JP6981371B2 - Method for manufacturing silicon single crystal - Google Patents

Method for manufacturing silicon single crystal Download PDF

Info

Publication number
JP6981371B2
JP6981371B2 JP2018110106A JP2018110106A JP6981371B2 JP 6981371 B2 JP6981371 B2 JP 6981371B2 JP 2018110106 A JP2018110106 A JP 2018110106A JP 2018110106 A JP2018110106 A JP 2018110106A JP 6981371 B2 JP6981371 B2 JP 6981371B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
oxygen concentration
quartz crucible
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018110106A
Other languages
Japanese (ja)
Other versions
JP2019210199A (en
Inventor
晋 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2018110106A priority Critical patent/JP6981371B2/en
Publication of JP2019210199A publication Critical patent/JP2019210199A/en
Application granted granted Critical
Publication of JP6981371B2 publication Critical patent/JP6981371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、シリコン単結晶の製造方法に関する。 The present invention relates to a method for producing a silicon single crystal.

従来、チョクラルスキー法によりシリコン単結晶を製造するに際し、シリコン単結晶の酸素濃度を調整するための検討がなされている(例えば、特許文献1参照)。
特許文献1の方法では、石英坩堝における底部の肉厚に対し、シリコン融液の対流との接触部分である開口部の肉厚を厚くして、当該接触部分の内壁の温度をシリコン融液の再結晶温度よりも高く、かつ、接触部分以外の温度よりも低くする。これにより、石英坩堝内壁からの対流によるシリコン融液への酸素の溶け込み抑制し、シリコン単結晶の酸素濃度を低くしている。
Conventionally, when producing a silicon single crystal by the Czochralski method, studies have been made for adjusting the oxygen concentration of the silicon single crystal (see, for example, Patent Document 1).
In the method of Patent Document 1, the wall thickness of the opening, which is the contact portion with the convection of the silicon melt, is made thicker than the wall thickness of the bottom portion of the quartz crucible, and the temperature of the inner wall of the contact portion is set to the temperature of the silicon melt. It is higher than the recrystallization temperature and lower than the temperature other than the contact portion. As a result, the dissolution of oxygen into the silicon melt due to convection from the inner wall of the quartz crucible is suppressed, and the oxygen concentration of the silicon single crystal is lowered.

特開平5−221780号公報Japanese Unexamined Patent Publication No. 5-221780

特許文献1のような単結晶引き上げ装置では、育成したシリコン単結晶の酸素濃度を狙い値にしたい場合、引き上げ速度あるいはシリコン単結晶や石英坩堝の回転速度などの育成条件を同じにすることが考えられる。
しかしながら、育成条件を同じにしても、シリコン単結晶の酸素濃度が狙い値から外れてしまうことがあり、酸素濃度の狙い値からの乖離を抑制することが求められていた。
In a single crystal pulling device as in Patent Document 1, when it is desired to aim at the oxygen concentration of the grown silicon single crystal, it is conceivable to make the growing conditions such as the pulling speed or the rotation speed of the silicon single crystal or the quartz crucible the same. Be done.
However, even if the growing conditions are the same, the oxygen concentration of the silicon single crystal may deviate from the target value, and it has been required to suppress the deviation of the oxygen concentration from the target value.

本発明の目的は、シリコン単結晶における酸素濃度の狙い値からの乖離を容易に抑制可能なシリコン単結晶の製造方法を提供することにある。 An object of the present invention is to provide a method for producing a silicon single crystal, which can easily suppress the deviation of the oxygen concentration from the target value in the silicon single crystal.

本発明のシリコン単結晶の製造方法は、単結晶引き上げ装置を用いたチョクラルスキー法によるシリコン単結晶の製造方法であって、石英坩堝の重量を測定する工程と、前記重量の測定結果に基づいて、当該重量が測定された石英坩堝を用いて製造されたシリコン単結晶の酸素濃度が狙い値となるような引き上げ条件を設定する工程と、前記重量が測定された石英坩堝を用いて、前記設定された引き上げ条件でシリコン単結晶を製造する工程とを備えていることを特徴とする。 The method for producing a silicon single crystal of the present invention is a method for producing a silicon single crystal by the Czochralski method using a single crystal pulling device, based on a step of measuring the weight of a quartz crucible and the measurement result of the weight. Then, using the step of setting the raising condition so that the oxygen concentration of the silicon single crystal manufactured using the quartz crucible whose weight was measured becomes the target value, and the quartz crucible whose weight was measured, the above It is characterized by having a process of manufacturing a silicon single crystal under set pulling conditions.

本発明によれば、石英坩堝を交換した場合でも、酸素濃度の狙い値からの乖離を抑制できる。 According to the present invention, even when the quartz crucible is replaced, the deviation of the oxygen concentration from the target value can be suppressed.

本発明のシリコン単結晶の製造方法において、前記引き上げ条件を設定する工程は、他の石英坩堝の重量および当該他の石英坩堝を用いて製造されたシリコン単結晶の酸素濃度を所定の酸素濃度にするための引き上げ条件の関係と、前記重量の測定結果とに基づいて、前記引き上げ条件を設定することが好ましい。 In the step of setting the pulling condition in the method for producing a silicon single crystal of the present invention, the weight of the other quartz crucible and the oxygen concentration of the silicon single crystal produced using the other quartz crucible are reduced to a predetermined oxygen concentration. It is preferable to set the pulling condition based on the relationship between the pulling condition and the measurement result of the weight.

本発明によれば、上述の関係を参照するだけの簡単な方法で、酸素濃度の狙い値からの乖離を抑制できる。 According to the present invention, it is possible to suppress the deviation of the oxygen concentration from the target value by a simple method only referring to the above relationship.

本発明のシリコン単結晶の製造方法において、前記引き上げ条件を設定する工程は、前記シリコン単結晶における、結晶軸方向の複数の所定位置ごとに、前記酸素濃度が狙い値となるような引き上げ条件を設定することが好ましい。 In the step of setting the pulling condition in the method for producing a silicon single crystal of the present invention, the pulling condition is set so that the oxygen concentration becomes a target value at each of a plurality of predetermined positions in the crystal axis direction in the silicon single crystal. It is preferable to set it.

直胴部の全領域において同じ引き上げ条件でシリコン単結晶を製造すると、固化率が上昇するにつれ、石英坩堝内面とシリコン融液の接触面積が減少するために融液内酸素濃度が減少するという理由から、引き上げ方向上端側の酸素濃度が下端側と比べて高くなる。
本発明によれば、シリコン単結晶の多くの領域における酸素濃度の狙い値からの乖離を抑制でき、収率(直胴部のうち製品にすることができる領域の割合)を向上できる。
The reason is that when a silicon single crystal is produced under the same pulling conditions in the entire region of the straight body, the oxygen concentration in the melt decreases because the contact area between the inner surface of the quartz crucible and the silicon melt decreases as the solidification rate increases. Therefore, the oxygen concentration on the upper end side in the pulling direction is higher than that on the lower end side.
According to the present invention, it is possible to suppress the deviation of the oxygen concentration from the target value in many regions of the silicon single crystal, and to improve the yield (the ratio of the region of the straight body portion that can be made into a product).

