≦1×105個/cm2の範囲にあること、また他の一つは光弾性測定により得られるウェハ面内の残留歪値(|Sr-St|)であり、これは1.8×10-5以下の範囲にあることである。 Therefore, the present invention narrows down the characteristics of GaAs crystals with a low occurrence of slip dislocations as follows, so that a high-quality GaAs wafer that can actually be used for production of an ion implantation substrate even with the LEC method. Succeeded in manufacturing. That is, one is the dislocation density in the wafer surface (hereinafter referred to as EPD), which is in the range of 3 × 10 4 / cm 2 ≦ EPD ≦ 1 × 10 5 / cm 2 , One is the residual strain value (| Sr-St |) in the wafer surface obtained by photoelasticity measurement, which is in the range of 1.8 × 10 −5 or less.

なお特許文献1では、面内の平均転位密度が1×104個cm2以下で、光弾性測定により得られる平均残留歪(|Sr-St|)が1×10-5未満であるとしているので、ウェハ面内の転位密度(EPD)を中心として比較する限り、本発明の範囲から外れたものとなっている。 In Patent Document 1, the in-plane average dislocation density is 1 × 10 4 cm 2 or less, and the average residual strain (| Sr−St |) obtained by photoelasticity measurement is less than 1 × 10 −5 . Therefore, as long as the comparison is made centering on the dislocation density (EPD) in the wafer plane, it is out of the scope of the present invention.

以下、本発明の数値限定について詳しく説明する。   Hereinafter, the numerical limitation of the present invention will be described in detail.

(ウェハ面内のEPDの範囲)
本発明においてウェハ面内のEPDを3×104個/cm2以上1×105個/cm2以下の範囲とした理由は、転位があることにより、金属全般に一般的に見られる現象として、転位発生部分では塑性変形が起き、塑性変形により転位が複雑に絡まり合い加工硬化がもたらされる。これにより、アニール時にかかる熱応力に対して強くなり、スリップ転位の発生が低減出来ると考えたからである。この加工硬化については、検証実験によりEPDの値が3×104個/cm2以上から得られるという結果を得た。また、EPDの値が1×105個/cm2以下とした理由は、加工硬化が得られスリップ転位の低減効果があるものの、EPDが1×105個/cm2を超えると、結晶の亜粒界発生の可能性が高くなり、製品として使用不可となるためである。
(EPD range on the wafer surface)
In the present invention, the reason why the EPD in the wafer surface is in the range of 3 × 10 4 pieces / cm 2 or more and 1 × 10 5 pieces / cm 2 or less is that as a phenomenon generally observed in all metals due to dislocations. In the dislocation generation portion, plastic deformation occurs, and the dislocation is entangled in a complicated manner due to the plastic deformation, resulting in work hardening. This is because it is considered that this increases the thermal stress applied during annealing and reduces the occurrence of slip dislocations. With respect to this work hardening, a result that an EPD value of 3 × 10 4 pieces / cm 2 or more was obtained by a verification experiment. The reason why the EPD value is 1 × 10 5 pieces / cm 2 or less is that although work hardening is obtained and there is an effect of reducing slip dislocation, when the EPD exceeds 1 × 10 5 pieces / cm 2 , This is because the possibility of occurrence of subgrain boundaries increases and the product cannot be used.

(ウェハ面内の残留歪値|Sr-St|の範囲)
本発明においてウェハ面内の残留歪値|Sr-St|を1.8×10-5以下とした理由は、発明者の近年の調査によりウェハ面内の残留歪値とスリップ転位の発生との間に相関があることが判ってきており、残留歪値が高いとスリップ転位の発生率が徐々に高くなる傾向が見られる。また、ウェハ面内の残留歪値がある値を超えると、アニールでのスリップ転位の発生率が一気に高くなる臨界点があることが判ってきた。その臨界点が、|Sr-St|=1.8×10-5付近であることから、残留歪値を上記の範囲としたものである。
(Range of residual strain value in wafer surface | Sr-St |)
In the present invention, the reason why the residual strain value | Sr-St | in the wafer surface is set to 1.8 × 10 −5 or less is that the residual strain value in the wafer surface and the occurrence of slip dislocations are found by the inventors' recent research. It has been found that there is a correlation between them, and when the residual strain value is high, the slip dislocation occurrence rate tends to increase gradually. It has also been found that when the residual strain value in the wafer surface exceeds a certain value, there is a critical point at which the rate of occurrence of slip dislocation in annealing is rapidly increased. Since the critical point is in the vicinity of | Sr-St | = 1.8 × 10 −5 , the residual strain value is in the above range.

