JP2018043901A - Method and apparatus for manufacturing silicon single crystal - Google Patents

Method and apparatus for manufacturing silicon single crystal Download PDF

Info

Publication number
JP2018043901A
JP2018043901A JP2016179269A JP2016179269A JP2018043901A JP 2018043901 A JP2018043901 A JP 2018043901A JP 2016179269 A JP2016179269 A JP 2016179269A JP 2016179269 A JP2016179269 A JP 2016179269A JP 2018043901 A JP2018043901 A JP 2018043901A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
silicon
distance
silicon melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016179269A
Other languages
Japanese (ja)
Other versions
JP6583196B2 (en
Inventor
一美 田邉
Kazumi Tanabe
一美 田邉
大基 金
Daiki Kin
大基 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2016179269A priority Critical patent/JP6583196B2/en
Publication of JP2018043901A publication Critical patent/JP2018043901A/en
Application granted granted Critical
Publication of JP6583196B2 publication Critical patent/JP6583196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for manufacturing a silicon single crystal, capable of enhancing the controllability and robustness of pulling speed of the silicon single crystal.SOLUTION: A method for manufacturing a silicon single crystal comprises growing a silicon single crystal C from a silicon melt M stored in a crucible 2 by the Czochralski method. When the temperature of a meniscus portion P1 having a contact between the outermost periphery of the silicon single crystal during growth and the silicon melt is A (K); a distance in the radially outer direction of the silicon melt from the meniscus portion of the silicon single crystal during the growth is L (mm); and the temperature of the free surface FS of the silicon melt at a position P2 having the distance L is B (K), the silicon single crystal is grown on the manufacturing condition that a temperature gradient Gs on the free surface of the silicon melt defined by Gs(K/mm)=(B-A)/1000L monotonously decreases with the increase of the distance L.SELECTED DRAWING: Figure 2

Description

本発明は、シリコン単結晶の製造方法及び製造装置に関するものである。   The present invention relates to a method and an apparatus for manufacturing a silicon single crystal.

チョクラルスキー法によるシリコン単結晶の製造装置において、シリコン融液の表面の上方に、それぞれ温度制御が可能な同心円状の多段のサブヒータを設け、シリコン単結晶を製造する際は、多段のサブヒータによってシリコン融液の表面を加熱する一方で、メインヒータの温度を下げることにより坩堝内壁の温度を下げ、これによりシリコン単結晶中の酸素濃度を低減するものが知られている(特許文献1)。   In a silicon single crystal manufacturing apparatus using the Czochralski method, concentric multi-stage sub-heaters each capable of temperature control are provided above the surface of the silicon melt, and when producing a silicon single crystal, a multi-stage sub-heater is used. It is known that the temperature of the inner wall of the crucible is lowered by lowering the temperature of the main heater while the surface of the silicon melt is heated, thereby reducing the oxygen concentration in the silicon single crystal (Patent Document 1).

特開平5−294782号公報Japanese Patent Laid-Open No. 5-294882

しかしながら、上記従来技術では酸素濃度は低減できても、シリコン単結晶の引き上げ速度の制御性(ばらつき)は改善できない。   However, even if the oxygen concentration can be reduced, the controllability (variation) of the pulling rate of the silicon single crystal cannot be improved.

本発明が解決しようとする課題は、シリコン単結晶の引き上げ速度の制御性およびロバスト性を高めることができるシリコン単結晶の製造方法、シリコン単結晶の製造装置、引上げ速度の制御性又はロバスト性の評価方法及びシリコン単結晶製造装置の設計方法を提供することである。   The problem to be solved by the present invention is to provide a silicon single crystal manufacturing method, a silicon single crystal manufacturing apparatus, a pulling rate controllability or a robust property that can improve the pulling rate controllability and robustness of the silicon single crystal. It is to provide an evaluation method and a design method of a silicon single crystal manufacturing apparatus.

第1の観点による発明は、チョクラルスキー法により坩堝に収容したシリコン融液からシリコン単結晶を育成するシリコン単結晶の製造方法において、
育成中のシリコン単結晶の最外周とシリコン融液との接点であるメニスカス部の温度をA(K)、前記育成中のシリコン単結晶の前記メニスカス部を起点とする前記シリコン融液の半径外側方向への距離をL(mm)、前記距離Lの位置における前記シリコン融液の自由表面の温度をB(K)とした場合に、Gs(K/mm)=(B−A)/Lで定義されるシリコン融液の自由表面上の温度勾配Gsが、前記距離Lの増加に伴い単調減少となる製造条件にて、前記シリコン単結晶を育成するシリコン単結晶の製造方法によって上記課題を解決する。ここで、単調減少とは、極値を持たずに減少することをいい、距離Lの増加に伴い、温度勾配Gsが増加することなく減少することをいう。
The invention according to the first aspect is a silicon single crystal manufacturing method for growing a silicon single crystal from a silicon melt contained in a crucible by the Czochralski method.
The temperature of the meniscus portion that is the contact point between the outermost periphery of the growing silicon single crystal and the silicon melt is A (K), and the outer radius of the silicon melt starts from the meniscus portion of the growing silicon single crystal. When the distance in the direction is L (mm) and the temperature of the free surface of the silicon melt at the position of the distance L is B (K), Gs (K / mm) = (B−A) / L The above-mentioned problem is solved by a silicon single crystal manufacturing method for growing the silicon single crystal under a manufacturing condition in which the temperature gradient Gs on the free surface of the defined silicon melt monotonously decreases as the distance L increases. To do. Here, the monotonic decrease means a decrease without having an extreme value, and it means that the temperature gradient Gs decreases without increasing as the distance L increases.

特に限定されないが、上記第1の観点による発明において、前記距離Lに対する前記温度勾配Gsのプロファイルは、変曲点(変曲点とは、曲率の符号が変化する点をいう。)を示さないことが望ましい。   Although not particularly limited, in the invention according to the first aspect, the profile of the temperature gradient Gs with respect to the distance L does not indicate an inflection point (an inflection point refers to a point at which the sign of curvature changes). It is desirable.