本発明のシリコン単結晶の製造方法において、前記引き上げ条件を設定する工程は、前記単結晶引き上げ装置のチャンバの炉内圧、前記チャンバに供給する不活性ガスの流量、および、前記石英坩堝の回転数のうち少なくともいずれか1つを前記引き上げ条件として設定することが好ましい。 In the method for producing a silicon single crystal of the present invention, the steps for setting the pulling conditions include the pressure inside the chamber of the single crystal pulling device, the flow rate of the inert gas supplied to the chamber, and the rotation speed of the quartz crucible. It is preferable to set at least one of them as the raising condition.

本発明によれば、チャンバの炉内圧、チャンバに供給する不活性ガスの流量、および、石英坩堝の回転数のうち少なくともいずれか1つを設定するだけの簡単な方法で、酸素濃度の狙い値からの乖離を抑制できる。 According to the present invention, the target value of oxygen concentration is simply set by setting at least one of the pressure inside the furnace of the chamber, the flow rate of the inert gas supplied to the chamber, and the rotation speed of the quartz crucible. It is possible to suppress the deviation from.

本発明の関連技術および一実施形態に係る単結晶引き上げ装置の模式図。The schematic diagram of the single crystal pulling apparatus which concerns on the related technique of this invention and one Embodiment. 本発明を導くために行った実験に用いた石英坩堝の重量のヒストグラム。Histogram of the weight of a quartz crucible used in the experiments conducted to guide the present invention. 本発明を導くために行った実験の結果であって、石英坩堝の重量とシリコン単結晶の酸素濃度との関係を示すグラフ。A graph showing the relationship between the weight of a quartz crucible and the oxygen concentration of a silicon single crystal, which is the result of an experiment conducted to derive the present invention. 前記一実施形態におけるシリコン単結晶の製造方法のフローチャート。The flowchart of the manufacturing method of a silicon single crystal in the said embodiment. 本発明に係る実施例の実施例1および比較例1の各シリコン単結晶における酸素濃度の狙い値に対する差(絶対値表示)を示すグラフ。The graph which shows the difference (absolute value display) of the oxygen concentration with respect to the target value in each silicon single crystal of Example 1 and Comparative Example 1 which concerns on this invention. 本発明に係る実施例の実施例2および比較例2の各シリコン単結晶における酸素濃度の狙い値に対する差(絶対値表示)を示すグラフ。The graph which shows the difference (absolute value display) of the oxygen concentration with respect to the target value in each silicon single crystal of Example 2 and Comparative Example 2 which concerns on this invention.

[本発明の関連技術]
まず、本発明の関連技術を図面に基づいて説明する。
図1に示すように、単結晶引き上げ装置1は、CZ法(Czochralski法)に用いられる装置であって、引き上げ装置本体2と、メモリ3と、制御部4とを備えている。
引き上げ装置本体2は、チャンバ21と、このチャンバ21内に配置された坩堝22と、この坩堝22を加熱するヒータ23と、引き上げ部24と、熱遮蔽体25と、断熱材26と、坩堝駆動部27とを備えている。
なお、単結晶引き上げ装置1は、二点鎖線で示すように、MCZ(Magnetic field applied Czochralski)法に用いられる装置であって、チャンバ21の外側において坩堝22を挟んで配置された一対の電磁コイル28を有していてもよい。
[Related Techniques of the Present Invention]
First, the related technique of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the single crystal pulling device 1 is a device used in the CZ method (Czochralski method), and includes a pulling device main body 2, a memory 3, and a control unit 4.
The pulling device main body 2 includes a chamber 21, a crucible 22 arranged in the chamber 21, a heater 23 for heating the crucible 22, a pulling portion 24, a heat shield 25, a heat insulating material 26, and a crucible drive. It has a crucible 27.
As shown by the alternate long and short dash line, the single crystal pulling device 1 is a device used in the MCZ (Magnetic field applied Czochralski) method, and is a pair of electromagnetic coils arranged across the crucible 22 on the outside of the chamber 21. You may have 28.

チャンバ21の上部には、Arガスなどの不活性ガスをチャンバ21内に導入するガス導入口21Aが設けられている。チャンバ21の下部には、チャンバ21内の気体を排出するガス排気口21Bが設けられている。チャンバ21の内面には、断熱材26が設けられている。 A gas introduction port 21A for introducing an inert gas such as Ar gas into the chamber 21 is provided in the upper part of the chamber 21. At the lower part of the chamber 21, a gas exhaust port 21B for discharging the gas in the chamber 21 is provided. A heat insulating material 26 is provided on the inner surface of the chamber 21.

坩堝22は、シリコンを融解してシリコン融液Mとするものである。坩堝22は、石英坩堝221と、この石英坩堝221を収容する黒鉛坩堝222とを備えている。石英坩堝221は、1本あるいは複数のシリコン単結晶SMを育成するごとに交換される。一方、黒鉛坩堝222は、シリコン単結晶SMを1本製造するごとには交換されず、石英坩堝221を適切に支持できなくなったと考えられた時点で交換される。 The crucible 22 melts silicon into a silicon melt M. The crucible 22 includes a quartz crucible 221 and a graphite crucible 222 accommodating the quartz crucible 221. The quartz crucible 221 is replaced every time one or more silicon single crystal SMs are grown. On the other hand, the graphite crucible 222 is not replaced every time one silicon single crystal SM is manufactured, and is replaced when it is considered that the quartz crucible 221 cannot be properly supported.