(ウェハ面内の残留歪値|Sr-St|の測定方法)
残留歪の評価方法については、例えば、Rev.Sci. Instrum.,Vol.64,No.7,pp.1815-1821 July 1993に記載されている光弾性現象を利用した測定方法が用いられる。測定原理の概略としては、赤外光源によりウェハに光源を照射し、その透過光の偏向面の回転角度を検知する,この偏向面の回転角度はウェハの残留応力により決定されるため、これを検知する事で、ウェハの残留応力の測定が可能となる。
(Measurement method of residual strain value | Sr-St | in the wafer surface)
For the evaluation method of the residual strain, see Rev., for example. Sci. Instrum. , Vol. 64, no. 7, pp. The measurement method using the photoelastic phenomenon described in 1815-1821 July 1993 is used. As an outline of the measurement principle, an infrared light source irradiates the wafer with a light source and detects the rotation angle of the deflection surface of the transmitted light. The rotation angle of this deflection surface is determined by the residual stress of the wafer. By detecting it, the residual stress of the wafer can be measured.

(残留歪値|Sr-St|の定義)
次に、|Sr-St|の定義について説明する。ウェハの残留歪は、円柱座標での半径方向の歪であるSrと円柱接線方向の歪であるStの差の絶対値である|Sr-St|により算出することが出来る。ここで|Sr-St|は下記に示す関係式で定義される。
(Definition of residual strain value | Sr-St |)
Next, the definition of | Sr-St | will be described. The residual strain of the wafer can be calculated from | Sr−St |, which is the absolute value of the difference between Sr, which is a radial strain in cylindrical coordinates, and St, which is a strain in the cylinder tangential direction. Here, | Sr-St | is defined by the following relational expression.

Figure 0004715528
Figure 0004715528

λ:光源の波長
d:ウェハの厚さ
n:屈折率
δ:サンプルの複屈折により生じる位相差
ψ:主振動方位角
11、p12、p44:光弾性定数
上記の式からδ及びψを測定する事でウェハの残留応力である|Sr-St|を算出する事が出来る。
λ: wavelength of light source d: thickness of wafer n: refractive index δ: phase difference caused by birefringence of sample ψ: main vibration azimuth angles p 11 , p 12 , p 44 : photoelastic constants δ and ψ from the above equations It is possible to calculate | Sr-St |, which is the residual stress of the wafer.

(GaAs単結晶を成長する際の結晶中の温度勾配の範囲)
本発明においては、GaAs単結晶を成長する際の結晶中の温度勾配の範囲を20℃/cm以上150℃/cm以下としているが、この理由は以下の通りである。
結晶中に発生する転位は、一つに結晶が成長時に受ける熱応力が影響している。結晶は熱応力、つまりは結晶がある温度勾配を持った状態下におかれた場合、その応力を緩和する方向に転位が発生すると考えられている。そこで、本発明者らは、EPDの値を上記の3×10個/cm以上1×10個/cm以下とする為に、結晶成長時の結晶中に所定の温度勾配を設ける事でEPDの値を制御することを考えた。
このため、結晶中の温度勾配の最適範囲の決定に当っては、LEC法及びVB法(若しくはVGF法)の両手法を用いてGaAs単結晶成長を行ない、その結晶成長において、結晶中の温度勾配の設定を変え、その時のEPDの値がどうなるか実験を行なった。
(Range of temperature gradient in crystal when growing GaAs single crystal)
In the present invention, the range of the temperature gradient in the crystal when growing a GaAs single crystal is set to 20 ° C./cm or more and 150 ° C./cm or less for the following reason.
One of the dislocations generated in the crystal is influenced by the thermal stress that the crystal receives during growth. It is believed that when a crystal is subjected to thermal stress, that is, when the crystal has a certain temperature gradient, dislocations are generated in a direction that relaxes the stress. Therefore, the present inventors provide a predetermined temperature gradient in the crystal during crystal growth so that the EPD value is 3 × 10 4 pieces / cm 2 or more and 1 × 10 5 pieces / cm 2 or less. I thought about controlling the EPD value.
For this reason, in determining the optimum range of the temperature gradient in the crystal, GaAs single crystal growth is performed using both the LEC method and the VB method (or VGF method). The gradient setting was changed, and an experiment was conducted to see what the EPD value at that time would be.

図4に、結晶中の温度勾配と得られた結晶のEPDの相関関係を示す。
この図より、結晶成長時の結晶中の温度勾配が20℃/cm以上150℃/cm以下の範囲の時、再現性良く、EPDが30,000個/cm以上100,000個/cm以下の範囲を満足する事が分る。
従って、本発明では、半絶縁性GaAsウェハを得る為のGaAs単結晶を成長する際の結晶中の温度勾配の範囲を20℃/cm以上150℃/cm以下に設定している。
FIG. 4 shows the correlation between the temperature gradient in the crystal and the EPD of the obtained crystal.
From this figure, when the temperature gradient in the crystal during crystal growth in the range below 20 ° C. / cm or higher 0.99 ° C. / cm, with good reproducibility, EPD is 30,000 / cm 2 or more 100,000 / cm 2 It can be seen that the following range is satisfied.
Therefore, in the present invention, the range of the temperature gradient in the crystal when growing a GaAs single crystal for obtaining a semi-insulating GaAs wafer is set to 20 ° C./cm or more and 150 ° C./cm or less.