第2の観点による発明は、チャンバと、
前記チャンバ内に設けられ、シリコン融液が収容される石英製の坩堝と、
前記石英製の坩堝の外周面を保護する黒鉛製の坩堝と、
前記チャンバ内の前記坩堝の周囲に設けられたヒータと、
前記チャンバ内の前記坩堝の上部に設けられ、育成中のシリコン単結晶を覆う筒状の熱遮蔽部材と、
前記チャンバ内の前記ヒータの周囲に設けられた保温筒と、を備え、
チョクラルスキー法により、坩堝に収容したシリコン融液からシリコン単結晶を育成するシリコン単結晶の製造装置において、
育成中のシリコン単結晶の最外周とシリコン融液との接点であるメニスカス部の温度をA(K)、前記育成中のシリコン単結晶の前記メニスカス部を起点とする前記シリコン融液の半径外側方向への距離をL(mm)、前記距離Lの位置における前記シリコン融液の自由表面の温度をB(K)とした場合に、Gs(K/mm)=(B−A)/Lで定義されるシリコン融液の自由表面上の温度勾配Gsが、前記距離Lの増加に伴い単調減少となる特性を備えるシリコン単結晶の製造装置により、上記課題を解決する。
The invention according to the second aspect comprises a chamber,
A quartz crucible provided in the chamber and containing a silicon melt;
A graphite crucible protecting the outer peripheral surface of the quartz crucible;
A heater provided around the crucible in the chamber;
A cylindrical heat shield member provided on the crucible in the chamber and covering the growing silicon single crystal;
A heat insulating cylinder provided around the heater in the chamber,
In a silicon single crystal manufacturing apparatus for growing a silicon single crystal from a silicon melt contained in a crucible by the Czochralski method,
The temperature of the meniscus portion that is the contact point between the outermost periphery of the growing silicon single crystal and the silicon melt is A (K), and the outer radius of the silicon melt starts from the meniscus portion of the growing silicon single crystal. When the distance in the direction is L (mm) and the temperature of the free surface of the silicon melt at the position of the distance L is B (K), Gs (K / mm) = (B−A) / L The above problem is solved by a silicon single crystal manufacturing apparatus having a characteristic that the temperature gradient Gs on the free surface of the defined silicon melt is monotonously decreased as the distance L increases.

上記第2の観点による発明において、前記温度勾配Gsが前記距離Lの増加に伴い単調減少となるように、少なくとも前記チャンバ、前記石英製の坩堝、前記黒鉛製の坩堝、前記ヒータ、前記熱遮蔽部材及び前記保温筒の形状、寸法、配置関係、材質及びこれらに起因する熱特性を設定してもよい。   In the invention according to the second aspect, at least the chamber, the quartz crucible, the graphite crucible, the heater, the heat shield so that the temperature gradient Gs monotonously decreases as the distance L increases. You may set the shape of a member and the said heat insulation cylinder, a dimension, arrangement | positioning relationship, a material, and the thermal characteristic resulting from these.

また、上記第2の観点による発明において、前記温度勾配Gsが前記距離Lの増加に伴い単調減少となるように、前記熱遮蔽部材の下端の開口径と、前記熱遮蔽部材の下端とシリコン融液面との距離を設定してもよい。   Further, in the invention according to the second aspect, the opening diameter of the lower end of the heat shielding member, the lower end of the heat shielding member, and the silicon fusion are such that the temperature gradient Gs monotonously decreases as the distance L increases. You may set the distance with a liquid level.

第3の観点による発明は、チョクラルスキー法によるシリコン単結晶の製造方法における引上げ速度の制御性又はロバスト性を評価する方法において、
育成中のシリコン単結晶の最外周とシリコン融液との接点であるメニスカス部の温度をA(K)、前記育成中のシリコン単結晶の前記メニスカス部を起点とする前記シリコン融液の半径外側方向への距離をL(mm)、前記距離Lの位置における前記シリコン融液の自由表面の温度をB(K)とした場合に、Gs(K/mm)=(B−A)/Lで定義されるシリコン融液の自由表面上の温度勾配Gsが、前記距離Lの増加に伴い単調減少となるか否かを判定し、単調減少である場合は、前記引上げ速度の制御性又はロバスト性が良いと評価することにより、上記課題を解決する。
The invention according to the third aspect is a method for evaluating controllability or robustness of pulling speed in a method for producing a silicon single crystal by the Czochralski method.
The temperature of the meniscus portion that is the contact point between the outermost periphery of the growing silicon single crystal and the silicon melt is A (K), and the outer radius of the silicon melt starts from the meniscus portion of the growing silicon single crystal. When the distance in the direction is L (mm) and the temperature of the free surface of the silicon melt at the position of the distance L is B (K), Gs (K / mm) = (B−A) / L It is determined whether or not the temperature gradient Gs on the free surface of the defined silicon melt decreases monotonously as the distance L increases. If the temperature gradient Gs decreases monotonously, the pulling speed controllability or robustness is determined. The above-mentioned problem is solved by evaluating that is good.

第4の観点による発明は、第3の観点による引上げ速度の制御性又はロバスト性を評価する方法により、前記引上げ速度の制御性又はロバスト性が良いと評価されたシリコン単結晶の製造装置により、上記課題を解決する。   The invention according to the fourth aspect is based on the method for evaluating pulling rate controllability or robustness according to the third aspect, by the silicon single crystal manufacturing apparatus evaluated as having good pulling rate controllability or robustness. Solve the above problems.

第5の観点による発明は、第4の観点によるシリコン単結晶の製造装置を用いてシリコン単結晶を製造する方法により、上記課題を解決する。   The invention according to the fifth aspect solves the above problem by a method for producing a silicon single crystal using the silicon single crystal production apparatus according to the fourth aspect.

第6の観点による発明は、チャンバと、
前記チャンバ内に設けられ、シリコン融液が収容される石英製の坩堝と、
前記石英製の坩堝の外周面を保護する黒鉛製の坩堝と、
前記チャンバ内の前記坩堝の周囲に設けられたヒータと、
前記チャンバ内の前記坩堝の上部に設けられ、育成中のシリコン単結晶を覆う筒状の熱遮蔽部材と、
前記チャンバ内の前記ヒータの周囲に設けられた保温筒と、を備え、
チョクラルスキー法によるシリコン単結晶製造装置のホットゾーンの設計方法において、
育成中のシリコン単結晶の最外周とシリコン融液との接点であるメニスカス部の温度をA(K)、前記育成中のシリコン単結晶の前記メニスカス部を起点とする前記シリコン融液の半径外側方向への距離をL(mm)、前記距離Lの位置における前記シリコン融液の自由表面の温度をB(K)とした場合に、Gs(K/mm)=(B−A)/Lで定義されるシリコン融液の自由表面上の温度勾配Gsが、前記距離Lの増加に伴い単調減少となるように、前記ホットゾーンを構成する少なくとも一の部材の形状、寸法、配置関係、材質及びこれらに起因する熱特性を設計することにより、上記課題を解決する。
An invention according to a sixth aspect comprises a chamber,
A quartz crucible provided in the chamber and containing a silicon melt;
A graphite crucible protecting the outer peripheral surface of the quartz crucible;
A heater provided around the crucible in the chamber;
A cylindrical heat shield member provided on the crucible in the chamber and covering the growing silicon single crystal;
A heat insulating cylinder provided around the heater in the chamber,
In the design method of the hot zone of the silicon single crystal manufacturing equipment by the Czochralski method,
The temperature of the meniscus portion that is the contact point between the outermost periphery of the growing silicon single crystal and the silicon melt is A (K), and the outer radius of the silicon melt starts from the meniscus portion of the growing silicon single crystal. When the distance in the direction is L (mm) and the temperature of the free surface of the silicon melt at the position of the distance L is B (K), Gs (K / mm) = (B−A) / L The shape, size, arrangement relationship, material, and material of at least one member constituting the hot zone so that the temperature gradient Gs on the free surface of the defined silicon melt decreases monotonously as the distance L increases. The above-mentioned problems are solved by designing the thermal characteristics resulting from these.