ヒータ23は、坩堝22の周囲に配置されており、坩堝22内のシリコンを融解する。なお、坩堝22の下方に、二点鎖線で示すようなボトムヒータ231をさらに設けてもよい。
引き上げ部24は、一端に種結晶SCが取り付けられるケーブル241と、このケーブル241を昇降および回転させる引き上げ駆動部242とを備えている。
熱遮蔽体25は、シリコン単結晶SMを囲むように設けられ、ヒータ23から上方に向かって放射される輻射熱を遮断する。
坩堝駆動部27は、黒鉛坩堝222を下方から支持する支持軸271を備え、坩堝22を所定の速度で回転および昇降させる。
なお、単結晶引き上げ装置1におけるホットゾーンは、チャンバ21、坩堝22、ヒータ23、ケーブル241、熱遮蔽体25、断熱材26、支持軸271、シリコン融液M、シリコン単結晶SMなどである。
The heater 23 is arranged around the crucible 22 and melts the silicon in the crucible 22. A bottom heater 231 as shown by the alternate long and short dash line may be further provided below the crucible 22.
The pull-up unit 24 includes a cable 241 to which the seed crystal SC is attached to one end, and a pull-up drive unit 242 that raises and lowers and rotates the cable 241.
The heat shield 25 is provided so as to surround the silicon single crystal SM, and blocks radiant heat radiated upward from the heater 23.
The crucible drive unit 27 includes a support shaft 271 that supports the graphite crucible 222 from below, and rotates and raises and lowers the crucible 22 at a predetermined speed.
The hot zone in the single crystal pulling device 1 is a chamber 21, a crucible 22, a heater 23, a cable 241, a heat shield 25, a heat insulating material 26, a support shaft 271, a silicon melt M, a silicon single crystal SM, and the like.

メモリ3は、チャンバ21内のガス流量や炉内圧、ヒータ23に投入する電力、坩堝22やシリコン単結晶SMの回転数など、シリコン単結晶SMの製造に必要な各種情報を記憶している。
制御部4は、メモリ3に記憶された各種情報や、作業者の操作に基づいて、シリコン単結晶SMを製造する。
The memory 3 stores various information necessary for manufacturing the silicon single crystal SM, such as the gas flow rate in the chamber 21, the furnace pressure, the power input to the heater 23, and the rotation speed of the crucible 22 and the silicon single crystal SM.
The control unit 4 manufactures the silicon single crystal SM based on various information stored in the memory 3 and the operation of the operator.

[本発明を導くに至った経緯]
本発明者は、酸素濃度の狙い値からの乖離の原因を鋭意検討した結果、石英坩堝221の重量が酸素濃度に影響を及ぼしているという知見を得た。以下、この知見について説明する。
[Background to lead to the present invention]
As a result of diligently examining the cause of the deviation of the oxygen concentration from the target value, the present inventor has obtained the finding that the weight of the quartz crucible 221 affects the oxygen concentration. This finding will be described below.

まず、石英坩堝221の重量を測定した後、当該石英坩堝221を単結晶引き上げ装置1に取り付けた。シリコン単結晶SMの酸素濃度に影響を与える因子であるチャンバ21の炉内圧、チャンバ21に供給する不活性ガスの流量、石英坩堝221の回転数を基準の条件に設定して、1本のシリコン単結晶SMを製造した。このシリコン単結晶SMの直胴部における所定位置の酸素濃度(ASTM F121−1979)を測定した。酸素濃度の測定に、FTIR(Fourier Transform Infrared Spectroscopy:フーリエ変換赤外分光法)を用いた。
次に、使用済みの石英坩堝221を新しい石英坩堝221に交換したこと以外は、従前と同じ引き上げ条件で1本のシリコン単結晶SMを製造し、上記所定位置の酸素濃度を測定した。
その後、同様にして、複数の新しい石英坩堝221を用いて、石英坩堝221と同じ数のシリコン単結晶SMを製造した。
石英坩堝221の重量のヒストグラムを図2に、石英坩堝221の重量と酸素濃度との関係を図3に示す。なお、図2および図3の横軸は、石英坩堝221の重量の設計値からの差を示す。図2の縦軸は、度数を示す。図3の縦軸は、酸素濃度の狙い値からの差を示す。
First, after measuring the weight of the quartz crucible 221, the quartz crucible 221 was attached to the single crystal pulling device 1. The pressure inside the chamber 21, which is a factor that affects the oxygen concentration of the silicon single crystal SM, the flow rate of the inert gas supplied to the chamber 21, and the rotation speed of the quartz crucible 221 are set as reference conditions, and one silicon is used. A single crystal SM was produced. The oxygen concentration (ASTM F121-1979) at a predetermined position in the straight body portion of this silicon single crystal SM was measured. FTIR (Fourier Transform Infrared Spectroscopy) was used to measure the oxygen concentration.
Next, one silicon single crystal SM was manufactured under the same pulling conditions as before, except that the used quartz crucible 221 was replaced with a new quartz crucible 221, and the oxygen concentration at the predetermined position was measured.
Then, in the same manner, a plurality of new quartz crucibles 221 were used to produce the same number of silicon single crystal SMs as the quartz crucible 221.
The histogram of the weight of the quartz crucible 221 is shown in FIG. 2, and the relationship between the weight of the quartz crucible 221 and the oxygen concentration is shown in FIG. The horizontal axis of FIGS. 2 and 3 shows the difference from the design value of the weight of the quartz crucible 221. The vertical axis of FIG. 2 shows the frequency. The vertical axis of FIG. 3 shows the difference from the target value of oxygen concentration.

図2に示すように、石英坩堝221の重量の度数は、設計値+0.1kgの範囲が最も大きく、設計値から離れるほど小さくなっていた。石英坩堝221の重量は、石英坩堝221を設計通りに製造したにも関わらず、設計値に対して±1kg程度ばらついていた。
図3に示すように、石英坩堝221の重量と酸素濃度との間に、石英坩堝221の重量が増えるほど酸素濃度が減り、石英坩堝221の重量が減るほど酸素濃度が増えるという負の相関があることわかった。つまり、1つの単結晶引き上げ装置1を用いて、酸素濃度に影響を与える因子、例えばチャンバ21の炉内圧、チャンバ21に供給する不活性ガスの流量、石英坩堝221の回転数を同じにして複数のシリコン単結晶SMを製造しても、石英坩堝221の重量の影響によって、酸素濃度が狙い値から大きく乖離する場合があることがわかった。
As shown in FIG. 2, the frequency of the weight of the quartz crucible 221 was the largest in the range of the design value + 0.1 kg, and became smaller as the distance from the design value increased. The weight of the quartz crucible 221 varied by about ± 1 kg from the design value even though the quartz crucible 221 was manufactured as designed.
As shown in FIG. 3, there is a negative correlation between the weight of the quartz crucible 221 and the oxygen concentration that the oxygen concentration decreases as the weight of the quartz crucible 221 increases and the oxygen concentration increases as the weight of the quartz crucible 221 decreases. I found out that there is. That is, using one single crystal pulling device 1, a plurality of factors affecting the oxygen concentration, such as the pressure inside the chamber 21, the flow rate of the inert gas supplied to the chamber 21, and the rotation speed of the quartz crucible 221 are made the same. It was found that even in the production of the silicon single crystal SM of the above, the oxygen concentration may deviate significantly from the target value due to the influence of the weight of the quartz crucible 221.