(アニール条件の好適な範囲)
本発明においては、上記のGaAs単結晶成長時の温度勾配により結晶成長を行なった後、アニールを実施する場合には、そのアニール条件として、最高到達温度が900℃以上1150℃以下、アニール時の結晶中の温度勾配が0℃/cm以上12.5℃/cm以下が好ましいとしているが、この理由は以下の通りである。
上記のように、GaAs単結晶を成長する際の結晶中の温度勾配の範囲を20℃/cm以上150℃/cm以下に設定することで、EPDの値を上記の3×10個/cm以上1×10個/cm以下に制御することが可能であるが、一方で結晶にあえて熱応力を加える事から結晶内に残留応力を発生させてしまうという一面がある。
(Suitable range of annealing conditions)
In the present invention, when the annealing is performed after the crystal growth is performed by the temperature gradient at the time of GaAs single crystal growth, the highest temperature is 900 ° C. or higher and 1150 ° C. or lower as the annealing condition. The temperature gradient in the crystal is preferably 0 ° C./cm or more and 12.5 ° C./cm or less, for the following reason.
As described above, by setting the temperature gradient range in the crystal when growing the GaAs single crystal to 20 ° C./cm or more and 150 ° C./cm or less, the EPD value is set to the above 3 × 10 4 pieces / cm 2. Although it can be controlled to 2 or more and 1 × 10 5 pieces / cm 2 or less, there is one aspect that a residual stress is generated in the crystal because thermal stress is applied to the crystal.

この点に関して、本発明者らは、図4で示した実験を行なった結晶において、温度勾配の設定条件を20℃/cm以上150℃/cm以下に設定したロットのみ抜き出して、結晶成長後にアニール等の処理をしない状態でウェハを採取し、ウェハ面内残留歪|Sr-St|を測定した。   In this regard, the inventors extracted only the lot in which the temperature gradient setting condition was set to 20 ° C./cm to 150 ° C./cm in the crystal in which the experiment shown in FIG. The wafer was sampled in a state where the processing such as the above was not performed, and the in-plane residual strain | Sr-St |

図5に、測定したウェハ面内残留歪とロット数の関係を示す。
この結果、|Sr-St|の平均値が1.93×10-5となり、|Sr-St|≦1.8×10-5を再現性良く制御する事が困難な結果となった。
そこで、本発明者らは、誠意工夫の結果、温度勾配の設定条件を20℃/cm以上150℃/cm以下に設定して結晶成長を行なった結晶においても、結晶成長後に上記したアニール処理を施す事で、熱応力によって結晶内に残留していた歪を効率良く除去する事が出来、その結果、ウェハ面内残留歪値を1.8×10-5以下の範囲内に制御する事が可能である事を見出した。
FIG. 5 shows the relationship between the measured in-wafer residual strain and the number of lots.
As a result, the average value of | Sr-St | was 1.93 × 10 −5 , and it was difficult to control | Sr−St | ≦ 1.8 × 10 −5 with good reproducibility.
Therefore, as a result of sincerity, the present inventors performed the annealing treatment described above after the crystal growth even in the crystal grown by setting the temperature gradient setting condition to 20 ° C./cm or more and 150 ° C./cm or less. As a result, the strain remaining in the crystal due to thermal stress can be efficiently removed, and as a result, the residual strain value in the wafer surface can be controlled within a range of 1.8 × 10 −5 or less. I found it possible.

アニール条件の最適化に当っては、図5の残留歪測定の結果を受けて、1.9×10-5(平均値)、2.3×10-5(最大値)、1.5×10‐5(最小値)の3サンプルを用意して、アニール時の最高到達温度、及び結晶中の温度勾配をパラメータにとって残留応力の変化を測定し、最適条件の把握を実施した。
表1、2、3に各サンプル毎のアニール後の残留応力|Sr-St|の値を示す。
In optimizing the annealing conditions, 1.9 × 10 −5 (average value), 2.3 × 10 −5 (maximum value), 1.5 × based on the result of residual strain measurement in FIG. Three samples of 10 -5 (minimum value) were prepared, and the change in residual stress was measured using the maximum temperature reached during annealing and the temperature gradient in the crystal as parameters, and the optimum conditions were grasped.
Tables 1, 2, and 3 show the value of residual stress | Sr-St | after annealing for each sample.