本発明では、シリコン融液の自由表面上の温度勾配Gsが、距離Lの増加に伴い単調減少となる製造条件を設定し、当該製造条件にてシリコン単結晶を育成すると、シリコン融液の自由表面の対流が安定するものと推察されるので、シリコン単結晶の引き上げ速度の制御性およびロバスト性を高めることができる。   In the present invention, when the manufacturing condition is set such that the temperature gradient Gs on the free surface of the silicon melt decreases monotonously with the increase of the distance L, and the silicon single crystal is grown under the manufacturing condition, the silicon melt is freed. Since the surface convection is presumed to be stable, the controllability and robustness of the pulling speed of the silicon single crystal can be improved.

本発明のシリコン単結晶の製造装置の一実施の形態を示す断面図である。It is sectional drawing which shows one Embodiment of the manufacturing apparatus of the silicon single crystal of this invention. 図1のホットゾーンHZを拡大して示す半断面図である。FIG. 2 is a half sectional view showing an enlarged hot zone HZ in FIG. 1. 図1のホットゾーンHZの条件が相違するシリコン単結晶の製造装置の実施例と比較例を用いて測定した距離Lとシリコン融液の自由表面Bの温度との関係を示すグラフである。It is a graph which shows the relationship between the distance L measured using the Example of the manufacturing apparatus of the silicon single crystal from which the conditions of the hot zone HZ of FIG. 1 differ, and the temperature of the free surface B of a silicon melt. 図3の実施例及び比較例の距離Lと温度勾配Gsとの関係を示すグラフである。It is a graph which shows the relationship between the distance L and the temperature gradient Gs of the Example and comparative example of FIG.

以下、本発明の一実施の形態を図面に基づいて説明する。図1は、本発明の一実施の形態であるシリコン単結晶の製造装置を示す断面図である。図1に示すシリコン単結晶の製造装置1は、本発明に係るシリコン単結晶の製造方法も適用される。図示するシリコン単結晶の製造装置1は、円筒状の第1チャンバ11と、同じく円筒状の第2チャンバ12とを備え、これらは気密に接続されている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a silicon single crystal manufacturing apparatus according to an embodiment of the present invention. The silicon single crystal manufacturing apparatus 1 shown in FIG. 1 also applies the silicon single crystal manufacturing method according to the present invention. The silicon single crystal manufacturing apparatus 1 shown in the figure includes a cylindrical first chamber 11 and a cylindrical second chamber 12, which are hermetically connected.

第1チャンバ11の内部には、シリコン融液Mを収容する石英製の坩堝21と、この石英製の坩堝21を保護する黒鉛製の坩堝22とが、支持軸23で支持されるとともに、駆動機構24によって回転及び昇降が可能とされている。また、石英製の坩堝21と黒鉛製の坩堝22とを取り囲むように、環状のヒータ25と、同じく環状の、断熱材からなる保温筒26が配置されている。なお、黒鉛製の坩堝22は、炭素繊維強化炭素複合材(carbon fiber reinforced-carbon matrix-composite)から構成してもよい。また、石英製の坩堝21の下方にヒータを追加してもよい。   Inside the first chamber 11, a quartz crucible 21 containing the silicon melt M and a graphite crucible 22 protecting the quartz crucible 21 are supported by a support shaft 23 and driven. The mechanism 24 can be rotated and lifted. Further, an annular heater 25 and an annular heat insulating cylinder 26 made of a heat insulating material are disposed so as to surround the quartz crucible 21 and the graphite crucible 22. The graphite crucible 22 may be made of a carbon fiber reinforced-carbon matrix-composite. A heater may be added below the quartz crucible 21.

第1チャンバ11の内部であって、石英製の坩堝21の上部には、円筒状の熱遮蔽部材27が設けられている。熱遮蔽部材27は、モリブデン、タングステンなどの耐火金属又はカーボンからなり、シリコン融液Mからシリコン単結晶Cへの放射を遮断するとともに、第1チャンバ11内を流れるガスを整流する。熱遮蔽部材27は、保温筒26にブラケット28を用いて固定されている。この熱遮蔽部材27の下端に、シリコン融液Mの液面と対向するように遮熱部を設け、シリコン融液Mの表面からの輻射をカットするとともにシリコン融液Mの表面を保温するようにしてもよい。   A cylindrical heat shielding member 27 is provided inside the first chamber 11 and above the quartz crucible 21. The heat shielding member 27 is made of a refractory metal such as molybdenum or tungsten, or carbon, blocks radiation from the silicon melt M to the silicon single crystal C, and rectifies the gas flowing in the first chamber 11. The heat shielding member 27 is fixed to the heat retaining cylinder 26 using a bracket 28. A heat shield part is provided at the lower end of the heat shield member 27 so as to face the liquid surface of the silicon melt M, so that radiation from the surface of the silicon melt M is cut and the surface of the silicon melt M is kept warm. It may be.

第1チャンバ11の上部に接続された第2チャンバ12は、育成したシリコン単結晶Cを収容し、これを取り出すためのチャンバである。第2チャンバ12の上部には、シリコン単結晶をワイヤ31で回転させながら引上げる引上げ機構32が設けられている。引上げ機構32から垂下されたワイヤ31の下端のチャックには種結晶Sが装着される。第1チャンバ11の上部に設けられたガス導入口13から、アルゴンガス等の不活性ガスが導入される。この不活性ガスは、引上げ中のシリコン単結晶Cと熱遮蔽部材27との間を通過した後、熱遮蔽部材27の下端とシリコン融液Mの融液面との間を通過し、さらに石英製の坩堝21の上端へ立ち上がった後、ガス排出口14から排出される。   The second chamber 12 connected to the upper part of the first chamber 11 is a chamber for accommodating the grown silicon single crystal C and taking it out. A pulling mechanism 32 for pulling up the silicon single crystal while rotating it with the wire 31 is provided in the upper part of the second chamber 12. A seed crystal S is mounted on the chuck at the lower end of the wire 31 suspended from the pulling mechanism 32. An inert gas such as argon gas is introduced from a gas inlet 13 provided in the upper portion of the first chamber 11. This inert gas passes between the silicon single crystal C being pulled and the heat shielding member 27, then passes between the lower end of the heat shielding member 27 and the melt surface of the silicon melt M, and further quartz. After rising to the upper end of the made crucible 21, it is discharged from the gas discharge port 14.