以上の結果から、石英坩堝221の重量の測定結果に基づいて、当該重量が測定された石英坩堝221を用いて製造されたシリコン単結晶SMの酸素濃度が狙い値となるような引き上げ条件を設定することで、酸素濃度の狙い値からの乖離を抑制できると考えられる。 From the above results, based on the measurement result of the weight of the quartz crucible 221, the raising condition is set so that the oxygen concentration of the silicon single crystal SM manufactured by using the quartz crucible 221 in which the weight is measured becomes the target value. By doing so, it is considered that the deviation of the oxygen concentration from the target value can be suppressed.

[実施形態]
次に、本発明の一実施形態に係るシリコン単結晶SMの製造方法について説明する。
なお、本実施形態では、円筒研削後の直胴部の直径が300mmのシリコン単結晶SMを製造する場合を例示するが、円筒研削後の直径は200mmや450mmあるいは他の大きさであってもよい。また、抵抗率調整用のドーパントをシリコン融液Mに添加してもよいし、しなくてもよい。
[Embodiment]
Next, a method for producing a silicon single crystal SM according to an embodiment of the present invention will be described.
In this embodiment, a case where a silicon single crystal SM having a straight body portion having a diameter of 300 mm after cylindrical grinding is manufactured is exemplified, but the diameter after cylindrical grinding may be 200 mm, 450 mm, or another size. good. Further, a dopant for adjusting the resistivity may or may not be added to the silicon melt M.

まず、以下の表1に示すような石英坩堝221の重量と酸素濃度の調整量との関係を、単結晶引き上げ装置1のメモリ3に記憶させる。この表1の関係は、円筒研削後の直胴部の直径が300mmの場合の関係である。 First, the relationship between the weight of the quartz crucible 221 and the adjustment amount of the oxygen concentration as shown in Table 1 below is stored in the memory 3 of the single crystal pulling device 1. The relationship in Table 1 is the relationship when the diameter of the straight body portion after cylindrical grinding is 300 mm.

Figure 0006981371
Figure 0006981371

表1において、「石英坩堝の重量」は、石英坩堝221の設計値を基準とした重量を示す。
「トップ部」は、シリコン単結晶SMの直径や抵抗率などによっても異なるが、シリコン単結晶SMの直胴部全体を100%とした場合、直胴部の引き上げ方向上端から1%以上33%以下の領域を示し、「ボトム部」は、直胴部の下端から67%以上100%以下の領域を示し、「ミドル部」は、トップ部とボトム部との間の領域を示す。
In Table 1, "weight of quartz crucible" indicates the weight based on the design value of quartz crucible 221.
The "top part" varies depending on the diameter and resistivity of the silicon single crystal SM, but when the entire straight body part of the silicon single crystal SM is 100%, it is 1% or more and 33% from the upper end of the straight body part in the pulling direction. The following regions are shown, the "bottom portion" indicates a region of 67% or more and 100% or less from the lower end of the straight body portion, and the "middle portion" indicates a region between the top portion and the bottom portion.

「基準酸素濃度」とは、重量が設計値の石英坩堝221を用い、かつ、チャンバ21の炉内圧、チャンバ21に供給する不活性ガスの流量、石英坩堝221の回転数を基準の条件(基準の引き上げ条件)に設定して製造されたシリコン単結晶SMの酸素濃度である。基準酸素濃度は、トップ部、ミドル部およびボトム部のそれぞれに対して設定されている。 The "reference oxygen concentration" uses the quartz crucible 221 whose weight is the design value, and is based on the internal pressure of the chamber 21, the flow rate of the inert gas supplied to the chamber 21, and the rotation speed of the quartz crucible 221 (reference). It is the oxygen concentration of the silicon single crystal SM produced by setting the pulling condition). The reference oxygen concentration is set for each of the top portion, the middle portion and the bottom portion.

「酸素濃度の調整量」は、重量が表1に示す値の石英坩堝221を用いてシリコン単結晶を製造するときに、シリコン単結晶の酸素濃度を基準酸素濃度にするために必要な調整量を示す。例えば、重量が設計値よりも1.2kg軽い石英坩堝221を用いる場合、トップ部およびミドル部における酸素濃度が、基準酸素濃度に対して当該基準酸素濃度の2.3%だけ増加し、ボトム部における酸素濃度が、基準酸素濃度の3.1%だけ増加する。この酸素濃度の増加分を減らすために、酸素濃度を減少させるように引き上げ条件を設定すればよい。 The "adjustment amount of oxygen concentration" is an adjustment amount required to set the oxygen concentration of the silicon single crystal as the reference oxygen concentration when producing a silicon single crystal using the quartz crucible 221 whose weight is the value shown in Table 1. Is shown. For example, when a quartz pit 221 whose weight is 1.2 kg lighter than the design value is used, the oxygen concentration in the top portion and the middle portion increases by 2.3% of the reference oxygen concentration with respect to the reference oxygen concentration, and the bottom portion. Oxygen concentration in is increased by 3.1% of the reference oxygen concentration. In order to reduce this increase in oxygen concentration, the raising condition may be set so as to reduce the oxygen concentration.

この調整量は、例えば以下のように設定されてもよい。
まず、図3の関係を求めるための実験と同様の実験を行う。重量が設計値よりも1.2kg軽い石英坩堝221を用いて基準の引き上げ条件でシリコン単結晶SMを製造したときに、当該シリコン単結晶SMのトップ部およびミドル部における酸素濃度が、基準酸素濃度に対して+2.3%増加した値(=基準酸素濃度+基準酸素濃度×2.3%)になるという結果が得られたとする。この場合に、トップ部およびミドル部における調整量が、基準酸素濃度の2.3%だけ減少するように設定される。
すなわち、シリコン単結晶SMを基準の引き上げ条件で製造したときの酸素濃度と、当該シリコン単結晶SMの製造に用いた石英坩堝221の重量との関係を予め求めておき、さらに、引き上げ条件を基準の引き上げ条件から変化させたときに、酸素濃度がどのように変化するのかを予め把握しておく。
そして、新しい石英坩堝221を用いてシリコン単結晶SMを製造するときには、その新しい石英坩堝221の重量に基づいてシリコン単結晶SMの酸素濃度を推定し、この推定値と狙い値とに基づいて引き上げ条件を設定すればよい。
なお、表1の関係は、シミュレーションで作成されたものであってもよい。
This adjustment amount may be set as follows, for example.
First, an experiment similar to the experiment for obtaining the relationship shown in FIG. 3 is performed. When a silicon single crystal SM is manufactured using a quartz crucible 221 whose weight is 1.2 kg lighter than the design value under the conditions of raising the standard, the oxygen concentration in the top portion and the middle portion of the silicon single crystal SM is the reference oxygen concentration. It is assumed that the result is obtained that the value is increased by + 2.3% (= reference oxygen concentration + reference oxygen concentration × 2.3%). In this case, the adjustment amount in the top portion and the middle portion is set so as to decrease by 2.3% of the reference oxygen concentration.
That is, the relationship between the oxygen concentration when the silicon single crystal SM is manufactured under the standard pulling condition and the weight of the quartz crucible 221 used for manufacturing the silicon single crystal SM is obtained in advance, and further, the pulling condition is used as the reference. It is necessary to understand in advance how the oxygen concentration changes when the condition is changed from the above-mentioned raising condition.
Then, when the silicon single crystal SM is manufactured using the new quartz crucible 221, the oxygen concentration of the silicon single crystal SM is estimated based on the weight of the new quartz crucible 221 and raised based on this estimated value and the target value. All you have to do is set the conditions.
The relationships in Table 1 may be those created by simulation.