Figure 0004715528
Figure 0004715528

Figure 0004715528
Figure 0004715528

Figure 0004715528
Figure 0004715528

表1〜3において、網掛けされた欄は、アニール前の残留応力値に対して低減が見られ、且つ|Sr-St|が1.8×10-5以下の値を達成出来たアニール条件である。また、表内の「測定不可」は、結晶表面がアニールに用いた炉のヒータのオーバーシュートにより温度がGaAsの融点まで上昇してしまい、結晶表面が融解してしまった為、測定が出来なくなってしまったものである。
表1〜3の結果から、全てのサンプルにおいて、アニール前の残留応力値に対して低減が見られ、且つ|Sr-St|が1.8×10-5以下を達成出来たアニール条件は、900℃以上1150℃以下であり、かつアニール時の結晶中の温度勾配が0℃/cm以上12.5℃/cm以下という結果を得た。以上の結果より、アニール条件の最適化を決定した。
In Tables 1 to 3, the shaded columns indicate the annealing conditions in which a decrease was observed with respect to the residual stress value before annealing, and | Sr-St | was able to achieve a value of 1.8 × 10 −5 or less. It is. In the table, “Not measurable” means that the crystal surface has risen to the melting point of GaAs due to overshoot of the furnace heater used for annealing, and the crystal surface has melted, making it impossible to measure. It is what has been.
From the results of Tables 1 to 3, in all samples, the annealing conditions under which the residual stress value before annealing was reduced and | Sr-St | was able to achieve 1.8 × 10 −5 or less were as follows: The temperature was 900 ° C. or more and 1150 ° C. or less, and the temperature gradient in the crystal during annealing was 0 ° C./cm or more and 12.5 ° C./cm or less. Based on the above results, optimization of annealing conditions was determined.

本発明の半絶縁性GaAsウェハの製造方法では、LEC法により製造したGaAs単結晶からも、イオン注入後の活性化アニール処理においてスリップ転位を生じない半絶縁性GaAsウェハが得られるという点に特色がある。勿論、縦型融液法(VB法、VGF法)により製造したGaAs単結晶からも、ウェハ面内の転位密度(EPD)とウェハ面内残留歪値(|Sr-St|)を上記の規定範囲とする半絶縁性GaAsウェハを得ることができる。また、ウェハのサイズは必ずしも直径15.24cm(6インチ)以上である必要はなく、直径10.16cm(4インチ)以上の半絶縁性GaAsウェハについても適用することができる。   The method for producing a semi-insulating GaAs wafer according to the present invention is characterized in that a semi-insulating GaAs wafer that does not cause slip dislocation in the activation annealing treatment after ion implantation can be obtained from a GaAs single crystal produced by the LEC method. There is. Of course, from the GaAs single crystal manufactured by the vertical melt method (VB method, VGF method), the dislocation density (EPD) in the wafer surface and the residual strain value (| Sr-St |) in the wafer surface are defined as above. A semi-insulating GaAs wafer having a range can be obtained. Moreover, the size of the wafer does not necessarily need to be 15.24 cm (6 inches) or more in diameter, and it can be applied to a semi-insulating GaAs wafer having a diameter of 10.16 cm (4 inches) or more.

直径15.24cm(6インチ)の半絶縁性GaAsウェハを用いて、EPD及び残留歪値の2つをパラメータにとりウェハをそろえ、それらのウェハを用いてアニール実験を実施し、スリップの発生率を調査した。用意したウェハは、EPDの値に応じて、30,000〜100,000個/cmの範囲ではLEC法で製造したウェハを、30,000個/cm未満の範囲ではVGF法で製造したウェハを用いた。また、EPDの値が30,000〜100,000個/cmのウェハをLEC法で製造する際には、結晶成長時の結晶中の温度勾配を20℃/cm以上150℃/cm以下に調節する事でEPDの値を調整した。また、EPDの値が30,000個/cm未満のウェハをVGF法で製造する際には、結晶成長時の結晶中の温度勾配を20℃/cm未満の値で調整する事でEPDの値を調整した。更に、ウェハ面内の残留応力については、実験に必要な残留応力値に応じて、結晶成長後に、上記範囲のアニールを実施、若しくは実施しない事で実験用のウェハサンプルを揃えた。 Using a semi-insulating GaAs wafer having a diameter of 15.24 cm (6 inches), aligning the wafer with two parameters, EPD and residual strain, and conducting an annealing experiment using these wafers, the slip generation rate was reduced. investigated. The prepared wafers were manufactured by the LEC method in the range of 30,000 to 100,000 / cm 2 according to the EPD value, and were manufactured by the VGF method in the range of less than 30,000 / cm 2 . A wafer was used. Further, when a wafer having an EPD value of 30,000 to 100,000 / cm 2 is manufactured by the LEC method, the temperature gradient in the crystal during crystal growth is set to 20 ° C./cm or more and 150 ° C./cm or less. The EPD value was adjusted by adjusting. Further, when a wafer having an EPD value of less than 30,000 / cm 2 is manufactured by the VGF method, the temperature gradient in the crystal during crystal growth is adjusted to a value of less than 20 ° C./cm. The value was adjusted. Further, as for the residual stress in the wafer surface, an experimental wafer sample was prepared by performing annealing in the above range or not performing after the crystal growth according to the residual stress value necessary for the experiment.