第1チャンバ11(非磁気シールド材からなる)の外側には、第1チャンバ11を取り囲むように、石英製の坩堝21内の融液Mに磁場を与える磁場発生装置41が配置されている。磁場発生装置41は、石英製の坩堝21に向けて、水平磁場を生じさせるものであり、電磁コイルで構成されている。磁場発生装置41は、石英製の坩堝21内の融液Mに生じた熱対流を制御することで、結晶成長を安定させ、結晶成長方向における不純物分布のミクロなバラツキを抑制する。特に大口径のシリコン単結晶を製造する場合にはその効果が大きい。なお、必要に応じて縦磁場又はカスプ磁場を発生させる磁場発生装置としてもよいし、必要に応じて磁場発生装置41を使用しなくてもよい。   A magnetic field generator 41 that applies a magnetic field to the melt M in the quartz crucible 21 is disposed outside the first chamber 11 (made of a nonmagnetic shield material) so as to surround the first chamber 11. The magnetic field generator 41 generates a horizontal magnetic field toward the quartz crucible 21 and is constituted by an electromagnetic coil. The magnetic field generator 41 controls the thermal convection generated in the melt M in the quartz crucible 21, thereby stabilizing the crystal growth and suppressing micro variations in the impurity distribution in the crystal growth direction. In particular, when producing a large-diameter silicon single crystal, the effect is great. In addition, it is good also as a magnetic field generator which produces | generates a longitudinal magnetic field or a cusp magnetic field as needed, and it is not necessary to use the magnetic field generator 41 as needed.

本実施形態のシリコン単結晶の製造装置1を用いて、CZ法によりシリコン単結晶を育成するには、まず、石英製の坩堝21内に、多結晶シリコンや必要に応じてドーパントからなるシリコン原料を充填し、ガス導入口13から不活性ガスを導入しガス排出口14から排出しながら、ヒータ25を作動して石英製の坩堝21内でシリコン原料を融解し、シリコン融液Mとする。続いて、磁場発生装置41を作動して石英製の坩堝21への水平磁場の印加を開始しつつ、シリコン融液Mの温度を引き上げ開始温度となるように調温する。シリコン融液Mの温度と磁場強度が安定したら、駆動機構24によって石英製の坩堝21を所定速度で回転させ、ワイヤ31に装着された種結晶Sをシリコン融液Mに浸漬する。そして、ワイヤ31も所定速度で回転させながら静かに引上げて種絞りを形成した後、所望の直径まで拡径し、略円柱形状の直胴部を有するシリコン単結晶Cを成長させる。   In order to grow a silicon single crystal by the CZ method using the silicon single crystal manufacturing apparatus 1 of the present embodiment, first, a silicon raw material made of polycrystalline silicon or, if necessary, a dopant in a quartz crucible 21. The heater 25 is operated while the inert gas is introduced from the gas inlet 13 and discharged from the gas outlet 14, and the silicon raw material is melted in the quartz crucible 21 to obtain a silicon melt M. Subsequently, the temperature of the silicon melt M is raised to the starting temperature while the magnetic field generator 41 is operated to start application of a horizontal magnetic field to the quartz crucible 21. When the temperature and magnetic field strength of the silicon melt M are stabilized, the quartz crucible 21 is rotated at a predetermined speed by the drive mechanism 24 so that the seed crystal S attached to the wire 31 is immersed in the silicon melt M. Then, the wire 31 is also gently pulled up while rotating at a predetermined speed to form a seed stop, and then the diameter is increased to a desired diameter, and a silicon single crystal C having a substantially cylindrical straight body is grown.

シリコン単結晶Cの引き上げにともない石英製の坩堝21の液面が下がり、磁場発生装置41から石英製の坩堝21へ水平磁場を印加を含めてホットゾーンHZの条件が変動する。この液面の変動を抑制するため、シリコン単結晶Cの引き上げ中における融液Mの液面の鉛直方向の高さは、駆動機構24によって一定となるように制御される。この駆動機構24の制御は、例えば、石英製の坩堝21の位置、CCDカメラなどで測定したシリコン融液Mの液面の位置、シリコン単結晶Cの引上げ長さ等の情報に応じて実行され、これにより石英製の坩堝21の上下方向の位置が駆動機構24によって移動する。   As the silicon single crystal C is pulled up, the liquid level of the quartz crucible 21 falls, and the condition of the hot zone HZ fluctuates including the application of a horizontal magnetic field from the magnetic field generator 41 to the quartz crucible 21. In order to suppress the fluctuation of the liquid level, the height in the vertical direction of the liquid level of the melt M during the pulling of the silicon single crystal C is controlled by the drive mechanism 24 to be constant. The control of the driving mechanism 24 is executed according to information such as the position of the quartz crucible 21, the position of the silicon melt M measured with a CCD camera, the pulling length of the silicon single crystal C, and the like. Thereby, the vertical position of the quartz crucible 21 is moved by the drive mechanism 24.

ホットゾーンHZとは、シリコン単結晶の育成中にヒータ25からの熱によって高温となる領域をいい、ホットゾーンHZの条件とは、第1チャンバ11、石英製の坩堝21、黒鉛製の22、支持軸23、ヒータ25、保温筒26、熱遮蔽部材27、シリコン融液M、シリコン単結晶Cなどの形状、寸法、配置関係、材質及びこれらに起因する各種熱特性をいう。図2は、ホットゾーンHZの要部を拡大して示す半断面図である。ホットゾーンHZの条件としての、第1チャンバ11、石英製の坩堝21、黒鉛製の22、支持軸23、ヒータ25、保温筒26、熱遮蔽部材27、シリコン融液M、シリコン単結晶Cなどの形状、寸法、配置関係、材質及びこれらに起因する各種熱特性の一例を挙げると、図2に示す、熱遮蔽部材27の下端の開口径D(直径又は半径)と、熱遮蔽部材27の下端とシリコン融液面FSとの距離Gaが挙げられる。   The hot zone HZ refers to a region that is heated by heat from the heater 25 during the growth of the silicon single crystal. The conditions of the hot zone HZ include the first chamber 11, the quartz crucible 21, the graphite 22, The support shaft 23, the heater 25, the heat insulation cylinder 26, the heat shielding member 27, the silicon melt M, the silicon single crystal C, and the like, the shape, the dimensions, the arrangement relationship, the material, and various thermal characteristics resulting from them. FIG. 2 is an enlarged half-sectional view showing the main part of the hot zone HZ. As conditions for the hot zone HZ, the first chamber 11, the quartz crucible 21, the graphite 22, the support shaft 23, the heater 25, the heat retaining cylinder 26, the heat shielding member 27, the silicon melt M, the silicon single crystal C, and the like An example of the shape, size, arrangement relationship, material, and various thermal characteristics resulting from these, the opening diameter D (diameter or radius) of the lower end of the heat shielding member 27 shown in FIG. A distance Ga between the lower end and the silicon melt surface FS is mentioned.