複数の単結晶引き上げ装置1を用いてシリコン単結晶SMを製造する場合、表1の関係は、それぞれの単結晶引き上げ装置1に対応して作成されていることが好ましい。
違う型式の単結晶引き上げ装置1の場合、ホットゾーンの形状や配置の違いによってシリコン融液Mの加熱条件が異なる場合があり、同じ型式の単結晶引き上げ装置1であっても、ホットゾーンの形状や配置の公差などによってシリコン融液Mの加熱条件が異なる場合がある。これらのようにシリコン融液Mの加熱条件が異なると、全く同じ形状の石英坩堝221を用いて全く同じ引き上げ条件でシリコン単結晶SMを製造しても、酸素濃度が異なってしまうからである。
When the silicon single crystal SM is manufactured using a plurality of single crystal pulling devices 1, the relationships in Table 1 are preferably created corresponding to the respective single crystal pulling devices 1.
In the case of the single crystal pulling device 1 of a different model, the heating conditions of the silicon melt M may differ depending on the shape and arrangement of the hot zone, and even if the single crystal pulling device 1 of the same model has the shape of the hot zone. The heating conditions of the silicon melt M may differ depending on the tolerance of the arrangement and the like. This is because if the heating conditions of the silicon melt M are different as described above, the oxygen concentration will be different even if the silicon single crystal SM is produced using the quartz crucible 221 having exactly the same shape under exactly the same pulling conditions.

次に、図4に示すように、シリコン単結晶SMの製造に用いる石英坩堝221の重量を測定し(ステップS1)、当該重量の測定結果と表1の関係とに基づいて、当該石英坩堝221を用いて製造するシリコン単結晶SMの引き上げ条件を設定する(ステップS2)。
このステップS2の処理によって、例えば、石英坩堝221の重量が設計値よりも0.4kg重く、かつ、狙い値が基準酸素濃度の場合、トップ部およびミドル部における引き上げ条件を、酸素濃度が基準酸素濃度に対して0.8%だけ増加するように設定し、ボトム部における引き上げ条件を、酸素濃度が基準酸素濃度に対して1.5%だけ増加するように設定する。このとき基準の引き上げ条件に対して調整する条件は、酸素濃度に影響を及ぼす因子であればよい。例えば、チャンバ21の炉内圧、チャンバ21に供給する不活性ガスの流量、石英坩堝221の回転数が挙げられ、これら因子のうちいずれか1つを選択することが好ましい。
この場合、チャンバ21の炉内圧、チャンバ21に供給する不活性ガスの流量あるいは石英坩堝221の回転数が、シリコン単結晶の酸素濃度に及ぼす影響を定量的に予め把握しておく必要がある、すなわち、チャンバ21の炉内圧、チャンバ21に供給する不活性ガスの流量あるいは石英坩堝221の回転数を変化させた場合に、シリコン単結晶の酸素濃度がどの程度変化するのかを予め把握しておく必要がある。
Next, as shown in FIG. 4, the weight of the quartz crucible 221 used for manufacturing the silicon single crystal SM is measured (step S1), and the quartz crucible 221 is based on the relationship between the measurement result of the weight and Table 1. The conditions for pulling up the silicon single crystal SM to be manufactured using the above are set (step S2).
By the process of this step S2, for example, when the weight of the quartz pit 221 is 0.4 kg heavier than the design value and the target value is the reference oxygen concentration, the raising condition in the top portion and the middle portion is set, and the oxygen concentration is the reference oxygen. The oxygen concentration is set to increase by 0.8% with respect to the concentration, and the pulling condition at the bottom portion is set so that the oxygen concentration increases by 1.5% with respect to the reference oxygen concentration. At this time, the condition to be adjusted with respect to the standard raising condition may be a factor that affects the oxygen concentration. For example, the pressure inside the furnace of the chamber 21, the flow rate of the inert gas supplied to the chamber 21, and the rotation speed of the quartz crucible 221 can be mentioned, and it is preferable to select any one of these factors.
In this case, it is necessary to quantitatively grasp in advance the influence of the pressure inside the furnace of the chamber 21, the flow rate of the inert gas supplied to the chamber 21, or the rotation speed of the quartz crucible 221 on the oxygen concentration of the silicon single crystal. That is, it is necessary to grasp in advance how much the oxygen concentration of the silicon single crystal changes when the pressure inside the chamber 21, the flow rate of the inert gas supplied to the chamber 21 or the rotation speed of the quartz crucible 221 is changed. There is a need.

なお、狙い値が基準酸素濃度よりも大きかったり小さかったりする場合、当該狙い値の基準酸素濃度に対する増減量を考慮に入れて、表1に基づき求められる酸素濃度の調整量を調整すればよい。例えば、石英坩堝221の重量が設計値よりも0.4kg重く、かつ、狙い値が基準酸素濃度よりも当該基準酸素濃度の2%大きい場合、トップ部における酸素濃度が基準酸素濃度に対して0.8%増加し、さらに2%増加するように、すなわち、基準酸素濃度に対して2.8%酸素濃度が増加するように引き上げ条件を設定すればよい。 When the target value is larger or smaller than the reference oxygen concentration, the adjustment amount of the oxygen concentration obtained based on Table 1 may be adjusted in consideration of the increase / decrease amount of the target value with respect to the reference oxygen concentration. For example, when the weight of the quartz pit 221 is 0.4 kg heavier than the design value and the target value is 2% larger than the reference oxygen concentration, the oxygen concentration at the top portion is 0 with respect to the reference oxygen concentration. The raising condition may be set so that the oxygen concentration increases by 8.8% and further increases by 2%, that is, the oxygen concentration increases by 2.8% with respect to the reference oxygen concentration.