以下、実験に使用したGaAs結晶の製造方法について記載する。
まず、LEC法を用いたGaAs単結晶製造方法について、図1に従って説明する。
原料の容器となるルツボ5としてPBN製ルツボを用い、このルツボ5にGaとAs及びAsの揮発防止材である三酸化硼素6を入れ、これをチャンバー2内にセットした。なお、チャージした重量は、Ga:15,000g、As:16,500g、三酸化硼素6:2,000gとした。また、引上軸3の先端に結晶の元となる種結晶7を取りつけた。
チャンバー2にこれらの原料をセットした後、チャンバー2内を真空にし、不活性ガスを充填した。その後、チャンバー2内に設置してある抵抗加熱ヒータ8に通電してチャンバー2内の温度を昇温させ、GaとAsを合成しGaAsを作製した。その後、更に昇温させGaAsを融液化させ、GaAs融液9とした。続いて、引上軸3、ルツボ軸4を回転方向が逆になるように回転させた。この状態で、引上軸3を先端に取り付けてある種結晶7がGaAs融液9に接触するまで下降させた。続いて、抵抗加熱ヒータ8の設定温度を徐々に下げつつ引上軸3を一定の速度で上昇させることで、種結晶7から徐々に結晶径を太らせながら結晶肩部を形成した。結晶肩部の形成後、目標とする結晶外径となったならば、外径を一定に保つように外形制御を行いつつ、GaAs単結晶10の製造を行った。ここで、この種結晶から結晶を成長する過程において、抵抗加熱ヒータ8の温度設定値や形状、更にはチャンバー2内の炉内部材構造等を調整する事で、結晶成長時のGaAs単結晶10の結晶中の温度勾配の調整を図った。
Hereinafter, a method for producing a GaAs crystal used in the experiment will be described.
First, a GaAs single crystal manufacturing method using the LEC method will be described with reference to FIG.
A PBN crucible was used as the crucible 5 serving as a raw material container. Ga, As, and boron trioxide 6 which is a volatilization preventive material for As were put into the crucible 5 and set in the chamber 2. The charged weight was Ga: 15,000 g, As: 16,500 g, and boron trioxide 6: 2,000 g. In addition, a seed crystal 7 as a crystal base was attached to the tip of the pull-up shaft 3.
After these raw materials were set in the chamber 2, the inside of the chamber 2 was evacuated and filled with an inert gas. Thereafter, the resistance heater 8 installed in the chamber 2 was energized to raise the temperature in the chamber 2, and Ga and As were synthesized to produce GaAs. Thereafter, the temperature was further raised to melt GaAs to obtain a GaAs melt 9. Subsequently, the pull-up shaft 3 and the crucible shaft 4 were rotated so that the rotation directions were reversed. In this state, the pulling shaft 3 was lowered until the seed crystal 7 attached to the tip contacted the GaAs melt 9. Subsequently, the pulling shaft 3 was raised at a constant speed while gradually lowering the set temperature of the resistance heater 8, thereby forming a crystal shoulder while gradually increasing the crystal diameter from the seed crystal 7. After the formation of the crystal shoulder, when the target crystal outer diameter was reached, the GaAs single crystal 10 was manufactured while controlling the outer shape so as to keep the outer diameter constant. Here, in the process of growing the crystal from the seed crystal, the temperature setting value and shape of the resistance heater 8 and further the in-furnace member structure in the chamber 2 are adjusted, so that the GaAs single crystal 10 at the time of crystal growth is adjusted. The temperature gradient in the crystal was adjusted.

次に、縦型融液法を用いたGaAs単結晶の製造方法について、図2に従って説明する。
原料の容器となるルツボ25としてPBN製ルツボを用い、このルツボ25に、GaAs多結晶及びAsの揮発防止材である三酸化硼素26を入れた。なお、チャージした重量は、GaAs多結晶を20,000g、三酸化硼素26を2,000gとした。また、ルツボ25の先端に、結晶の元となる種結晶27を取りつけた。これらをチャンバー22内にセットした。続いて、チャンバー22内を真空にし、不活性ガスを充填した。その後、チャンバー22内に設置してある抵抗加熱ヒータ28に通電し、チャンバー22内の温度を下部から上部に向かって温度が高くなる様に温度勾配を設定した状態で昇温し、GaAs多結晶を融液化させ、GaAs融液29とした。なお、今回の実験では炉内の温度勾配を20℃/cm以下に設定して結晶成長を実施した。続いて、ルツボ25の先端に設置し
た種結晶27にGaAs融液29が接触するまで炉内温度を昇温し種付けを行なった。続いて、抵抗加熱ヒータ28の設定値を一定の割合で降温させる事で種結晶27からGaAs融液を固化させる事でGaAs単結晶の製造を実施した。
以上、2通りの結晶製造方法により得られたGaAs単結晶をスライス、面取り、研磨を経てGaAsウェハを準備した。
Next, a method for producing a GaAs single crystal using the vertical melt method will be described with reference to FIG.
A PBN crucible was used as the crucible 25 serving as a raw material container, and boron trioxide 26, which is a volatilization preventive material for GaAs polycrystals and As, was placed in the crucible 25. The charged weight was 20,000 g of GaAs polycrystal and 2,000 g of boron trioxide 26. In addition, a seed crystal 27 serving as a crystal was attached to the tip of the crucible 25. These were set in the chamber 22. Subsequently, the chamber 22 was evacuated and filled with an inert gas. Thereafter, the resistance heater 28 installed in the chamber 22 is energized, and the temperature in the chamber 22 is raised with the temperature gradient set so that the temperature increases from the lower part to the upper part. Was melted to obtain a GaAs melt 29. In this experiment, crystal growth was performed with the temperature gradient in the furnace set to 20 ° C./cm or less. Subsequently, the furnace temperature was raised until the GaAs melt 29 contacted the seed crystal 27 installed at the tip of the crucible 25, and seeding was performed. Subsequently, the GaAs single crystal was manufactured by solidifying the GaAs melt from the seed crystal 27 by lowering the set value of the resistance heater 28 at a constant rate.
As described above, a GaAs wafer was prepared by slicing, chamfering, and polishing the GaAs single crystal obtained by the two crystal manufacturing methods.