ここで、実際のシリコン単結晶製造装置について、D(直径)=D1mm,Ga=Ga1mmに設定した実施例に係る製造装置を用いてn=156本のシリコン単結晶を引上げる一方、D(直径)=D1+60mm,Ga=Ga1+15mmに設定した比較例に係る製造装置を用いてn=81本のシリコン単結晶を引上げた。そして、これら実施例及び比較例における引上げ速度Vの速度実績値の移動平均のばらつき(mm/min)を測定したところ、下記表1のとおりであった。なお、表1の速度実績値の移動平均のばらつきは、(1)まず、1分毎に採取した結晶育成速度の瞬時値を、結晶育成方向の50mm区間で平均化処理することにより移動平均速度を算出し、(2)次に、1分毎に結晶育成速度の設定値と前記移動平均速度の差異を求め、引き上げられたシリコン単結晶1本分の製品取得領域全長について、その差異の平均値(シリコン単結晶1本分の平均値)を求め、(3)最後に、このようにして得られるシリコン単結晶1本分の平均値を、引き上げられたシリコン単結晶の全数(実施例の場合はシリコン単結晶156本、比較例の場合はシリコン単結晶81本)のそれぞれについて求めた後、全数分の平均値(実施例の場合はシリコン単結晶156本の平均値、比較例の場合はシリコン単結晶81本の平均値)を求めて、これを表1の“速度実績値の移動平均のばらつき”とした。
この結果によれば、CZ法によりGrown−in欠陥を存在させない無欠陥領域によるシリコン単結晶の製造制御法による引上速度の制御性を比較すると、表1に示すとおり、比較例は実施例に比べて1.86倍も悪化することとなった。
Here, for an actual silicon single crystal manufacturing apparatus, n = 156 silicon single crystals are pulled up using a manufacturing apparatus according to an example in which D (diameter) = D1 mm and Ga = Ga1 mm, while D (diameter) ) = D1 + 60 mm, Ga = Ga1 + 15 mm was used to pull up n = 81 silicon single crystals using the manufacturing apparatus according to the comparative example. And when the dispersion | variation (mm / min) of the moving average of the speed actual value of the pulling-up speed V in these Examples and a comparative example was measured, it was as Table 1 below. In addition, the variation of the moving average of the speed actual values in Table 1 is as follows: (1) First, the moving average speed is obtained by averaging the instantaneous value of the crystal growth speed collected every minute in the 50 mm section in the crystal growth direction. (2) Next, the difference between the set value of the crystal growth rate and the moving average rate is obtained every minute, and the average of the differences is obtained for the entire length of the product acquisition region for one pulled silicon single crystal. (3) Finally, the average value for one silicon single crystal thus obtained is calculated as the total number of pulled silicon single crystals (in the example) In this case, after obtaining each of 156 silicon single crystals and 81 silicon single crystals in the case of the comparative example, the average value for all the numbers (in the case of the embodiment, the average value of 156 silicon single crystals, in the case of the comparative example) Of 81 silicon single crystals Average value) of seeking, which was used as a "variation of the moving average of the actual speed" in Table 1.
According to this result, when the controllability of the pulling rate by the production control method of the silicon single crystal by the defect-free region in which no grown-in defect exists by the CZ method is compared, as shown in Table 1, the comparative example is the example. It was 1.86 times worse than that.

Figure 2018043901
Figure 2018043901

そこで、D(直径)=D1mm,Ga=Ga1mmに設定した実施例に係る製造装置と、D(直径)=D1+60mm,Ga=Ga1+15mmに設定した比較例に係る製造装置について、その他のホットゾーンHZの条件である、第1チャンバ11、石英製の坩堝21、黒鉛製の22、支持軸23、ヒータ25、保温筒26、熱遮蔽部材27、シリコン融液M、シリコン単結晶Cなどの形状、寸法、配置関係、材質及びこれらに起因する各種熱特性を実施例と比較例とで同じ条件に設定し、電子計算機上でCrysMAS(Fraunhofer Institute社製総合伝熱解析シミュレーションソフトウェア)による300mmシリコン単結晶の製造シミュレーションを実施した。なお、CrysMASを用いたシミュレーション解析においては、坩堝内の融液の対流は考慮せず、二次元軸対称モデル(三次元モデルでもよいが本例ではより簡易な二次元モデルを用いた。)による伝熱解析シミュレーションを実施した。この場合のシミュレーションにおいては、例えば特許第4048660号公報に記載のように、チョクラルスキー法(CZ法)によりGrown−in欠陥を存在させない無欠陥領域のシリコン単結晶を製造する方法の範囲内で実施した。すなわち、引上げ軸方向の結晶中心部の温度勾配をGc、結晶外周部の温度勾配をGeとしたとき、Gc/Geが、T>1360℃の範囲では、Gc/Ge=−0.007T+10.62、1230℃≦T≦130℃の範囲では、Gc/Ge≧1.0を満足する製造条件でシリコン単結晶を製造する。   Therefore, with respect to the manufacturing apparatus according to the example set to D (diameter) = D1 mm and Ga = Ga1 mm, and the manufacturing apparatus according to the comparative example set to D (diameter) = D1 + 60 mm and Ga = Ga1 + 15 mm, other hot zones HZ Shapes and dimensions of the first chamber 11, quartz crucible 21, graphite 22, support shaft 23, heater 25, heat insulation cylinder 26, heat shield member 27, silicon melt M, silicon single crystal C, etc., which are conditions The arrangement relationship, material, and various thermal characteristics resulting from these were set to the same conditions in the examples and comparative examples, and the 300 mm silicon single crystal of CrysMAS (comprehensive heat transfer analysis simulation software manufactured by Fraunhofer Institute) was used on an electronic computer. A production simulation was performed. In the simulation analysis using CrysMAS, the convection of the melt in the crucible is not taken into consideration, and a two-dimensional axisymmetric model (a three-dimensional model may be used, but a simpler two-dimensional model is used in this example). A heat transfer analysis simulation was carried out. In the simulation in this case, as described in, for example, Japanese Patent No. 40486660, within the scope of the method of manufacturing a defect-free silicon single crystal in which no grown-in defects exist by the Czochralski method (CZ method). Carried out. That is, when the temperature gradient of the crystal center in the pulling axis direction is Gc and the temperature gradient of the crystal outer periphery is Ge, Gc / Ge = −0.007T / 10.62 in the range of T> 1360 ° C. In the range of 1230 ° C. ≦ T ≦ 130 ° C., a silicon single crystal is manufactured under manufacturing conditions satisfying Gc / Ge ≧ 1.0.