その後、ステップS1で重量を測定した石英坩堝221を単結晶引き上げ装置1に取り付け、ステップS2で設定された引き上げ条件でシリコン単結晶SMを製造する(ステップS3)。このステップS3では、表1に基づき求められた調整量に基づいて、トップ部、ミドル部、ボトム部毎に引き上げ条件を調整する。 After that, the quartz crucible 221 whose weight was measured in step S1 is attached to the single crystal pulling device 1, and a silicon single crystal SM is manufactured under the pulling conditions set in step S2 (step S3). In this step S3, the pulling condition is adjusted for each of the top portion, the middle portion, and the bottom portion based on the adjustment amount obtained based on Table 1.

[実施形態の作用効果]
上記実施形態によれば、石英坩堝221の重量の測定結果と表1の関係とに基づいて、当該石英坩堝221を用いて製造されたシリコン単結晶SMの酸素濃度が狙い値となるような引き上げ条件を設定する。この後、重量が測定された石英坩堝221を用いて、前記設定された引き上げ条件でシリコン単結晶SMを製造する。
このため、石英坩堝221を交換した場合でも、酸素濃度の狙い値からの乖離を抑制できる。
表1において、トップ部、ミドル部およびボトム部に応じて、すなわちシリコン単結晶SMにおける結晶軸方向の複数の所定位置ごとに、酸素濃度の調整量を設定しているため、直胴部の全域における酸素濃度の狙い値からの乖離を抑制でき、収率を向上できる。
[Action and effect of the embodiment]
According to the above embodiment, based on the relationship between the measurement result of the weight of the quartz crucible 221 and Table 1, the oxygen concentration of the silicon single crystal SM manufactured by using the quartz crucible 221 is raised so as to be the target value. Set the conditions. After that, the silicon single crystal SM is manufactured under the set pulling conditions by using the quartz crucible 221 whose weight has been measured.
Therefore, even when the quartz crucible 221 is replaced, the deviation of the oxygen concentration from the target value can be suppressed.
In Table 1, since the oxygen concentration adjustment amount is set according to the top portion, the middle portion, and the bottom portion, that is, for each of a plurality of predetermined positions in the crystal axis direction in the silicon single crystal SM, the entire area of the straight body portion is set. The deviation of the oxygen concentration from the target value in the above can be suppressed, and the yield can be improved.

[変形例]
なお、本発明は上記実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の改良ならびに設計の変更などが可能である。
[Modification example]
The present invention is not limited to the above embodiment, and various improvements and design changes can be made without departing from the gist of the present invention.

例えば、表1における酸素濃度の調整量は、直胴部全体に対して1つだけ設定されていてもよいし、引き上げ方向に2分割あるいは4分割した各領域に対して設定されていてもよく、これらの場合、基準酸素濃度は調整量が設定されている各領域のそれぞれに対して設定されていることが好ましい。
引き上げ条件の設定は、酸素濃度に影響を与える因子を設定すればよく、例えば、MCZ法でシリコン単結晶を製造する場合には、シリコン融液に印加する磁場の強度や磁場の印加位置を設定してもよい。
For example, the oxygen concentration adjustment amount in Table 1 may be set to only one for the entire straight body portion, or may be set for each region divided into two or four in the pulling direction. In these cases, it is preferable that the reference oxygen concentration is set for each region in which the adjustment amount is set.
The pulling condition may be set by setting a factor that affects the oxygen concentration. For example, when a silicon single crystal is produced by the MCZ method, the strength of the magnetic field applied to the silicon melt and the position where the magnetic field is applied are set. You may.

表1の関係は、円筒研削後の直胴部の直径に対応して作成されていることが好ましいが、例えば、本実施形態の関係(直径が300mmの場合の関係)を、450mmのシリコン単結晶SMを製造する場合に用いてもよく、この場合、表1の調整量に直胴部の直径に応じた係数を乗じて450mmの場合の調整量を求めればよい。
表1の関係は、単結晶引き上げ装置1の合計使用時間に応じて設定されていてもよい。ホットゾーンの構成部材の劣化が酸素濃度に影響を与えるからである。
The relationship in Table 1 is preferably created corresponding to the diameter of the straight body portion after cylindrical grinding. For example, the relationship of the present embodiment (relationship when the diameter is 300 mm) is a single silicon of 450 mm. It may be used in the case of producing the crystal SM, and in this case, the adjustment amount in the case of 450 mm may be obtained by multiplying the adjustment amount in Table 1 by a coefficient corresponding to the diameter of the straight body portion.
The relationship in Table 1 may be set according to the total usage time of the single crystal pulling device 1. This is because the deterioration of the components of the hot zone affects the oxygen concentration.

次に、本発明を実施例および比較例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。 Next, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these examples.

<比較例1>
まず、図1に示すような単結晶引き上げ装置1に石英坩堝221を取り付けた。引き上げ条件の設定は、石英坩堝221の重量を考慮することなく、従前に製造したシリコン単結晶SMの酸素濃度に基づいて、トップ部、ミドル部およびボトム部のそれぞれの酸素濃度が狙い値となるように行った。その後、この設定された引き上げ条件で、円筒研削後の直径が300mmになるようなシリコン単結晶SMを製造し、直胴部を複数のブロックに分割した。当該ブロックにおけるトップ部、ミドル部およびボトム部にそれぞれ対応する位置からウェーハを取得し、各ウェーハの中心の酸素濃度(ASTM F121−1979)をFTIRで測定した。各ウェーハの取得位置に対応する狙い値と酸素濃度の測定結果との差(以下、「酸素濃度差」という)の絶対値を求めた後、1本のシリコン単結晶SMから取得した複数のウェーハにおける酸素濃度差の絶対値の平均値を求めた。
<Comparative Example 1>
First, a quartz crucible 221 was attached to the single crystal pulling device 1 as shown in FIG. In setting the pulling condition, the oxygen concentration of each of the top part, the middle part and the bottom part becomes the target value based on the oxygen concentration of the silicon single crystal SM previously manufactured without considering the weight of the quartz crucible 221. I went like that. Then, under the set pulling conditions, a silicon single crystal SM having a diameter of 300 mm after cylindrical grinding was manufactured, and the straight body portion was divided into a plurality of blocks. Wafers were acquired from positions corresponding to the top, middle and bottom portions of the block, and the oxygen concentration (ASTM F121-1979) at the center of each wafer was measured by FTIR. After obtaining the absolute value of the difference between the target value corresponding to the acquisition position of each wafer and the measurement result of oxygen concentration (hereinafter referred to as "oxygen concentration difference"), a plurality of wafers acquired from one silicon single crystal SM. The average value of the absolute values of the oxygen concentration differences in the above was calculated.