次に、アニール処理の実験は、図3に示すウェハアニール実験炉14を用いて実施した。このウェハアニール実験炉14は、チャンバー15内にウェハ配置板16があり、その上面にGaAsウェハ18を配置する構造となっている。また、ウェハ配置板16の下部に、横方向に3つの加熱ゾーンを有する3ゾーン構造ヒータ17を配置した構造となっている。この3ゾーン構造ヒータ17の各ゾーンは、GaAsウェハ18の両端と中央に位置するように配置してあり、これら3ゾーンのヒータ設定温度を調整することで、ウェハ面内の温度分布を自由に調整することが可能となっている。   Next, the annealing treatment experiment was performed using a wafer annealing experimental furnace 14 shown in FIG. This wafer annealing experimental furnace 14 has a structure in which a wafer arrangement plate 16 is provided in a chamber 15 and a GaAs wafer 18 is arranged on the upper surface thereof. In addition, a three-zone structure heater 17 having three heating zones in the lateral direction is arranged below the wafer arrangement plate 16. Each zone of the three-zone structure heater 17 is arranged so as to be located at both ends and the center of the GaAs wafer 18, and the temperature distribution in the wafer surface can be freely adjusted by adjusting the heater set temperature of these three zones. It is possible to adjust.

今回の実験では、ウェハアニール実験炉14の温度設定をウェハ中央部で850℃、ウェハ両端で830℃とし、ウェハ面内で中央、両端の温度差が20℃となるよう設定した。そして、この温度設定値に到達するまでの時間を30分、到達後、5分間保持、その後1時間で常温まで冷却を行なった。   In this experiment, the temperature of the wafer annealing experimental furnace 14 was set to 850 ° C. at the wafer center and 830 ° C. at both ends of the wafer, and the temperature difference between the center and both ends within the wafer surface was set to 20 ° C. Then, the time to reach this temperature set value was 30 minutes, held for 5 minutes, and then cooled to room temperature in 1 hour.

この温度条件のもとで、EPD及び残留歪値をパラメータに取り、数通りの組み合わせのウェハを用意し、実験を行なった。具体的には、ウェハ面内EPD値については、0.8、1、3、5、8、10(×104個/cm2)とし、ウェハ面内残留歪値(|Sr-St|)については、0.9〜2.0(×10-5)とした組み合わせのウェハを用意し、実験を行なった。なお、当実験ではEPD、残留歪値の各組み合わせ毎に10枚のウェハを用意して実験を行ない、その時のスリップ転位の発生率を調べた。この結果を表4に示す。 Under these temperature conditions, EPD and residual strain values were taken as parameters, and several combinations of wafers were prepared and experiments were conducted. Specifically, the wafer in-plane EPD value is 0.8, 1, 3, 5, 8, 10 (× 10 4 pieces / cm 2 ), and the in-wafer in-plane residual strain value (| Sr−St |) As for, wafers having a combination of 0.9 to 2.0 (× 10 −5 ) were prepared and experiments were conducted. In this experiment, ten wafers were prepared for each combination of EPD and residual strain value, and the experiment was conducted, and the occurrence rate of slip dislocation at that time was examined. The results are shown in Table 4.

Figure 0004715528
Figure 0004715528

上記の表4の結果からも明らかな様に、ウェハ面内のEPDの値が、30,000個/cm以上100,000個/cm以下の範囲であり、なお且つ、ウェハ面内残留歪値|Sr-St|が、1.8×10-5以下の範囲(表4の網掛け領域)では、スリップ転位の発生率が最大でも20%であり、本発明の有効性を示す結果となった。 As is clear from the results in Table 4 above, the EPD value in the wafer surface is in the range of 30,000 / cm 2 to 100,000 / cm 2 , and the residual in the wafer surface. When the strain value | Sr-St | is in the range of 1.8 × 10 −5 or less (shaded area in Table 4), the slip dislocation occurrence rate is 20% at the maximum, and the results show the effectiveness of the present invention. It became.