ここで、図2に示すように、育成中のシリコン単結晶Cの最外周とシリコン融液Mとの接点であるメニスカス部P1の温度をA(K)、育成中のシリコン単結晶Cを起点(具体的にはメニスカス部P1を起点)とするシリコン融液Mの半径外側方向(P3は自由表面FSと石英製の坩堝21の内壁面との接点)への距離をL(mm)、距離Lの位置P2におけるシリコン融液の自由表面FSの温度をB(K)とした場合における、距離Lとシリコン融液の自由表面Bの温度との関係をCrysMASにより解析した。この結果を図3に示す。この図3のシミュレーション結果によれば、実施例及び比較例ともに、シリコン融液Mの半径外側方向に向かって単調に温度上昇しており、比較例の方が外周部の温度が高いので、シリコン融液Mの自由表面FSの対流はより安定するようにも思える。   Here, as shown in FIG. 2, the temperature of the meniscus portion P1, which is the contact point between the outermost periphery of the growing silicon single crystal C and the silicon melt M, is A (K), and the growing silicon single crystal C is the starting point. The distance to the radially outer side of the silicon melt M (specifically, starting from the meniscus portion P1) (P3 is a contact point between the free surface FS and the inner wall surface of the quartz crucible 21) is L (mm), the distance The relationship between the distance L and the temperature of the free surface B of the silicon melt was analyzed by Crys MAS when the temperature of the free surface FS of the silicon melt at the position P2 of L was B (K). The result is shown in FIG. According to the simulation result of FIG. 3, in both the example and the comparative example, the temperature rises monotonously toward the radially outward direction of the silicon melt M, and the temperature of the outer peripheral portion is higher in the comparative example. It seems that the convection of the free surface FS of the melt M is more stable.

しかしながら、図3に示す結果と表1に示す結果とを整合させるべく、本発明者らは、Gs(K/mm)=(B−A)/Lで定義されるシリコン融液Mの自由表面FS上の温度勾配Gsを演算したところ、図4に示す結果となった。すなわち、実施例は距離Lが大きくなるにしたがい温度勾配Gsが単調減少し、温度プロファイルは変曲点を示さない。これに対して、比較例は、図3では明らかではないが、図4に示すように、距離Lが大きくなると温度勾配Gsが一旦急激に減少したのち緩やかに上昇し、再び緩やかに減少する。すなわち、温度プロファイルは、メニスカス部P1の近傍において下に凸の極値を示す。このように定義された温度勾配Gsと距離Lとの関係のプロファイルを求めると、図3に示す温度と距離との関係のプロファイルでは見出せなかったシリコン融液Mの自由表面FSの対流の安定性が明確になった。すなわち、図4の実施例に示すように距離Lが大きくなるにしたがい温度勾配Gsが単調減少するということは、シリコン融液Mの自由表面FSの対流が安定しているものと推察される。したがって、引上げ速度が大きくばらつかない。これに対して、図4の比較例に示すように距離Lが大きくなるにしたがい温度勾配Gsのプロファイルが変曲点を示すということは、シリコン融液Mの自由表面FSの対流に停滞部分が生じているものと推察される。したがって、引上げ速度が大きくばらつく結果となる。   However, in order to match the results shown in FIG. 3 and the results shown in Table 1, the inventors have determined that the free surface of the silicon melt M defined by Gs (K / mm) = (BA) / L. When the temperature gradient Gs on FS was calculated, the result shown in FIG. 4 was obtained. That is, in the embodiment, as the distance L increases, the temperature gradient Gs monotonously decreases, and the temperature profile does not show an inflection point. On the other hand, the comparative example is not clear in FIG. 3, but as shown in FIG. 4, when the distance L increases, the temperature gradient Gs rapidly decreases and then increases gently and then decreases again. That is, the temperature profile shows a downwardly convex extreme value in the vicinity of the meniscus portion P1. When the profile of the relationship between the temperature gradient Gs and the distance L defined as described above is obtained, the convection stability of the free surface FS of the silicon melt M that cannot be found in the profile of the relationship between the temperature and the distance shown in FIG. Became clear. That is, as shown in the embodiment of FIG. 4, the monotonous decrease in the temperature gradient Gs as the distance L increases is presumed that the convection of the free surface FS of the silicon melt M is stable. Therefore, the pulling speed does not vary greatly. On the other hand, as shown in the comparative example of FIG. 4, the profile of the temperature gradient Gs indicates an inflection point as the distance L increases, which means that a stagnation portion exists in the convection of the free surface FS of the silicon melt M. It is presumed that it has occurred. Therefore, the pulling speed varies greatly.

以上のように、Gs(K/mm)=(B−A)/Lで定義されるシリコン融液の自由表面上の温度勾配Gsが、距離Lの増加に伴い単調減少となる製造条件、特にホットゾーンHZの条件を設定し、当該製造条件にてシリコン単結晶を育成すると、シリコン単結晶の引き上げ速度の制御性およびロバスト性を高めることができる。その結果、チョクラルスキー法(CZ法)によりGrown−in欠陥を存在させない無欠陥領域によるシリコン単結晶を比較的容易に製造することができる。   As described above, the manufacturing condition in which the temperature gradient Gs on the free surface of the silicon melt defined by Gs (K / mm) = (B−A) / L monotonously decreases as the distance L increases, particularly When the conditions of the hot zone HZ are set and the silicon single crystal is grown under the manufacturing conditions, the controllability and the robustness of the pulling rate of the silicon single crystal can be improved. As a result, a silicon single crystal having a defect-free region in which no grown-in defects exist can be manufactured relatively easily by the Czochralski method (CZ method).

なお、上述した実施形態の熱遮蔽部材27の下端の開口径D(直径又は半径)と、熱遮蔽部材27の下端とシリコン融液面FSとの距離Gaの設定条件は、ホットゾーンHZの熱特性の一例であって、この他にも少なくとも第1チャンバ11、石英製の坩堝21、黒鉛製の坩堝22、ヒータ25、熱遮蔽部材27及び保温筒26の形状、寸法、配置関係、材質及びこれらに起因する熱特性を適正値に設定することで、同様に、シリコン融液の自由表面上の温度勾配Gsが、距離Lの増加に伴い単調減少となる製造条件を得ることができる。具体的な方法としては、上述したCrysMASのシミュレーションソフトウェアを用い、電子計算機上でホットゾーンHZを構成する部品の形状、寸法、配置関係、材質を種々に変更すれば、温度勾配Gsが距離Lの増加に伴い単調減少となる条件を容易に得ることができる。   In addition, the setting condition of the opening diameter D (diameter or radius) of the lower end of the heat shielding member 27 and the distance Ga between the lower end of the heat shielding member 27 and the silicon melt surface FS of the embodiment described above is the heat of the hot zone HZ. In addition to this, the shape, dimensions, arrangement relationship, materials, and the like of at least the first chamber 11, the quartz crucible 21, the graphite crucible 22, the heater 25, the heat shielding member 27, and the heat insulating cylinder 26 are also included. Similarly, by setting the thermal characteristics resulting from these to appropriate values, it is possible to obtain a manufacturing condition in which the temperature gradient Gs on the free surface of the silicon melt decreases monotonically as the distance L increases. As a specific method, if the above-described CrysMAS simulation software is used and the shape, dimensions, arrangement relationship, and material of the components constituting the hot zone HZ are changed on the electronic computer in various ways, the temperature gradient Gs becomes the distance L. Conditions that monotonously decrease with increase can be easily obtained.