石英坩堝221を交換し、直前に製造したシリコン単結晶SMの酸素濃度に基づき、次に製造するシリコン単結晶SMの酸素濃度が狙い値となるような引き上げ条件を設定してシリコン単結晶SMを製造した。その後、シリコン単結晶SMに対して上述のような処理を行い、酸素濃度差の絶対値の平均値を求めた。
比較例1では、合計34本のシリコン単結晶SMを製造して、それぞれのシリコン単結晶SMについて酸素濃度差の絶対値の平均値を求めた。その結果を図5に示す。図5および後述する図6の1つのデータは1本のシリコン単結晶SMの値である。
Replace the quartz crucible 221 and set the raising conditions so that the oxygen concentration of the silicon single crystal SM to be manufactured next becomes the target value based on the oxygen concentration of the silicon single crystal SM manufactured immediately before, and set the silicon single crystal SM. Manufactured. Then, the silicon single crystal SM was subjected to the above-mentioned treatment, and the average value of the absolute values of the oxygen concentration differences was obtained.
In Comparative Example 1, a total of 34 silicon single crystal SMs were produced, and the average value of the absolute values of the oxygen concentration differences was obtained for each silicon single crystal SM. The results are shown in FIG. One data in FIG. 5 and FIG. 6 described later is the value of one silicon single crystal SM.

<比較例2>
比較例1とは異なる単結晶引き上げ装置1を用いて、比較例1と同様の処理(引き上げ条件を石英坩堝221の重量を考慮することなく設定)によって比較例1と同じサイズのシリコン単結晶SMを20本製造し、それぞれシリコン単結晶SMについて酸素濃度差の絶対値の平均値を求めた。その結果を図6に示す。
<Comparative Example 2>
Using a single crystal pulling device 1 different from Comparative Example 1, a silicon single crystal SM having the same size as Comparative Example 1 is subjected to the same processing as in Comparative Example 1 (the pulling conditions are set without considering the weight of the quartz crucible 221). 20 pieces were manufactured, and the average value of the absolute values of the oxygen concentration differences was obtained for each silicon single crystal SM. The results are shown in FIG.

<実施例1>
比較例1と同じ単結晶引き上げ装置1に石英坩堝221を取り付けた。引き上げ条件の設定は、石英坩堝221の重量と、表1に示すような石英坩堝221の重量および酸素濃度の調整量の関係とに基づいて、トップ部、ミドル部およびボトム部のそれぞれの酸素濃度が狙い値となるような調整量を求め、当該調整量に基づいて行った。その後、この設定された引き上げ条件で、比較例1と同じサイズのシリコン単結晶SMを製造し、比較例1と同様にして酸素濃度差の絶対値の平均値を求めた。
実施例1では、合計37本のシリコン単結晶SMを製造して、それぞれのシリコン単結晶SMについて酸素濃度差の絶対値の平均値を求めた。その結果を図5に示す。
<Example 1>
A quartz crucible 221 was attached to the same single crystal pulling device 1 as in Comparative Example 1. The setting of the pulling condition is based on the relationship between the weight of the quartz crucible 221 and the weight of the quartz crucible 221 and the adjustment amount of the oxygen concentration as shown in Table 1, and the oxygen concentration of each of the top portion, the middle portion and the bottom portion is set. The adjustment amount was obtained so that the target value was obtained, and the adjustment amount was used based on the adjustment amount. Then, under the set pulling conditions, a silicon single crystal SM having the same size as that of Comparative Example 1 was produced, and the average value of the absolute values of the oxygen concentration differences was obtained in the same manner as in Comparative Example 1.
In Example 1, a total of 37 silicon single crystal SMs were produced, and the average value of the absolute values of the oxygen concentration differences was obtained for each silicon single crystal SM. The results are shown in FIG.

<実施例2>
比較例2と同じ単結晶引き上げ装置1を用いて、実施例1と同様の処理(引き上げ条件を石英坩堝221の重量を考慮して設定)によって実施例1と同じサイズのシリコン単結晶SMを34本製造し、それぞれシリコン単結晶SMについて酸素濃度差の絶対値の平均値を求めた。その結果を図6に示す。
<Example 2>
Using the same single crystal pulling device 1 as in Comparative Example 2, the same size silicon single crystal SM as in Example 1 was prepared by the same treatment as in Example 1 (the pulling conditions were set in consideration of the weight of the quartz crucible 221). In this production, the average value of the absolute values of the oxygen concentration differences was obtained for each silicon single crystal SM. The results are shown in FIG.

<評価>
図5および図6に示すように、実施例1および比較例1のそれぞれにおける酸素濃度差の絶対値の平均値の平均値(以下、単に「酸素濃度差平均値」という)を直線Lで結び、実施例2および比較例2についても同様に直線Lで結んだ。各単結晶引き上げ装置1において、酸素濃度差平均値は、実施例1,2の方が比較例1,2よりも小さかった。
実施例1,2における酸素濃度差の絶対値の平均値のばらつきは、比較例1,2よりも小さかった。
以上のことから、石英坩堝221の重量の測定結果と表1に示すような関係とに基づいて、当該石英坩堝221を用いて製造されたシリコン単結晶SMの酸素濃度が狙い値となるような引き上げ条件を設定することで、石英坩堝221を交換した場合でも、酸素濃度の狙い値からの乖離を抑制できることが確認できた。
<Evaluation>
As shown in FIGS. 5 and 6, the average value of the average values of the absolute values of the oxygen concentration differences in each of Example 1 and Comparative Example 1 (hereinafter, simply referred to as “oxygen concentration difference average value”) is connected by a straight line L. , Example 2 and Comparative Example 2 were also connected by a straight line L in the same manner. In each single crystal pulling device 1, the average oxygen concentration difference was smaller in Examples 1 and 2 than in Comparative Examples 1 and 2.
The variation in the average value of the absolute values of the oxygen concentration differences in Examples 1 and 2 was smaller than that in Comparative Examples 1 and 2.
From the above, based on the measurement result of the weight of the quartz crucible 221 and the relationship as shown in Table 1, the oxygen concentration of the silicon single crystal SM manufactured by using the quartz crucible 221 is set as the target value. It was confirmed that the deviation of the oxygen concentration from the target value can be suppressed even when the quartz crucible 221 is replaced by setting the pulling condition.

1…単結晶引き上げ装置、21…チャンバ、221…石英坩堝、SM…シリコン単結晶。 1 ... Single crystal pulling device, 21 ... Chamber, 221 ... Quartz crucible, SM ... Silicon single crystal.

Claims (4)

単結晶引き上げ装置を用いたチョクラルスキー法によるシリコン単結晶の製造方法であって、
石英坩堝の設計値を基準とした重量と、当該重量の前記石英坩堝を用いて基準の引き上げ条件でシリコン単結晶を製造するときに、当該シリコン単結晶の酸素濃度を基準酸素濃度にするために必要な酸素濃度の調整量との関係を予め求め、
石英坩堝の重量を測定する工程と、
前記石英坩堝の重量と前記酸素濃度の調整量との関係と、前記重量の測定結果に基づいて、当該重量が測定された石英坩堝を用いて製造されシリコン単結晶の酸素濃度を推定し、当該推定値と狙い値とに基づいて引き上げ条件を設定する工程と、
前記重量が測定された石英坩堝を用いて、前記設定された引き上げ条件でシリコン単結晶を製造する工程とを備えていることを特徴とするシリコン単結晶の製造方法。
It is a method for producing a silicon single crystal by the Czochralski method using a single crystal pulling device.
In order to make the oxygen concentration of the silicon single crystal the reference oxygen concentration when the silicon single crystal is manufactured under the conditions of raising the standard using the weight based on the design value of the quartz crucible and the quartz crucible of the weight. Obtain the relationship with the required adjustment amount of oxygen concentration in advance,
The process of measuring the weight of a quartz crucible,
And the relationship between the adjustment amount of the weight and the oxygen concentration of the quartz crucible, on the basis of the measurement results of the weight, to estimate the oxygen concentration in the silicon single crystal that will be manufactured using a quartz crucible to which the weight has been determined , The process of setting the raising conditions based on the estimated value and the target value,
A method for producing a silicon single crystal, which comprises a step of producing a silicon single crystal under the set pulling conditions using the quartz crucible whose weight has been measured.
請求項1に記載のシリコン単結晶の製造方法において、
前記基準酸素濃度は、
前記重量が前記設計値の前記石英坩堝を用い、かつ、前記基準の引き上げ条件で製造された前記シリコン単結晶の酸素濃度であり、
前記シリコン単結晶における、結晶軸方向の複数の所定位置ごとに設定されていることを特徴とするシリコン単結晶の製造方法。
In the method for producing a silicon single crystal according to claim 1,
The reference oxygen concentration is
The weight is the oxygen concentration of the silicon single crystal manufactured by using the quartz crucible of the design value and under the raising condition of the standard.
A method for producing a silicon single crystal, which is set at each of a plurality of predetermined positions in the crystal axis direction in the silicon single crystal.
請求項1または請求項2に記載のシリコン単結晶の製造方法において、
前記石英坩堝の重量と前記酸素濃度の調整量との関係は、シリコン融液の加熱条件が異なる複数の前記単結晶引き上げ装置に対応して作成されていることを特徴とするシリコン単結晶の製造方法。
In the method for producing a silicon single crystal according to claim 1 or 2.
The relationship between the weight of the quartz crucible and the adjustment amount of the oxygen concentration is characterized in that it is produced corresponding to a plurality of the single crystal pulling devices having different heating conditions for the silicon melt. Method.
請求項1から請求項3のいずれか一項に記載のシリコン単結晶の製造方法において、
前記引き上げ条件を設定する工程は、前記単結晶引き上げ装置のチャンバの炉内圧、前記チャンバに供給する不活性ガスの流量、および、前記石英坩堝の回転数のうち少なくともいずれか1つを前記引き上げ条件として設定することを特徴とするシリコン単結晶の製造方法。
The method for producing a silicon single crystal according to any one of claims 1 to 3.
In the step of setting the pulling condition, at least one of the pressure inside the chamber of the single crystal pulling device, the flow rate of the inert gas supplied to the chamber, and the rotation speed of the quartz crucible is set as the pulling condition. A method for producing a silicon single crystal, which comprises setting as.
JP2018110106A 2018-06-08 2018-06-08 Method for manufacturing silicon single crystal Active JP6981371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018110106A JP6981371B2 (en) 2018-06-08 2018-06-08 Method for manufacturing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018110106A JP6981371B2 (en) 2018-06-08 2018-06-08 Method for manufacturing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2019210199A JP2019210199A (en) 2019-12-12
JP6981371B2 true JP6981371B2 (en) 2021-12-15

Family

ID=68843944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018110106A Active JP6981371B2 (en) 2018-06-08 2018-06-08 Method for manufacturing silicon single crystal

Country Status (1)

Country Link
JP (1) JP6981371B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11856678B2 (en) 2019-10-29 2023-12-26 Senic Inc. Method of measuring a graphite article, apparatus for a measurement, and ingot growing system
KR102262866B1 (en) * 2020-08-31 2021-06-08 에스케이씨 주식회사 Method for estimating characteristics of a ingot container and system for estimating characteristics of a ingot container

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10297994A (en) * 1997-04-25 1998-11-10 Sumitomo Sitix Corp Growth of silicon single crystal
JP4484268B2 (en) * 1999-04-16 2010-06-16 Sumco Techxiv株式会社 Method for producing crystal
JP2018043904A (en) * 2016-09-14 2018-03-22 株式会社Sumco Method for manufacturing silicon single crystal

Also Published As

Publication number Publication date
JP2019210199A (en) 2019-12-12

Similar Documents

Publication Publication Date Title
KR102157388B1 (en) Silicon single crystal manufacturing method and apparatus
CN108779577B (en) Method for producing silicon single crystal
JP5120337B2 (en) Silicon single crystal manufacturing method, silicon single crystal temperature estimation method
CN112639175A (en) Method for growing single crystal silicon
JP6981371B2 (en) Method for manufacturing silicon single crystal
JP6844560B2 (en) Silicon melt convection pattern control method, silicon single crystal manufacturing method, and silicon single crystal pulling device
US10233564B2 (en) Manufacturing method of monocrystalline silicon and monocrystalline silicon
KR101117477B1 (en) Method for Producing Single Crystal and Single Crystal
WO2005001171A1 (en) Process for producing single crystal and single crystal
TWI635199B (en) Manufacturing method of single crystal silicon
KR101862157B1 (en) Method and apparatus for manufacturing silicon monocrystalline ingot
WO2005001170A1 (en) Process for producing single crystal and single crystal
JP2020114802A (en) Method for manufacturing silicon single crystal
JP6888568B2 (en) Method for manufacturing silicon single crystal
JP6958632B2 (en) Silicon single crystal and its manufacturing method and silicon wafer
JP6729484B2 (en) Method for producing silicon single crystal
JP2018043904A (en) Method for manufacturing silicon single crystal
JP4715528B2 (en) Semi-insulating GaAs wafer for electronic devices and manufacturing method thereof
JP7047752B2 (en) Manufacturing method of single crystal silicon
JP6809400B2 (en) Method for manufacturing silicon single crystal
JP5928363B2 (en) Evaluation method of silicon single crystal wafer
JP2018043901A (en) Method and apparatus for manufacturing silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210917

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210917

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210930

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211101

R150 Certificate of patent or registration of utility model

Ref document number: 6981371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150