LEC法によるGaAs単結晶の製造方法の説明に供する装置の概略図である。It is the schematic of the apparatus with which it uses for description of the manufacturing method of the GaAs single crystal by LEC method. 縦型融液法(VB法、VGF法)によるGaAs単結晶の製造方法の説明に供する装置の概略図である。It is the schematic of the apparatus with which it uses for description of the manufacturing method of the GaAs single crystal by a vertical melt method (VB method, VGF method). ウェハアニール処理の実験炉を示した概略図である。It is the schematic which showed the experimental furnace of the wafer annealing process. 結晶成長時の結晶中の温度勾配とEPDとの相関関係を示すグラフである。It is a graph which shows the correlation with the temperature gradient in the crystal | crystallization at the time of crystal growth, and EPD. 温度勾配の設定条件を20℃/cm以上150℃/cm以下に設定して成長させた結晶に、アニール処理を実施しないで、ウェハ面内の残留応力を測定した結果を示すグラフである。It is a graph which shows the result of having measured the residual stress in a wafer surface, without implementing annealing treatment to the crystal | crystallization grown by setting the setting conditions of a temperature gradient to 20 degreeC / cm or more and 150 degrees C / cm or less.

符号の説明Explanation of symbols

1 LEC法のGaAs単結晶製造装置
2 チャンバー
3 引上軸
4 ルツボ軸
5 PBNルツボ
6 三酸化硼素
7 種結晶
8 抵抗加熱ヒータ
9 GaAs融液
10 GaAs単結晶
14 ウェハアニール実験炉
15 チャンバー
16 ウェハ配置板
17 3ゾーン構造ヒータ
18 GaAsウェハ
21 縦型融液法(VB法、VGF法)のGaAs単結晶製造装置
22 チャンバー
24 ルツボ軸
25 PBNルツボ
26 三酸化硼素
27 種結晶
28 抵抗加熱ヒータ
29 GaAs融液
DESCRIPTION OF SYMBOLS 1 GaAs single crystal manufacturing apparatus of LEC method 2 Chamber 3 Pulling shaft 4 Crucible shaft 5 PBN crucible 6 Boron trioxide 7 Seed crystal 8 Resistance heater 9 GaAs melt 10 GaAs single crystal 14 Wafer annealing experimental furnace 15 Chamber 16 Wafer arrangement Plate 17 Three-zone structure heater 18 GaAs wafer 21 Vertical melt method (VB method, VGF method) GaAs single crystal manufacturing apparatus 22 Chamber 24 Crucible shaft 25 PBN crucible 26 Boron trioxide 27 Seed crystal 28 Resistance heater 29 GaAs melt liquid

Claims (3)

LEC法により製造された直径10.16cm(4インチ)以上の電子デバイス用半絶縁性GaAsウェハであって、応力の大きさによって偏向面が回転する光弾性現象を利用した測定によるウェハ面内残留歪値(|Sr-St|)が、1.0×10-5以下の範囲にあり、かつウェハ面内の転位密度(EPD)が、50,000個/cm2以上100,000個/cm2以下にあることを特徴とする電子デバイス用半絶縁性GaAsウェハ。 A semi-insulating GaAs wafer for electronic devices having a diameter of 10.16 cm (4 inches) or more manufactured by the LEC method, and the in- plane residual by measurement using a photoelastic phenomenon in which a deflection surface rotates depending on the magnitude of stress. The strain value (| Sr-St |) is in the range of 1.0 × 10 −5 or less, and the dislocation density (EPD) in the wafer surface is 50,000 / cm 2 or more and 100,000 / cm 2. A semi-insulating GaAs wafer for electronic devices, characterized by being 2 or less. 前記ウェハ面内の転位密度(EPD)が、80,000個/cm2以上であることを特徴とする請求項1記載の電子デバイス用半絶縁性GaAsウェハ。 2. The semi-insulating GaAs wafer for electronic devices according to claim 1, wherein a dislocation density (EPD) in the wafer surface is 80,000 / cm 2 or more. LEC法によりGaAs単結晶を成長させる際の結晶中の温度勾配を20℃/cm以上150℃/cm以下とすることにより、ウェハ面内の転位密度(EPD)を、50,000個/cm2以上100,000個/cm2以下とし、前記GaAs単結晶を成長させた後、更に前記GaAs単結晶にアニールを実施し、前記アニール時の最高到達温度を900℃以上1150℃以下、かつ前記GaAs単結晶中の温度勾配を0℃/cm以上12.5℃/cm以下とすることにより、ウェハ面内残留歪値(|Sr-St|)を、1.0×10-5以下の範囲とすることを特徴とする電子デバイス用半絶縁性GaAsウェハの製造方法。 By making the temperature gradient in the crystal when growing a GaAs single crystal by the LEC method 20 ° C./cm or more and 150 ° C./cm or less, the dislocation density (EPD) in the wafer surface is 50,000 / cm 2. After the GaAs single crystal is grown at a rate of 100,000 / cm 2 or less, the GaAs single crystal is further annealed, and the highest temperature reached during the annealing is 900 ° C. or higher and 1150 ° C. or lower. By setting the temperature gradient in the single crystal to 0 ° C./cm or more and 12.5 ° C./cm or less, the in-wafer in-plane residual strain value (| Sr-St |) is set to a range of 1.0 × 10 −5 or less. A method for producing a semi-insulating GaAs wafer for electronic devices.
JP2006017348A 2005-01-31 2006-01-26 Semi-insulating GaAs wafer for electronic devices and manufacturing method thereof Expired - Fee Related JP4715528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006017348A JP4715528B2 (en) 2005-01-31 2006-01-26 Semi-insulating GaAs wafer for electronic devices and manufacturing method thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005022843 2005-01-31
JP2005022843 2005-01-31
JP2005353624 2005-12-07
JP2005353624 2005-12-07
JP2006017348A JP4715528B2 (en) 2005-01-31 2006-01-26 Semi-insulating GaAs wafer for electronic devices and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007182361A JP2007182361A (en) 2007-07-19
JP4715528B2 true JP4715528B2 (en) 2011-07-06