1…シリコン単結晶の製造装置
11…第1チャンバ
12…第2チャンバ
13…ガス導入口
14…ガス排出口
21…石英製の坩堝
22…黒鉛製の坩堝
23…支持軸
24…駆動機構
25…ヒータ
26…保温筒
27…熱遮蔽部材
28…ブラケット
31…ワイヤ
32…引上げ機構
41…磁場発生装置
M…シリコン融液
C…シリコン単結晶
S…種結晶
HZ…ホットゾーン
DESCRIPTION OF SYMBOLS 1 ... Manufacturing apparatus of a silicon single crystal 11 ... 1st chamber 12 ... 2nd chamber 13 ... Gas inlet 14 ... Gas outlet 21 ... Quartz crucible 22 ... Graphite crucible 23 ... Support shaft 24 ... Drive mechanism 25 ... Heater 26 ... Insulating cylinder 27 ... Heat shielding member 28 ... Bracket 31 ... Wire 32 ... Pulling mechanism 41 ... Magnetic field generator M ... Silicon melt C ... Silicon single crystal S ... Seed crystal HZ ... Hot zone

Claims (9)

チョクラルスキー法により坩堝に収容したシリコン融液からシリコン単結晶を育成するシリコン単結晶の製造方法において、
育成中のシリコン単結晶の最外周とシリコン融液との接点であるメニスカス部の温度をA(K)、前記育成中のシリコン単結晶の前記メニスカス部を起点とする前記シリコン融液の半径外側方向への距離をL(mm)、前記距離Lの位置における前記シリコン融液の自由表面の温度をB(K)とした場合に、Gs(K/mm)=(B−A)/Lで定義されるシリコン融液の自由表面上の温度勾配Gsが、前記距離Lの増加に伴い単調減少となる製造条件にて、前記シリコン単結晶を育成するシリコン単結晶の製造方法。
In the method for producing a silicon single crystal for growing a silicon single crystal from a silicon melt stored in a crucible by the Czochralski method,
The temperature of the meniscus portion that is the contact point between the outermost periphery of the growing silicon single crystal and the silicon melt is A (K), and the outer radius of the silicon melt starts from the meniscus portion of the growing silicon single crystal. When the distance in the direction is L (mm) and the temperature of the free surface of the silicon melt at the position of the distance L is B (K), Gs (K / mm) = (B−A) / L A method for producing a silicon single crystal, wherein the silicon single crystal is grown under a production condition in which a temperature gradient Gs on a free surface of a defined silicon melt decreases monotonously as the distance L increases.
前記距離Lに対する前記温度勾配Gsのプロファイルは、変曲点を示さない請求項1に記載のシリコン単結晶の製造方法。   The method for producing a silicon single crystal according to claim 1, wherein the profile of the temperature gradient Gs with respect to the distance L does not show an inflection point. チャンバと、
前記チャンバ内に設けられ、シリコン融液が収容される石英製の坩堝と、
前記石英製の坩堝の外周面を保護する黒鉛製の坩堝と、
前記チャンバ内の前記坩堝の周囲に設けられたヒータと、
前記チャンバ内の前記坩堝の上部に設けられ、育成中のシリコン単結晶を覆う筒状の熱遮蔽部材と、
前記チャンバ内の前記ヒータの周囲に設けられた保温筒と、を備え、
チョクラルスキー法により坩堝に収容したシリコン融液からシリコン単結晶を育成するシリコン単結晶の製造装置において、
育成中のシリコン単結晶の最外周とシリコン融液との接点であるメニスカス部の温度をA(K)、前記育成中のシリコン単結晶の前記メニスカス部を起点とする前記シリコン融液の半径外側方向への距離をL(mm)、前記距離Lの位置における前記シリコン融液の自由表面の温度をB(K)とした場合に、Gs(K/mm)=(B−A)/Lで定義されるシリコン融液の自由表面上の温度勾配Gsが、前記距離Lの増加に伴い単調減少となる特性を備えるシリコン単結晶の製造装置。
A chamber;
A quartz crucible provided in the chamber and containing a silicon melt;
A graphite crucible protecting the outer peripheral surface of the quartz crucible;
A heater provided around the crucible in the chamber;
A cylindrical heat shield member provided on the crucible in the chamber and covering the growing silicon single crystal;
A heat insulating cylinder provided around the heater in the chamber,
In a silicon single crystal production apparatus for growing a silicon single crystal from a silicon melt contained in a crucible by the Czochralski method,
The temperature of the meniscus portion that is the contact point between the outermost periphery of the growing silicon single crystal and the silicon melt is A (K), and the outer radius of the silicon melt starts from the meniscus portion of the growing silicon single crystal. When the distance in the direction is L (mm) and the temperature of the free surface of the silicon melt at the position of the distance L is B (K), Gs (K / mm) = (B−A) / L An apparatus for producing a silicon single crystal having a characteristic that a temperature gradient Gs on a free surface of a defined silicon melt monotonously decreases as the distance L increases.
前記温度勾配Gsが前記距離Lの増加に伴い単調減少となるように、少なくとも前記チャンバ、前記石英製の坩堝、前記黒鉛製の坩堝、前記ヒータ、前記熱遮蔽部材及び前記保温筒の形状、寸法、配置関係、材質及びこれらに起因する熱特性が設定されている請求項3に記載のシリコン単結晶の製造装置。   Shapes and dimensions of at least the chamber, the quartz crucible, the graphite crucible, the heater, the heat shielding member, and the heat retaining cylinder so that the temperature gradient Gs monotonously decreases as the distance L increases. 4. The apparatus for producing a silicon single crystal according to claim 3, wherein the arrangement relationship, the material, and the thermal characteristics resulting therefrom are set. 前記温度勾配Gsが前記距離Lの増加に伴い単調減少となるように、前記熱遮蔽部材の下端の開口径と、前記熱遮蔽部材の下端とシリコン融液面との距離が設定されている請求項3又は4に記載のシリコン単結晶の製造装置。   The opening diameter of the lower end of the heat shielding member and the distance between the lower end of the heat shielding member and the silicon melt surface are set so that the temperature gradient Gs monotonously decreases as the distance L increases. Item 5. The apparatus for producing a silicon single crystal according to Item 3 or 4. 電子計算機を用いて、チョクラルスキー法によるシリコン単結晶の製造方法における引上げ速度の制御性又はロバスト性を評価する方法において、
育成中のシリコン単結晶の最外周とシリコン融液との接点であるメニスカス部の温度をA(K)、前記育成中のシリコン単結晶の前記メニスカス部を起点とする前記シリコン融液の半径外側方向への距離をL(mm)、前記距離Lの位置における前記シリコン融液の自由表面の温度をB(K)とした場合に、Gs(K/mm)=(B−A)/Lで定義されるシリコン融液の自由表面上の温度勾配Gsが、前記距離Lの増加に伴い単調減少となるか否かを判定し、単調減少である場合は、前記引上げ速度の制御性又はロバスト性が良いと評価する方法。
In a method for evaluating the controllability or robustness of the pulling rate in the method for producing a silicon single crystal by the Czochralski method using an electronic computer,
The temperature of the meniscus portion that is the contact point between the outermost periphery of the growing silicon single crystal and the silicon melt is A (K), and the outer radius of the silicon melt starts from the meniscus portion of the growing silicon single crystal. When the distance in the direction is L (mm) and the temperature of the free surface of the silicon melt at the position of the distance L is B (K), Gs (K / mm) = (B−A) / L It is determined whether or not the temperature gradient Gs on the free surface of the defined silicon melt decreases monotonously as the distance L increases. If the temperature gradient Gs decreases monotonously, the pulling speed controllability or robustness is determined. How to evaluate that is good.
請求項6に記載の評価する方法により、前記引上げ速度の制御性又はロバスト性が良いと評価されたシリコン単結晶の製造装置。   An apparatus for producing a silicon single crystal, which has been evaluated by the evaluation method according to claim 6 as having good controllability or robustness of the pulling rate. 請求項7に記載のシリコン単結晶の製造装置を用いてシリコン単結晶を製造する方法。   A method for producing a silicon single crystal using the silicon single crystal production apparatus according to claim 7. チャンバと、
前記チャンバ内に設けられ、シリコン融液が収容される石英製の坩堝と、
前記石英製の坩堝の外周面を保護する黒鉛製の坩堝と、
前記チャンバ内の前記坩堝の周囲に設けられたヒータと、
前記チャンバ内の前記坩堝の上部に設けられ、育成中のシリコン単結晶を覆う筒状の熱遮蔽部材と、
前記チャンバ内の前記ヒータの周囲に設けられた保温筒と、を備え、
チョクラルスキー法によるシリコン単結晶製造装置のホットゾーンの、電子計算機上の設計方法において、
育成中のシリコン単結晶の最外周とシリコン融液との接点であるメニスカス部の温度をA(K)、前記育成中のシリコン単結晶の前記メニスカス部を起点とする前記シリコン融液の半径外側方向への距離をL(mm)、前記距離Lの位置における前記シリコン融液の自由表面の温度をB(K)とした場合に、Gs(K/mm)=(B−A)/Lで定義されるシリコン融液の自由表面上の温度勾配Gsが、前記距離Lの増加に伴い単調減少となるように、前記ホットゾーンを構成する少なくとも一の部材の形状、寸法、配置関係、材質及びこれらに起因する熱特性を設計するシリコン単結晶製造装置のホットゾーンの設計方法。
A chamber;
A quartz crucible provided in the chamber and containing a silicon melt;
A graphite crucible protecting the outer peripheral surface of the quartz crucible;
A heater provided around the crucible in the chamber;
A cylindrical heat shield member provided on the crucible in the chamber and covering the growing silicon single crystal;
A heat insulating cylinder provided around the heater in the chamber,
In the design method on the electronic computer of the hot zone of the silicon single crystal manufacturing equipment by the Czochralski method,
The temperature of the meniscus portion that is the contact point between the outermost periphery of the growing silicon single crystal and the silicon melt is A (K), and the outer radius of the silicon melt starts from the meniscus portion of the growing silicon single crystal. When the distance in the direction is L (mm) and the temperature of the free surface of the silicon melt at the position of the distance L is B (K), Gs (K / mm) = (B−A) / L The shape, size, arrangement relationship, material, and material of at least one member constituting the hot zone so that the temperature gradient Gs on the free surface of the defined silicon melt decreases monotonously as the distance L increases. A method for designing a hot zone of a silicon single crystal manufacturing apparatus for designing thermal characteristics resulting from these.
JP2016179269A 2016-09-14 2016-09-14 Method and apparatus for producing silicon single crystal Active JP6583196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016179269A JP6583196B2 (en) 2016-09-14 2016-09-14 Method and apparatus for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016179269A JP6583196B2 (en) 2016-09-14 2016-09-14 Method and apparatus for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2018043901A true JP2018043901A (en) 2018-03-22
JP6583196B2 JP6583196B2 (en) 2019-10-02

Family

ID=61694260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016179269A Active JP6583196B2 (en) 2016-09-14 2016-09-14 Method and apparatus for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP6583196B2 (en)

Also Published As

Publication number Publication date
JP6583196B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
CN109196144B (en) Method and apparatus for manufacturing silicon single crystal
WO2020039553A1 (en) Method for growing silicon single crystal
CN108779577B (en) Method for producing silicon single crystal
JP2018177560A (en) Heat-shielding member, single crystal pulling apparatus and method for manufacturing single crystal silicon ingot
JP2015205793A (en) Method for drawing up single crystal
TWI635199B (en) Manufacturing method of single crystal silicon
US20120279438A1 (en) Methods for producing single crystal silicon ingots with reduced incidence of dislocations
KR101942322B1 (en) An apparatus for growing a crystal ingot and a method for growing a crystal ingot using the same
JP2009057270A (en) Method of raising silicon single crystal
JP6863506B2 (en) Method for manufacturing silicon single crystal
CN105765114A (en) Method for growing silicon single crystal
EP2045371B1 (en) Method and apparatus for manufacturing an ultra low defect semiconductor single crystalline ingot
JP6583196B2 (en) Method and apparatus for producing silicon single crystal
JP2019210199A (en) Manufacturing method of silicon single crystal
JP6597857B1 (en) Heat shielding member, single crystal pulling apparatus and single crystal manufacturing method
JP7066857B2 (en) Silicon single crystal growth method and equipment
US8691013B2 (en) Feed tool for shielding a portion of a crystal puller
JP6729484B2 (en) Method for producing silicon single crystal
JP2009292684A (en) Silicon single crystal production method and production apparatus therefore
JP6597537B2 (en) Single crystal manufacturing crucible and silicon single crystal manufacturing equipment
JP6809400B2 (en) Method for manufacturing silicon single crystal
JP6759147B2 (en) Method for manufacturing silicon single crystal
JP2018043904A (en) Method for manufacturing silicon single crystal
JP6777739B2 (en) Single crystal ingot growth device
JP6992488B2 (en) Crucible for growing single crystals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190819

R150 Certificate of patent or registration of utility model

Ref document number: 6583196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250