Family

ID=38338755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006017348A Expired - Fee Related JP4715528B2 (en) 2005-01-31 2006-01-26 Semi-insulating GaAs wafer for electronic devices and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4715528B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5545265B2 (en) * 2011-05-13 2014-07-09 日立金属株式会社 GaAs single crystal wafer and method for producing GaAs single crystal
WO2020121526A1 (en) * 2018-12-14 2020-06-18 住友電気工業株式会社 SEMI-INSULATING GaAs SUBSTRATE AND METHOD FOR PRODUCING GaAs SUBSTRATE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339100A (en) * 1992-04-10 1993-12-21 Sumitomo Electric Ind Ltd Compound semiconductor single crystal and growth method therefor
JPH06271395A (en) * 1993-03-17 1994-09-27 Hitachi Cable Ltd Production of compound semiconductor crystal
JPH08310893A (en) * 1995-03-16 1996-11-26 Sumitomo Electric Ind Ltd Method for growing single crystal and apparatus therefor
JPH09235191A (en) * 1996-03-04 1997-09-09 Sumitomo Electric Ind Ltd Growth of single crystal and device therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339100A (en) * 1992-04-10 1993-12-21 Sumitomo Electric Ind Ltd Compound semiconductor single crystal and growth method therefor
JPH06271395A (en) * 1993-03-17 1994-09-27 Hitachi Cable Ltd Production of compound semiconductor crystal
JPH08310893A (en) * 1995-03-16 1996-11-26 Sumitomo Electric Ind Ltd Method for growing single crystal and apparatus therefor
JPH09235191A (en) * 1996-03-04 1997-09-09 Sumitomo Electric Ind Ltd Growth of single crystal and device therefor

Also Published As

Publication number Publication date
JP2007182361A (en) 2007-07-19

Similar Documents

Publication Publication Date Title
KR102157388B1 (en) Silicon single crystal manufacturing method and apparatus
TW522456B (en) Silicon single crystal wafer and method for manufacturing the same
JP2000031150A (en) Heat processing method of silicon substrate and the substrate, and epitaxial wafer using the substrate
US10100430B2 (en) Method for growing silicon single crystal
TWI677602B (en) β-GaZO single crystal substrate
KR20170074192A (en) METHOD FOR CALIBRATING AN Annealing furnace USED TO FORM THERMAL DONORS
CN110536980B (en) Method for manufacturing silicon single crystal ingot and silicon single crystal ingot
JP6547360B2 (en) Method of growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal and method of manufacturing SGGG single crystal substrate
WO2001063023A1 (en) Method for growing single crystal of semiconductor
JP4715528B2 (en) Semi-insulating GaAs wafer for electronic devices and manufacturing method thereof
KR101862157B1 (en) Method and apparatus for manufacturing silicon monocrystalline ingot
WO1992005579A1 (en) Semiconductor wafer heat treatment method
KR101942322B1 (en) An apparatus for growing a crystal ingot and a method for growing a crystal ingot using the same
KR20060028425A (en) Method for producing single crystal and single crystal
JP2020114802A (en) Method for manufacturing silicon single crystal
JP5088338B2 (en) Method of pulling silicon single crystal
JP6981371B2 (en) Method for manufacturing silicon single crystal
JP4655861B2 (en) Manufacturing method of substrate for electronic device
JP4899608B2 (en) Semiconductor single crystal manufacturing apparatus and manufacturing method
JP2008174415A (en) SEMI-INSULATING GaAs WAFER AND METHOD FOR PRODUCING THE SAME
JP6459944B2 (en) Method for producing silicon single crystal
CN100396828C (en) Semiconductive GaAs wafer and method of making the same
US7318916B2 (en) Semiconductive GaAs wafer and method of making the same
JP2020001977A (en) Determination method for oxygen stripe flattening manufacture condition of silicon single crystal, manufacturing method for silicon single crystal using the same, and silicon single crystal wafer
KR20190100653A (en) Method for correcting shape of silicon single crystal ingot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

R150 Certificate of patent or registration of utility model

Ref document number: 4715528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees