JPH08310893A - Method for growing single crystal and apparatus therefor - Google Patents

Method for growing single crystal and apparatus therefor

Info

Publication number
JPH08310893A
JPH08310893A JP4585296A JP4585296A JPH08310893A JP H08310893 A JPH08310893 A JP H08310893A JP 4585296 A JP4585296 A JP 4585296A JP 4585296 A JP4585296 A JP 4585296A JP H08310893 A JPH08310893 A JP H08310893A
Authority
JP
Japan
Prior art keywords
crystal
cylindrical body
growing
single crystal
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4585296A
Other languages
Japanese (ja)
Other versions
JP3870437B2 (en
Inventor
Katsushi Hashio
克司 橋尾
Shinichi Sawada
真一 澤田
Masami Tatsumi
雅美 龍見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP04585296A priority Critical patent/JP3870437B2/en
Priority to EP96301808A priority patent/EP0732427B1/en
Priority to US08/616,350 priority patent/US5733371A/en
Priority to DE69619005T priority patent/DE69619005T2/en
Priority to KR1019960007094A priority patent/KR100417606B1/en
Publication of JPH08310893A publication Critical patent/JPH08310893A/en
Priority to US08/937,889 priority patent/US5951758A/en
Application granted granted Critical
Publication of JP3870437B2 publication Critical patent/JP3870437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE: To prevent polycrystallization, to improve the controllability of a diameter and to obtain a single crystal having decreased defects by immersing the front end of a cylindrical body of a bore larger than the target diameter of a grown crystal into a melt and adjusting the numbers of revolutions of a crucible, crystal and cylindrical body. CONSTITUTION: The cylindrical body is arranged around the grown crystal as shown in Fig. at the time of executing the crystal growth by pulling up the crystal from the raw material melt by a Czochralski method or liquid sealing Czochralski method. The bottom end of this cylindrical body is immersed into the raw material melt, by which the natural convection near the melt surface is shut off. In addition, the flow of the high-temp. melt is expanded up to the outer side of the grown crystal by the force convection generated by the cylindrical body and the local temp. rise in the peripheral part of the solid-liquid boundary is prevented, by which the recessing of the boundary is prevented. The cylindrical body is formed to the bore larger by 5 to 20mm than the target diameter in the straight barrel part of the grown crystal. A liquid sealant is housed onto the raw material melt and the wall of the raw material melt of a high temp. having high thermal conductivity is formed upper than the solid-liquid boundary on the outer side of the cylindrical body, by which the temp. stability near the boundary is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チョクラルスキー法又
は液体封止チョクラルスキー法により、酸化物単結晶、
化合物半導体単結晶等を成長する方法及びその装置に関
する。
BACKGROUND OF THE INVENTION The present invention relates to an oxide single crystal by the Czochralski method or the liquid-encapsulated Czochralski method.
The present invention relates to a method and an apparatus for growing a compound semiconductor single crystal or the like.

【0002】[0002]

【従来の技術】一般にGaAs等の単結晶バルクは、チ
ョクラルスキー法(CZ法)や液体封止チョクラルスキ
ー法(LEC法)で成長するが、成長中に部分的に多結
晶が発生するという問題があった。図7は、従来のLE
C法を実施する装置の概念図である。この装置は、高圧
チャンバ1の中央に、サセプタ4付設のるつぼ5を下軸
3で支持し、るつぼ5には原料融液6と液体封止剤7が
収容されており、上軸2に保持された種結晶8を原料融
液6に浸漬して単結晶9を引き上げるものである。な
お、原料融液6の周囲にはヒータ10が、単結晶9の周
囲にはヒータ11が配置されており、高圧チャンバ1の
内側には保温材12が配置されている。
2. Description of the Related Art Generally, a single crystal bulk of GaAs or the like grows by the Czochralski method (CZ method) or the liquid-encapsulated Czochralski method (LEC method), but polycrystals are partially generated during the growth. There was a problem. FIG. 7 shows a conventional LE.
It is a conceptual diagram of the apparatus which implements C method. In this device, a crucible 5 provided with a susceptor 4 is supported by a lower shaft 3 in the center of a high-pressure chamber 1, a raw material melt 6 and a liquid sealant 7 are contained in the crucible 5, and the crucible 5 is held by an upper shaft 2. The seed crystal 8 thus obtained is immersed in the raw material melt 6 to pull up the single crystal 9. A heater 10 is arranged around the raw material melt 6, a heater 11 is arranged around the single crystal 9, and a heat insulating material 12 is arranged inside the high-pressure chamber 1.

【0003】上記多結晶化の原因は、図8に示すよう
に、成長結晶と原料融液との固液界面の形状が成長結晶
の周辺部で凹化し、固液界面に垂直に伝播してきた転位
が周辺部に集積して多結晶化すると考えられる。したが
って、この種の多結晶化を防止するためには、成長結晶
の固液界面周辺部の凹化を防止する必要がある。
The cause of the above polycrystallization is that the shape of the solid-liquid interface between the growing crystal and the raw material melt is dented in the peripheral portion of the growing crystal and propagates perpendicularly to the solid-liquid interface, as shown in FIG. It is considered that dislocations accumulate in the peripheral portion and become polycrystalline. Therefore, in order to prevent this kind of polycrystallization, it is necessary to prevent depression of the solid-liquid interface peripheral portion of the grown crystal.

【0004】LEC法で固液界面の凹化を防ぐ方法とし
て、固液界面付近に設置したヒータのパワーをできるだ
け増加して成長結晶側面を局所加熱し、結晶から側方へ
の熱の放散を抑える方法が提案されている[HITACHI CAB
LE REVIEW No.9 (1990)55]。
As a method for preventing depression of the solid-liquid interface by the LEC method, the power of the heater installed near the solid-liquid interface is increased as much as possible to locally heat the side surface of the grown crystal to dissipate heat from the crystal to the side. A method to suppress it has been proposed [HITACHI CAB
LE REVIEW No. 9 (1990) 55].

【0005】[0005]

【発明が解決しようとする課題】しかし、上記の方法で
は次のような問題がある。 結晶側面を局所加熱するためには、ヒータ長さをある
程度短くして大きなパワーをかける必要があり、その結
果、ヒータに流れる電流密度が非常に大きくなり、ヒー
タ寿命が非常に短くなる。
However, the above method has the following problems. In order to locally heat the side surface of the crystal, it is necessary to shorten the heater length to some extent and apply a large amount of power. As a result, the current density flowing through the heater becomes very large, and the life of the heater becomes very short.

【0006】ヒータの加熱はカーボンなどで作られた
るつぼ支持用のサセプタを通して行うため、サセプタの
熱伝導により上下方向に均熱化される。それ故、本質的
には局所加熱をすることはできない。また、液体封止剤
のB2 3 はほとんど輻射熱を通さないので、最も重要
な成長界面付近を有効に加熱できない。
Since the heater is heated through the susceptor for supporting the crucible, which is made of carbon or the like, the heat is conducted in the susceptor so that the heat is uniformly distributed in the vertical direction. Therefore, essentially no local heating is possible. Further, since the liquid sealant B 2 O 3 hardly transmits radiant heat, it is impossible to effectively heat the vicinity of the most important growth interface.

【0007】結晶の周辺部だけでなく、結晶側面全体
を加熱することになるので、全体的に側方への放熱が抑
制され、固液界面は全体的に融液側に大きく凸化するこ
とになるので、成長した結晶に大きな残留歪みが残った
り、その結晶から切り出したウエハの特性は面内の均一
性が悪くなる。
Since not only the peripheral portion of the crystal but also the entire side surface of the crystal is heated, heat radiation to the side is suppressed as a whole, and the solid-liquid interface is largely convex toward the melt side. Therefore, large residual strain remains in the grown crystal, and the in-plane uniformity of the characteristics of the wafer cut from the crystal deteriorates.

【0008】チョクラルスキー法や液体封止チョクラ
ルスキー法において、成長結晶の直径の制御性は原料融
液の表面の温度分布に大きく依存するが、従来法では前
記温度分布を再現性よく安定に保持することは難しく、
特に、単結晶の生産性を高めるために、一度に多量の原
料を用い、直径の大きなるつぼを使用すると、成長結晶
とるつぼ壁の間が離れるにともない、直径制御はさらに
難しくなる。
In the Czochralski method and the liquid-encapsulated Czochralski method, the controllability of the diameter of the grown crystal largely depends on the temperature distribution on the surface of the raw material melt, but in the conventional method, the temperature distribution is stable with good reproducibility. Difficult to hold in
In particular, when a large amount of raw material is used at one time and a crucible having a large diameter is used in order to increase the productivity of a single crystal, the diameter control becomes more difficult as the distance between the growing crystal and the crucible wall increases.

【0009】揮発性元素を含む単結晶の成長には、通
常液体封止チョクラルスキー法が用いられるが、液体封
止剤から引き上げられた成長結晶はその表面から揮発性
元素が蒸発して結晶が損傷するという問題があるため、
液体封止剤の表面温度を余り高くすることができなかっ
た。その結果、成長軸方向の温度勾配を余り小さくする
ことができず(GaAs単結晶の成長における温度勾配
は通常100℃/cm程度)、成長結晶に大きな熱応力
が発生するため、結晶欠陥(転位)が多く、残留歪の高
い結晶しか得られなかった。
The liquid-encapsulated Czochralski method is usually used to grow a single crystal containing a volatile element. However, a grown crystal pulled from a liquid encapsulant is crystallized by evaporation of the volatile element from its surface. Has the problem of being damaged,
The surface temperature of the liquid sealant could not be raised so high. As a result, the temperature gradient in the growth axis direction cannot be made too small (the temperature gradient in the growth of a GaAs single crystal is usually about 100 ° C./cm), and large thermal stress is generated in the grown crystal, resulting in crystal defects (dislocations). ), And only crystals with a high residual strain were obtained.

【0010】そこで、液体封止チョクラルスキー法を
小さな温度勾配の下で実施するために、多量の液体封止
剤を使用して成長結晶の大部分を液体封止剤で覆った状
態で成長することが試みられた(FEC法:Fully Enca
psulated Cz 法)が、液体封止剤のB2 3 は非常に熱
伝導率が小さいため、原料融液表面の温度の応答性が悪
くなり、その結果、結晶直径の制御が極端に難しくな
り、実用的な成長法といえるものではなかった。
Therefore, in order to carry out the liquid-encapsulated Czochralski method under a small temperature gradient, a large amount of the liquid encapsulant is used to grow most of the grown crystals covered with the liquid encapsulant. It was tried to do (FEC method: Fully Enca
However, since the liquid sealant B 2 O 3 has a very low thermal conductivity, the temperature response of the raw material melt surface deteriorates, and as a result, it becomes extremely difficult to control the crystal diameter. It was not a practical growth method.

【0011】そこで、本発明は、上記の問題点を解消
し、固液界面の局所加熱によらずに、成長結晶の固液界
面周辺部の凹化を抑制して多結晶化を防止し、直径の大
きなるつぼを使用しても直径の制御性が優れ、結晶欠陥
の少ない単結晶の成長方法及びその装置を提供しようと
するものである。
In view of the above, the present invention solves the above-mentioned problems and suppresses the depression of the solid-liquid interface peripheral portion of the growing crystal to prevent polycrystallization, without relying on local heating of the solid-liquid interface. It is an object of the present invention to provide a method for growing a single crystal having excellent controllability of diameter even if a crucible having a large diameter is used and having few crystal defects, and an apparatus therefor.

【0012】[0012]

【課題を解決するための手段】本発明は、以下の構成を
採用することにより、上記の課題の解決に成功した。 (1) チョクラルスキー法で原料融液から結晶を引き上げ
る単結晶の成長方法において、成長結晶の直胴部の目標
直径より大きな内径を有する円筒体の先端を原料融液中
に浸漬し、原料融液を収容するるつぼ、成長結晶及び前
記円筒体のいずれか1つ以上の回転数を調節することに
より、固液界面形状の凹化を防止しながら結晶を引き上
げることを特徴とする単結晶の成長方法。
The present invention has succeeded in solving the above problems by adopting the following constitution. (1) In the single crystal growth method of pulling a crystal from a raw material melt by the Czochralski method, the tip of a cylindrical body having an inner diameter larger than the target diameter of the straight body of the growing crystal is immersed in the raw material melt, A single crystal characterized by pulling the crystal while preventing depression of the solid-liquid interface shape by adjusting the rotational speed of at least one of the crucible containing the melt, the growing crystal and the cylindrical body. How to grow.

【0013】(2) 液体封止チョクラルスキー法で原料融
液から結晶を引き上げる単結晶の成長方法において、成
長結晶の直胴部の目標直径より大きな内径を有する円筒
体の先端を原料融液中に浸漬し、原料融液を収容するる
つぼ、成長結晶及び前記円筒体のいずれか1つ以上の回
転数を調節することにより、固液界面形状の凹化を防止
しながら結晶を引き上げ、前記円筒体内の液体封止剤で
引上結晶を保温することを特徴とする単結晶の成長方
法。
(2) In the method of growing a single crystal in which a crystal is pulled from a raw material melt by the liquid-encapsulated Czochralski method, the tip of a cylindrical body having an inner diameter larger than the target diameter of the straight body portion of the growing crystal is placed in the raw material melt. By immersing the crystal in a crucible for containing the raw material melt, adjusting the number of revolutions of any one or more of the growing crystal and the cylindrical body, the crystal is pulled up while preventing the depression of the solid-liquid interface shape, A method for growing a single crystal, which comprises retaining the temperature of a pulled crystal with a liquid sealant in a cylinder.

【0014】(3) 前記円筒体の内径が成長結晶の直胴部
の目標直径より5〜20mm大きなものを用いる上記
(1) 又は(2) 記載の単結晶の成長方法。
(3) Use of the cylindrical body having an inner diameter larger than the target diameter of the straight body portion of the growing crystal by 5 to 20 mm.
The method for growing a single crystal according to (1) or (2).

【0015】(4) 上記(1) 又は(2) 記載の円筒体の代わ
りに、成長結晶の晶癖と同じ断面形状の筒体を、また、
成長軸に垂直でない方向にウエハを切り出すための結晶
成長においては断面楕円形の筒体を使用することを特徴
とする単結晶の成長方法。
(4) Instead of the cylindrical body described in (1) or (2) above, a cylindrical body having the same cross-sectional shape as the crystal habit of the growing crystal,
A method for growing a single crystal, characterized in that a cylinder having an elliptical cross section is used in crystal growth for cutting a wafer in a direction not perpendicular to the growth axis.

【0016】(5) 前記円筒体は、その下端を僅かに内側
に曲げ、前記円筒体外側の自然対流の内側への回り込み
を防止することを特徴とする上記(1) 〜(4) のいずれか
1つに記載の単結晶の成長装置。
(5) Any one of the above (1) to (4), characterized in that the lower end of the cylindrical body is bent slightly inward to prevent natural convection on the outside of the cylindrical body from wrapping around. 2. A single crystal growth apparatus according to any one of the above.

【0017】(6) 前記円筒体を加熱することを特徴とす
る上記(1) 〜(5) のいずれか1つに記載の単結晶の成長
方法。
(6) The method for growing a single crystal according to any one of the above (1) to (5), characterized in that the cylindrical body is heated.

【0018】(7) 前記円筒体の上端を閉じ、成長結晶を
構成する揮発性元素の蒸気圧を前記円筒体内に印加する
ことを特徴とする上記(1) 〜(6) のいずれか1つに記載
の単結晶の成長方法。
(7) One of the above (1) to (6), characterized in that the upper end of the cylinder is closed and the vapor pressure of the volatile element constituting the grown crystal is applied to the cylinder. The method for growing a single crystal according to.

【0019】(8) 前記円筒体と上軸の相対回転数を調整
して成長結晶の直径を制御することを特徴とする上記
(1) 〜(7) のいずれか1つに記載の単結晶の成長方法。
(8) The diameter of the grown crystal is controlled by adjusting the relative rotational speed between the cylindrical body and the upper shaft.
The method for growing a single crystal according to any one of (1) to (7).

【0020】(9) チョクラルスキー法又は液体封止チョ
クラルスキー法で原料融液から結晶を引き上げる単結晶
の成長装置において、成長結晶の直胴部の目標直径より
大きな内径を有する円筒体をその先端が原料融液中に浸
漬するように支持し、原料融液を収容するるつぼを下軸
で回転昇降可能に支持し、上軸の下端に種結晶を回転昇
降可能に支持し、前記形状の変化に対応して上下の軸の
回転数及び昇降速度を調節する手段を設けたことを特徴
とする単結晶の成長装置。
(9) In a single crystal growth apparatus for pulling a crystal from a raw material melt by the Czochralski method or the liquid sealed Czochralski method, a cylindrical body having an inner diameter larger than the target diameter of the straight body of the grown crystal is used. The tip is supported so as to be immersed in the raw material melt, the crucible containing the raw material melt is supported by a lower shaft so that the crucible can be raised and lowered, and the seed crystal is supported by the lower end of the upper shaft so that the seed crystal can be raised and lowered. A single crystal growth apparatus comprising means for adjusting the number of rotations of the upper and lower shafts and the ascending / descending speed in response to changes in

【0021】(10)上記(9) 記載の円筒体の代わりに、成
長結晶の晶癖と同じ断面形状の筒体、又は、成長軸に垂
直でない方向にウエハを切り出すための結晶の成長では
断面楕円形の筒体を使用したことを特徴とする単結晶の
成長装置。
(10) Instead of the cylindrical body described in (9) above, a cylindrical body having the same cross-sectional shape as the crystal habit of the growing crystal, or a cross-section for crystal growth for cutting a wafer in a direction not perpendicular to the growth axis is used. An apparatus for growing a single crystal characterized by using an elliptic cylinder.

【0022】(11)前記筒体は、前記筒体の外側の自然対
流が内側に回り込むことを防止するために、その下端を
僅かに内側に曲げたことを特徴とする上記(9) 又は(10)
記載の単結晶の成長装置。
(11) The cylindrical body has a lower end bent slightly inward to prevent natural convection on the outside of the cylindrical body from coming inward. Ten)
A single crystal growth apparatus as described.

【0023】(12)前記筒体の加熱手段を付設したするこ
とを特徴とする上記(9) 〜(11)のいずれか1つに記載の
単結晶の成長装置。
(12) The apparatus for growing a single crystal according to any one of the above (9) to (11), characterized in that a heating means for the cylindrical body is additionally provided.

【0024】(13)前記筒体として上端を閉じた筒体を用
い、成長結晶を構成する揮発性元素を収容したリザーバ
を設け、前記リザーバを前記筒体と通気可能に接続し前
記リザーバのヒータ出力を調節して筒体内の前記揮発性
元素の蒸気圧を調整可能としたことを特徴とする上記
(9) 〜(12)のいずれか1つに記載の単結晶の成長装置。
(13) A heater having a closed upper end is used as the tubular body, a reservoir containing a volatile element constituting a growing crystal is provided, and the reservoir is connected to the tubular body so as to be ventilated. The vapor pressure of the volatile element in the cylinder can be adjusted by adjusting the output.
(9) The single crystal growth apparatus as described in any one of (12).

【0025】(14)前記筒体を引上軸と一体的に回転可能
に支持したことを特徴とする上記(9) 〜(13)のいずれか
1つに記載の単結晶の成長装置。
(14) The apparatus for growing a single crystal according to any one of the above (9) to (13), wherein the cylindrical body is rotatably supported integrally with a pulling shaft.

【0026】(15)前記筒体が原料融液に浮上して前記の
浸漬条件を保持するように、前記筒体の重さ及び形状を
調製したことを特徴とする上記(9) 〜(13)のいずれか1
つに記載の単結晶の成長装置。
(15) The weight and shape of the tubular body are adjusted so that the tubular body floats above the raw material melt and maintains the above-mentioned immersion conditions. ) Any one
A single crystal growth apparatus described in 1.

【0027】(16)前記筒体を、前記上下軸と独立して回
転可能に支持したことを特徴とする上記(9) 〜(13)のい
ずれか1つに記載の単結晶の成長装置。
(16) The apparatus for growing a single crystal according to any one of the above (9) to (13), wherein the cylindrical body is rotatably supported independently of the vertical axis.

【0028】(17)前記筒体を成長装置の不動部分に固定
したことを特徴とする上記(9) 〜(13)のいずれか1つに
記載の単結晶の成長装置。
(17) The apparatus for growing a single crystal according to any one of the above (9) to (13), characterized in that the cylindrical body is fixed to a stationary portion of the growth apparatus.

【0029】[0029]

【発明の実施の態様】本発明者は、チョクラルスキー法
や液体封止チョクラルスキー法で単結晶を成長するとき
の原料融液の自然対流を調べたところ、図4の矢印のよ
うに、るつぼ側壁付近で上昇してから成長結晶に向かっ
て流れる自然対流と、結晶の回転により固液界面付近で
渦巻く強制対流が発生することが分かった。これらの対
流により、固液界面の外周部付近の融液温度が高くな
り、固液界面周辺部が凹化するものと思われる。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventor investigated natural convection of a raw material melt when a single crystal was grown by the Czochralski method or the liquid sealed Czochralski method. , It was found that natural convection that rises near the side wall of the crucible and then flows toward the growing crystal and forced convection that swirls near the solid-liquid interface due to the rotation of the crystal. It is considered that due to these convections, the melt temperature in the vicinity of the outer periphery of the solid-liquid interface becomes high and the peripheral portion of the solid-liquid interface becomes concave.

【0030】本発明において、円筒体を原料融液に浸漬
して結晶成長を行うときに、成長結晶の直径が円筒体の
内径に近づくと、メニスカスが円筒体から力を受けるた
め、成長結晶の直径の変動を抑制する効果が期待でき
る。ただし、前記力は、円筒体及び成長結晶の相対的な
回転数により変化するため、上記の効果を最適にするよ
うに、円筒体及び/又は成長結晶の回転数を調整するこ
とが望ましい。
In the present invention, when a cylindrical body is immersed in a raw material melt for crystal growth, if the diameter of the growing crystal approaches the inner diameter of the cylindrical body, the meniscus receives a force from the cylindrical body. The effect of suppressing fluctuations in diameter can be expected. However, since the force changes depending on the relative rotation speed of the cylinder and the grown crystal, it is desirable to adjust the rotation speed of the cylinder and / or the grown crystal so as to optimize the above effect.

【0031】そこで、本発明では、図1のように、成長
結晶の周囲に円筒体を配置し、その下端を原料融液に浸
漬することにより、原料融液表面に近い自然対流を遮断
し、かつ、円筒体による強制対流で成長結晶の外側まで
高温の融液の流れを拡大することができるため、固液界
面の周辺部における局所的な温度上昇を防ぐことがで
き、固液界面の凹化を防止することに成功した。また、
一般に大きな直径のるつぼを用いると、成長結晶の直径
制御が難しくなるが、本発明の方法では大きな直径のる
つぼを使用しても直径制御が可能となり、結晶成長の生
産性を向上させることができるようになった。なお、円
筒体は、成長結晶の直胴部の目標直径より5〜20m
m、好ましくは5〜10mm大きな内径を有する円筒体
を用いることが好ましい。
Therefore, in the present invention, as shown in FIG. 1, by arranging a cylindrical body around the grown crystal and immersing the lower end in the raw material melt, natural convection near the surface of the raw material melt is blocked, Moreover, since the flow of the high-temperature melt can be expanded to the outside of the growing crystal by the forced convection by the cylindrical body, it is possible to prevent the local temperature rise in the peripheral portion of the solid-liquid interface, and the concave portion of the solid-liquid interface can be prevented. Succeeded in preventing this. Also,
Generally, when a crucible having a large diameter is used, it becomes difficult to control the diameter of the grown crystal, but in the method of the present invention, the diameter can be controlled even when the crucible having a large diameter is used, and the productivity of crystal growth can be improved. It became so. In addition, the cylindrical body is 5 to 20 m from the target diameter of the straight body part of the growing crystal.
It is preferable to use a cylindrical body having a large inner diameter of m, preferably 5 to 10 mm.

【0032】また、本発明では、図2のように、原料融
液の上に液体封止剤を収容し、図1と同様の円筒体を原
料融液にまで浸漬し、上軸に取り付けた種結晶を原料融
液に浸して結晶を成長させて直胴部まで引き上げると、
図2のように、円筒体内の液体封止剤の厚みは、引き上
げ当初より相当に厚くなるが、外側の液体封止剤の厚み
は変化しないので、円筒体内外で液体封止剤の厚みに大
きな差ができ、円筒体内外の圧力差により、円筒体外の
原料融液表面が内部よりも高くなる。その結果、円筒体
の外側において固液界面より上方に高熱伝導率の高温の
原料融液の壁が形成され、固液界面付近の温度安定性を
向上させることができた。
Further, in the present invention, as shown in FIG. 2, the liquid sealant is contained on the raw material melt, and a cylindrical body similar to that shown in FIG. 1 is immersed in the raw material melt and attached to the upper shaft. When the seed crystal is immersed in the raw material melt to grow the crystal and pull up to the straight body part,
As shown in FIG. 2, the thickness of the liquid sealant inside the cylinder is considerably thicker than when it was pulled up, but the thickness of the liquid sealant outside does not change. There is a large difference, and the surface of the raw material melt outside the cylinder is higher than inside due to the pressure difference inside and outside the cylinder. As a result, a wall of the high temperature raw material melt having a high thermal conductivity was formed above the solid-liquid interface on the outside of the cylinder, and the temperature stability near the solid-liquid interface could be improved.

【0033】そして、本発明では、、直胴部を引き上げ
るときに、るつぼの直径と関係なく、円筒体の内側の液
体封止剤の厚みを相当に厚くできるので、前記FEC法
と同様に、成長結晶表面からの揮発性元素の蒸発を防止
することができる。その結果、固液界面付近の温度勾配
を緩やかにすることができ、結晶中の熱歪みを大幅に低
下できる。そして、このような状態においても、本発明
の方法では前記のように成長結晶の直径制御が容易のた
め、結晶性の優れた単結晶を歩留り良く製造することが
可能になった。
Further, in the present invention, when the straight body part is pulled up, the thickness of the liquid sealant inside the cylindrical body can be considerably increased irrespective of the diameter of the crucible. It is possible to prevent evaporation of volatile elements from the surface of the grown crystal. As a result, the temperature gradient near the solid-liquid interface can be made gentle, and the thermal strain in the crystal can be significantly reduced. Even in such a state, since the diameter of the grown crystal can be easily controlled by the method of the present invention as described above, a single crystal having excellent crystallinity can be manufactured with high yield.

【0034】また、円筒体を加熱するときには、円筒体
内の液体封止剤及び/又は引上結晶の保温が促進され、
固液界面の温度勾配を緩やかにすることができるので、
上記と同様の効果を期待することができる。さらに、円
筒体の下端を内側に僅かに曲げるときには、自然対流の
円筒体内への回り込みを防止することができ、自然対流
の遮断効果が大きい。
When the cylindrical body is heated, the heat retention of the liquid sealant and / or the pulled crystal in the cylindrical body is promoted,
Since the temperature gradient at the solid-liquid interface can be made gentle,
The same effect as above can be expected. Furthermore, when the lower end of the cylinder is slightly bent inward, natural convection can be prevented from entering the cylinder, and the effect of blocking natural convection is great.

【0035】他方、上端を閉じた円筒体を用い、成長結
晶を構成する揮発性元素を収容するためのリザーバと通
気可能に接続し、前記リザーバの周囲に配置したヒータ
の出力を調節することにより、前記円筒体内の前記揮発
性元素の蒸気圧を調整し、成長結晶からの揮発性元素の
抜けを防止できるため、固液界面の温度勾配を緩やかに
しても高品質の単結晶を得ることができる。なお、るつ
ぼ全体を覆う気密容器に開閉機構(例えば、容器を上下
に分割し、下方の容器の側壁上端に液体封止剤を収容す
る受け皿を設け、上方の容器の側壁下端を前記液体封止
剤中に浸漬して気密を保持する機構)を設けて、揮発性
元素蒸気の供給を行うこともできるが、本発明では、円
筒体に前記リザーバを付設することにより、比較的に簡
単な構造で前記蒸気の調整を可能にした。
On the other hand, by using a cylindrical body having a closed upper end, it is connected to a reservoir for accommodating the volatile elements constituting the grown crystal in a ventilable manner, and the output of a heater arranged around the reservoir is adjusted. Since the vapor pressure of the volatile element in the cylindrical body can be adjusted to prevent the volatile element from escaping from the growing crystal, a high-quality single crystal can be obtained even if the temperature gradient at the solid-liquid interface is gentle. it can. An airtight container that covers the entire crucible is provided with an opening / closing mechanism (for example, the container is divided into upper and lower parts, a saucer for accommodating the liquid sealant is provided at the upper end of the side wall of the lower container, and the lower end of the side wall of the upper container is sealed with the liquid. It is also possible to supply a volatile element vapor by providing a mechanism for maintaining airtightness by immersing it in the agent, but in the present invention, a relatively simple structure is obtained by attaching the reservoir to the cylindrical body. It enabled adjustment of the steam.

【0036】本発明で使用する筒体の形状は断面円形が
一般的であるが、晶癖が強い結晶の成長においては、晶
癖と同じ形状にしたり、成長軸に垂直でない方向に基板
を切り出すような結晶の成長においては、断面が楕円形
の筒を使用することが好ましい。
The shape of the cylinder used in the present invention is generally circular in cross section, but in the growth of a crystal having a strong crystal habit, the same shape as that of the crystal habit or the substrate is cut out in a direction not perpendicular to the growth axis. In growing such a crystal, it is preferable to use a cylinder having an elliptical cross section.

【0037】前記円筒体の設置の仕方には、原料融液
に浮上させる方法、るつぼ及び引上軸の回転に対して
独立し、装置の不動部材に固定保持させる方法、及び、
引上軸と一体的に回転させる方法、引上軸及びるつ
ぼの回転とは独立して回転させる方法がある。
The method of installing the cylindrical body includes a method of floating the raw material melt, a method of being independent of the rotation of the crucible and the pulling shaft, and being fixed and held by an immovable member of the apparatus, and
There are a method of rotating integrally with the pull-up shaft and a method of rotating independently of the rotation of the pull-up shaft and the crucible.

【0038】浮上法は、円筒体の重さ及び形状を調整
することにより、上記の浸漬深さを一定に保持できる利
点がある。一方、円筒体は原料融液に浮上しているた
め、液体封止剤の回転と共に回転するので、強制対流を
制御する機能はない。なお、浮上法においても、円筒体
をるつぼの中心軸に一致させるために、支柱等により円
筒体を中央に保持することが好ましい。
The levitation method has the advantage that the immersion depth can be kept constant by adjusting the weight and shape of the cylindrical body. On the other hand, since the cylindrical body floats on the raw material melt, it rotates with the rotation of the liquid sealant, and therefore has no function of controlling forced convection. Also in the levitation method, it is preferable to hold the cylindrical body in the center by means of a support or the like in order to make the cylindrical body coincide with the central axis of the crucible.

【0039】独立して固定保持する方法は、図5に示
すように、円筒体の上端をチャンバ内の断熱材等の不動
部材に固定するものである。円筒体の浸漬深さを一定に
するために、融液深さの減少速度と、下軸の上昇速度を
一致させる必要がある。この方法は上記の方法と比べ
て対流制御効果は大きい。
The method of independently fixing and holding is to fix the upper end of the cylindrical body to a stationary member such as a heat insulating material in the chamber, as shown in FIG. In order to keep the immersion depth of the cylinder constant, it is necessary to match the decreasing speed of the melt depth with the ascending speed of the lower shaft. This method has a greater convection control effect than the above method.

【0040】引上軸と一体的に回転する方法は、図6
に示すように、円筒体の上端を上軸で支持するものであ
り、成長結晶の引き上げに伴い円筒体を降下させる移動
機構を設ける必要がある。なお、円筒体を結晶と共に回
転すると、固液界面付近の対流制御効果は最も大きい。
引上軸及びるつぼの回転とは独立して回転させる方法
は、円筒体の回転数を引上軸及びるつぼの回転に対して
自由に選択できる利点がある。なお、本発明の円筒体
は、カーボン、pBN、石英等で作ることができる。
The method of rotating integrally with the pulling shaft is shown in FIG.
As shown in, the upper end of the cylinder is supported by the upper shaft, and it is necessary to provide a moving mechanism for lowering the cylinder as the growing crystal is pulled up. When the cylinder is rotated together with the crystal, the convection control effect near the solid-liquid interface is greatest.
The method of rotating independently of the rotation of the pulling shaft and the crucible has an advantage that the rotation speed of the cylindrical body can be freely selected with respect to the rotation of the pulling shaft and the crucible. The cylindrical body of the present invention can be made of carbon, pBN, quartz or the like.

【0041】[0041]

【実施例】【Example】

〔実施例1〕円筒体を原料融液に浮上させてLEC法で
GaAs単結晶を成長させた。成長結晶の直胴部の目標
直径を110mmとし、内径120mm、厚さ1mmの
pBN製の円筒体を原料融液に浮上させたところ、原料
融液中の浸漬深さは10mmであった。なお、カーボン
製サセプタを有する内径200mmのpBN製るつぼに
はGaAs原料10kg、B2 3 500gを投入し、
直胴部成長時のるつぼの回転数を10rpm、種結晶の
回転数は逆方向に2rpm、同引き上げ速度を5mm/
Hで結晶成長を行った。
[Example 1] A GaAs single crystal was grown by the LEC method by floating a cylindrical body in a raw material melt. When a target body diameter of the grown crystal was 110 mm, a pBN cylinder having an inner diameter of 120 mm and a thickness of 1 mm was floated on the raw material melt, the immersion depth in the raw material melt was 10 mm. A pBN crucible having a carbon susceptor with an inner diameter of 200 mm was charged with 10 kg of GaAs raw material and 500 g of B 2 O 3 ,
The rotation speed of the crucible during growth of the straight body was 10 rpm, the rotation speed of the seed crystal was 2 rpm in the opposite direction, and the pulling speed was 5 mm /
Crystal growth was performed at H.

【0042】得られた結晶は長さが200mmで最大直
径が110mmの単結晶であった。その単結晶の固液界
面の形状を調べるために成長軸に沿ってスライスし、濃
度50%のHF40ccと、CrO3 100gと、水5
20ccからなるエッチング液にウエハを浸漬し、光を
照射しながら10分間エッチングをして結晶の成長縞を
観察すると、図9のように周辺部ではほぼ水平であり、
固液界面周辺部の凹化を実質的に抑えられたことが分か
る。
The obtained crystal was a single crystal having a length of 200 mm and a maximum diameter of 110 mm. In order to examine the shape of the solid-liquid interface of the single crystal, it was sliced along the growth axis, and HF40cc with a concentration of 50%, CrO 3 100 g, and water 5
When the wafer is dipped in an etching solution of 20 cc and etched for 10 minutes while irradiating with light to observe the growth fringes of the crystal, the periphery is almost horizontal as shown in FIG.
It can be seen that the depression around the solid-liquid interface was substantially suppressed.

【0043】〔実施例2〕円筒体を図6のように上軸の
引き上げ結晶と同じ回転数で回転させる点を除いて、実
施例1と同様にしてGaAs単結晶を成長させた。断面
が円形でない上軸を円筒体上部に開けた上軸断面と同じ
形状の穴に通してセットし、上軸の回転が円筒体に伝わ
るようにした。また、円筒体は上下に動かないように、
断熱材で支持した。円筒体の浸漬量は、結晶の成長にと
もなう原料融液深さの減少速度と同じ速度で下軸を上昇
させることによって一定に保った。得られた結晶は長さ
が210mmで最大直径が108mmの単結晶であっ
た。実施例1と同様に成長縞を観察すると、図10のよ
うに、固液界面周辺部は凸化の傾向が認められ、円筒体
による強制対流の効果が認められた。
Example 2 A GaAs single crystal was grown in the same manner as in Example 1 except that the cylindrical body was rotated at the same rotational speed as the pulling crystal of the upper shaft as shown in FIG. The upper shaft with a non-circular cross section was set through a hole of the same shape as the upper shaft cross-section opened in the upper part of the cylinder so that the rotation of the upper shaft could be transmitted to the cylinder. Also, make sure that the cylinder does not move up and down.
Supported by insulation. The amount of immersion of the cylinder was kept constant by raising the lower axis at the same rate as the rate of decrease in the depth of the raw material melt accompanying the growth of crystals. The obtained crystal was a single crystal having a length of 210 mm and a maximum diameter of 108 mm. When the growth stripes were observed in the same manner as in Example 1, as shown in FIG. 10, a tendency of convexity was observed in the peripheral portion of the solid-liquid interface, and the effect of forced convection by the cylindrical body was recognized.

【0044】〔比較例1〕円筒体を省略した以外は実施
例1と同様にしてGaAs単結晶を成長させた。得られ
た結晶は長さが200mmで最大直径が111mmであ
った。実施例1と同様に成長縞を観察すると図11のよ
うに、固液界面周辺部は凹化の傾向が顕著に認められ、
矢印の部分から多結晶化が認められた。
Comparative Example 1 A GaAs single crystal was grown in the same manner as in Example 1 except that the cylindrical body was omitted. The obtained crystal had a length of 200 mm and a maximum diameter of 111 mm. When the growth fringes were observed in the same manner as in Example 1, as shown in FIG. 11, the peripheral portion of the solid-liquid interface was markedly prone to indentation,
Polycrystallization was recognized from the arrow part.

【0045】〔比較例2〕また、円筒体の内径を結晶の
目標直径+5mmより小さくした場合には、結晶直径が
なかなか目標直径まで太らず、むりやり太らせると太ら
せると円筒体に接触して円筒体が持ち上げられ、結晶成
長を続行することができなかった。他方、円筒体の浸漬
深さを10mmとし、内径を結晶の目標直径より+20
mm大きくした場合には、比較例1と同様に固液界面周
辺部の凹化が認められ、比較例1と同様に多結晶が発生
していた。
[Comparative Example 2] Further, when the inner diameter of the cylindrical body was made smaller than the target diameter of the crystal +5 mm, the crystal diameter did not readily increase to the target diameter, and when it was thickened excessively, it contacted the cylindrical body. The cylinder was lifted and crystal growth could not continue. On the other hand, the immersion depth of the cylinder is 10 mm, and the inner diameter is +20 from the target diameter of the crystal.
When the thickness was increased by mm, depression was observed around the solid-liquid interface as in Comparative Example 1, and polycrystals were generated as in Comparative Example 1.

【0046】〔実施例3〕円筒体を図5のように回転し
ないように断熱材に固定した点を除いて、実施例1と同
様の装置を用いてGaAs単結晶を成長させた。るつぼ
の回転数は10rpm、成長結晶の回転数は2rpmに
設定した。得られた結晶は長さが200mmで最大直径
が110mmの単結晶であった。実施例1と同様に成長
縞を観察すると、固液界面周辺部の形状は、実施例1と
実施例2の間であった。得られた結晶から(100) ウエハ
を切りだして溶融KOHでエッチングし、転位密度の面
内分布を調べて図12に示した。転位密度の面内平均値
は57300cm-2であった。
Example 3 A GaAs single crystal was grown using the same apparatus as in Example 1 except that the cylindrical body was fixed to a heat insulating material so as not to rotate as shown in FIG. The rotation speed of the crucible was set to 10 rpm, and the rotation speed of the grown crystal was set to 2 rpm. The obtained crystal was a single crystal having a length of 200 mm and a maximum diameter of 110 mm. When the growth stripes were observed in the same manner as in Example 1, the shape of the peripheral portion of the solid-liquid interface was between Example 1 and Example 2. A (100) wafer was cut out from the obtained crystal and etched with molten KOH, and the in-plane distribution of dislocation density was investigated and shown in FIG. The in-plane average dislocation density was 57300 cm -2 .

【0047】〔実施例4〕実施例3において、B2 3
の投入量を500gから1000gに倍増した以外は、
実施例3と同様にして結晶成長を行った。直胴部の結晶
成長時には、円筒体内のB2 3 の厚みは、実施例3の
約2倍であった。得られた結晶は長さが190mmで最
大直径が113mmの単結晶であった。コーン部が若干
急成長のため平均直径が少し太めであったが、直径変動
は実施例1と同じレベルで直径の制御性は極めて良好で
あった。得られた結晶から(100)ウエハを切りだして溶
融KOHでエッチングし、転位密度の面内分布を調べ
た。結果を実施例3と対比して図12に示した。B2
3 の厚みが増すにしたがって成長軸方向の温度勾配が減
少し、その結果として転位密度を少なくすることができ
た。転位密度の面内平均値は29700cm-2と、実施
例3より減少させることができた。
Example 4 In Example 3, B 2 O 3 was used.
Except that the input amount of was doubled from 500g to 1000g,
Crystal growth was performed in the same manner as in Example 3. At the time of crystal growth in the straight body part, the thickness of B 2 O 3 in the cylinder was about twice that in Example 3. The obtained crystal was a single crystal having a length of 190 mm and a maximum diameter of 113 mm. The average diameter was slightly thicker because the cone portion grew slightly rapidly, but the diameter variation was at the same level as in Example 1, and the diameter controllability was extremely good. A (100) wafer was cut out from the obtained crystal and etched with molten KOH to examine the in-plane distribution of dislocation density. The results are shown in FIG. 12 in comparison with Example 3. B 2 O
As the thickness of 3 increased, the temperature gradient in the growth axis direction decreased, and as a result, the dislocation density could be decreased. The in-plane average dislocation density was 29700 cm -2, which was smaller than that in Example 3.

【0048】〔実施例5〕図3のように上端を閉じた円
筒体を用い、Asリザーバを接続して円筒体内にAs蒸
気を負荷した点を除いて、実施例3と同様にしてGaA
s単結晶を成長させた。成長前のB2 3 中の成長軸方
向の温度勾配は、実施例3が約100℃/cmであった
のに対し、As蒸気圧下での成長であったこともあり、
実施例5では約30℃/cmまで小さく抑えることがで
きた。
[Embodiment 5] GaA was prepared in the same manner as in Embodiment 3 except that a cylindrical body having an upper end closed as shown in FIG. 3 was used, and an As reservoir was connected to the cylinder so that As vapor was loaded.
s single crystal was grown. The temperature gradient in the growth axis direction in B 2 O 3 before growth was about 100 ° C./cm in Example 3, whereas it was growth under As vapor pressure.
In Example 5, it could be suppressed to about 30 ° C./cm.

【0049】得られた結晶は長さが220mmで最大直
径が107mmの単結晶であった。一般に温度勾配が小
さな状態でGaAs単結晶を成長させると、As抜けが
あったが、ここで得たGaAs単結晶は表面は金属光沢
をしており、Asの蒸発は全く認められなかった。温度
勾配が小さいため、固液界面の中央部における凸化は少
なめであったが、固液界面周辺部は実施例3とほとんど
変わらなかった。得られた結晶から(100) ウエハを切り
だして溶融KOHでエッチングし、転位密度の面内分布
を調べたところ、図12にみるように、転位密度は実施
例4よりもさらに減少しており、転位密度の面内平均値
は7420cm-2であった。
The obtained crystal was a single crystal having a length of 220 mm and a maximum diameter of 107 mm. Generally, when a GaAs single crystal was grown in a state where the temperature gradient was small, there was As loss, but the GaAs single crystal obtained here had a metallic luster on the surface, and no As evaporation was observed. Since the temperature gradient was small, the amount of protrusion in the central portion of the solid-liquid interface was small, but the peripheral portion of the solid-liquid interface was almost the same as in Example 3. A (100) wafer was cut out from the obtained crystal and etched with molten KOH, and the in-plane distribution of dislocation density was examined. As shown in FIG. 12, the dislocation density was further reduced as compared with Example 4. The in-plane average dislocation density was 7420 cm -2 .

【0050】〔比較例3〕実施例3において、るつぼの
回転数を10rpmで一定とし、結晶回転数を変化させ
て結晶と筒体の相対回転数の直径制御性の影響を調べ
た。即ち、結晶回転数を2rpmから5rpmに速くす
ると(るつぼの回転方向とは逆回転)、メニスカスが筒
体から受ける力が大きすぎ、成長中にメニスカスの一部
が落下した。他方、結晶の回転を停止すると、メニスカ
スが受ける力が小さすぎ、結晶直径が筒体に接触するま
で大きくなった。なお、メニスカスの落下は、結晶の一
部が融液から切断される現象であり、成長結晶にエグレ
が生ずる。
Comparative Example 3 In Example 3, the rotational speed of the crucible was kept constant at 10 rpm and the rotational speed of the crystal was changed to examine the influence of the diameter controllability of the relative rotational speed of the crystal and the cylinder. That is, when the crystal rotation speed was increased from 2 rpm to 5 rpm (reverse rotation to the rotation direction of the crucible), the meniscus received too much force from the cylindrical body, and part of the meniscus dropped during growth. On the other hand, when the rotation of the crystal was stopped, the force applied to the meniscus was too small and the crystal diameter increased until it contacted the cylinder. The dropping of the meniscus is a phenomenon in which a part of the crystal is cut from the melt, and an egre is generated in the grown crystal.

【0051】〔実施例6〕実施例3において、PBN製
の円筒体の外周にカーボンヒータをコーティングしたも
のを用い、円筒体を加熱し、結晶の回転数を5rpmで
回転すると、比較例3と同様の結果になったが、回転を
停止した状態で結晶成長を行っても、結晶直径は変化せ
ず、円筒体との接触は認められなかった。
[Example 6] In Example 3, a PBN cylindrical body coated with a carbon heater was used to heat the cylindrical body and rotate the crystal at a rotation speed of 5 rpm. Although similar results were obtained, even when the crystal growth was carried out while the rotation was stopped, the crystal diameter did not change and no contact with the cylinder was observed.

【0052】[0052]

【発明の効果】本発明は、上記の構成を採用することに
より、成長結晶の固液界面周辺部の凹化を防止すること
ができ、転位の集積による多結晶化を防止できるように
なった。また、成長結晶の直径制御性が改善され、結晶
の歩留りを向上させることができた。
According to the present invention, by adopting the above-mentioned constitution, it is possible to prevent depression of the peripheral portion of the solid-liquid interface of the growing crystal and prevent polycrystallization due to the accumulation of dislocations. . Further, the diameter controllability of the grown crystal was improved, and the crystal yield could be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の円筒体で原料融液の対流が変化する状
況を説明した図である。
FIG. 1 is a diagram illustrating a situation in which convection of a raw material melt changes in a cylindrical body of the present invention.

【図2】本発明の円筒体を液体封剤を経て原料融液中に
浸漬させ、直胴部の結晶を引き上げるときの固液界面付
近の状態を説明するための説明図である。
FIG. 2 is an explanatory diagram for explaining a state in the vicinity of a solid-liquid interface when a cylindrical body of the present invention is immersed in a raw material melt via a liquid sealing agent and a crystal in a straight body part is pulled up.

【図3】本発明の円筒体にAsリザーバを接続した結晶
成長装置の説明図である。
FIG. 3 is an explanatory diagram of a crystal growth apparatus in which an As reservoir is connected to the cylindrical body of the present invention.

【図4】従来のCZ法における原料融液の自然対流によ
り、成長結晶の固液界面周辺部が凹化する状況を説明し
た図である。
FIG. 4 is a diagram illustrating a situation in which a peripheral portion of a solid-liquid interface of a grown crystal is recessed due to natural convection of a raw material melt in a conventional CZ method.

【図5】本発明の円筒体を断熱材に固定する場合の説明
図である。
FIG. 5 is an explanatory diagram for fixing the cylindrical body of the present invention to a heat insulating material.

【図6】本発明の円筒体を上軸で支持する場合の説明図
である。
FIG. 6 is an explanatory diagram of a case where the cylindrical body of the present invention is supported by an upper shaft.

【図7】従来のLEC法を実施するための装置の概念図
である。
FIG. 7 is a conceptual diagram of an apparatus for performing a conventional LEC method.

【図8】従来の固液界面における多結晶化の状況を説明
するための図である。
FIG. 8 is a diagram for explaining a state of polycrystallization at a conventional solid-liquid interface.

【図9】実施例1で得た結晶の成長縞を示した模式図で
ある。
FIG. 9 is a schematic view showing growth fringes of the crystal obtained in Example 1.

【図10】実施例2で得た結晶の成長縞を示した模式図
である。
FIG. 10 is a schematic diagram showing growth fringes of the crystal obtained in Example 2.

【図11】比較例1(従来のLEC法)で得た結晶の成
長縞を示した模式図である。
FIG. 11 is a schematic diagram showing growth fringes of a crystal obtained in Comparative Example 1 (conventional LEC method).

【図12】実施例3、4、5で得た結晶から切り出した
(100) ウエハの転位密度の面内分布を示したグラフであ
る。
FIG. 12: Cut out from the crystals obtained in Examples 3, 4, and 5.
3 is a graph showing in-plane distribution of dislocation density of a (100) wafer.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 チョクラルスキー法で原料融液から結晶
を引き上げる単結晶の成長方法において、成長結晶の直
胴部の目標直径より大きな内径を有する円筒体の先端を
原料融液中に浸漬し、原料融液を収容するるつぼ、成長
結晶及び前記円筒体のいずれか1つ以上の回転数を調節
することにより、固液界面形状の凹化を防止しながら結
晶を引き上げることを特徴とする単結晶の成長方法。
1. In a method for growing a single crystal in which a crystal is pulled from a raw material melt by the Czochralski method, a tip of a cylindrical body having an inner diameter larger than a target diameter of a straight body portion of the grown crystal is immersed in the raw material melt. , A crucible for containing a raw material melt, a growing crystal, and the cylindrical body are adjusted to adjust the number of revolutions to pull up the crystal while preventing depression of the solid-liquid interface shape. Crystal growth method.
【請求項2】 液体封止チョクラルスキー法で原料融液
から結晶を引き上げる単結晶の成長方法において、成長
結晶の直胴部の目標直径より大きな内径を有する円筒体
の先端を原料融液中に浸漬し、原料融液を収容するるつ
ぼ、成長結晶及び前記円筒体のいずれか1つ以上の回転
数を調節することにより、固液界面形状の凹化を防止し
ながら結晶を引き上げ、前記円筒体内の液体封止剤で引
上結晶を保温することを特徴とする単結晶の成長方法。
2. In a method for growing a single crystal in which a crystal is pulled from a raw material melt by a liquid-encapsulated Czochralski method, a tip of a cylindrical body having an inner diameter larger than a target diameter of a straight body portion of the grown crystal is in the raw material melt. By immersing in a crucible for containing the raw material melt, the growth crystal and the cylindrical body and adjusting the number of revolutions of at least one of them to pull up the crystal while preventing depression of the solid-liquid interface shape. A method for growing a single crystal, characterized in that the pulled crystal is kept warm with a liquid sealant in the body.
【請求項3】 前記円筒体の内径が成長結晶の直胴部の
目標直径より5〜20mm大きなものを用いることを特
徴とする請求項1又は2記載の単結晶の成長方法。
3. The method for growing a single crystal according to claim 1, wherein the inner diameter of the cylindrical body is 5 to 20 mm larger than the target diameter of the straight body portion of the grown crystal.
【請求項4】 請求項1又は2記載の円筒体の代わり
に、成長結晶の晶癖と同じ断面形状の筒体、又は、成長
軸に垂直でない方向にウエハを切り出すための結晶の成
長では断面楕円形の筒体を使用することを特徴とする単
結晶の成長方法。
4. A cylinder having the same cross-sectional shape as the crystal habit of the growing crystal instead of the cylinder of claim 1 or 2, or a cross-section when growing a crystal for cutting a wafer in a direction not perpendicular to the growth axis. A method for growing a single crystal, characterized by using an elliptic cylinder.
【請求項5】 前記筒体を加熱することを特徴とする請
求項1〜4のいずれか1項に記載の単結晶の成長方法。
5. The method for growing a single crystal according to claim 1, wherein the cylindrical body is heated.
【請求項6】 前記筒体の上端を閉じ、成長結晶を構成
する揮発性元素の蒸気圧を前記筒体内に印加することを
特徴とする請求項1〜5のいずれか1項に記載の単結晶
の成長方法。
6. The unit according to claim 1, wherein an upper end of the cylinder is closed and a vapor pressure of a volatile element forming a growing crystal is applied to the cylinder. Crystal growth method.
【請求項7】 前記筒体と上軸の相対回転数を調整して
成長結晶の直径を制御することを特徴とする請求項1〜
6のいずれか1項に記載の単結晶の成長方法。
7. The diameter of the grown crystal is controlled by adjusting the relative rotational speed between the cylindrical body and the upper shaft.
7. The method for growing a single crystal according to any one of 6 above.
【請求項8】 チョクラルスキー法又は液体封止チョク
ラルスキー法で原料融液から結晶を引き上げる単結晶の
成長装置において、成長結晶の直胴部の目標直径より大
きな内径を有する円筒体をその先端が原料融液中に浸漬
するように支持し、原料融液を収容するるつぼを下軸で
回転昇降可能に支持し、上軸の下端に種結晶を回転昇降
可能に支持し、前記形状の変化に対応して上下の軸の回
転数及び昇降速度を調節する手段を設けたことを特徴と
する単結晶の成長装置。
8. A single crystal growth apparatus for pulling a crystal from a raw material melt by the Czochralski method or the liquid sealed Czochralski method, wherein a cylindrical body having an inner diameter larger than the target diameter of the straight body portion of the grown crystal is used. The tip is supported so as to be immersed in the raw material melt, and the crucible for containing the raw material melt is supported by the lower shaft so as to be rotatable up and down, and the lower end of the upper shaft is supported so that the seed crystal can be rotated up and down. An apparatus for growing a single crystal, characterized in that means for adjusting the number of rotations of the upper and lower shafts and the ascending / descending speed in response to changes is provided.
【請求項9】 請求項8記載の円筒体の代わりに、成長
結晶の晶癖と同じ断面形状の筒体、又は、成長軸に垂直
でない方向にウエハを切り出すための結晶の成長では断
面楕円形の筒体を使用したことを特徴とする単結晶の成
長装置。
9. Instead of the cylinder according to claim 8, a cylinder having the same cross-sectional shape as the crystal habit of the growing crystal, or an elliptical cross-section when growing a crystal for cutting a wafer in a direction not perpendicular to the growth axis. An apparatus for growing a single crystal, which is characterized by using a cylindrical body.
【請求項10】 前記筒体の加熱手段を付設したことを
特徴とする請求項9記載の単結晶の成長装置。
10. The apparatus for growing a single crystal according to claim 9, further comprising heating means for the cylindrical body.
【請求項11】 前記筒体として上端を閉じた筒体を用
い、成長結晶を構成する揮発性元素を収容したリザーバ
を設け、前記リザーバを前記筒体と通気可能に接続し、
前記リザーバのヒータ出力を調節して筒体内の前記揮発
性元素の蒸気圧を調整可能にしたことを特徴とする請求
項8〜10のいずれか1項に記載の単結晶の成長装置。
11. A cylinder having a closed upper end is used as the cylinder, a reservoir containing a volatile element constituting a growing crystal is provided, and the reservoir is connected to the cylinder so as to be aerable.
11. The single crystal growth apparatus according to claim 8, wherein the heater output of the reservoir is adjusted to adjust the vapor pressure of the volatile element in the cylinder.
【請求項12】 前記筒体を引上軸と一体的に回転可能
に支持したことを特徴とする請求項8〜11のいずれか
1項に記載の単結晶の成長装置。
12. The single crystal growth apparatus according to claim 8, wherein the cylindrical body is rotatably supported integrally with the pulling shaft.
【請求項13】 前記筒体が原料融液に浮上して前記の
浸漬条件を保持するように、前記筒体の重さ及び形状を
調整したことを特徴とする請求項8〜11のいずれか1
項に記載の単結晶の成長装置。
13. The weight and shape of the tubular body are adjusted so that the tubular body floats on the raw material melt and maintains the immersion conditions. 1
Item 5. A single crystal growth apparatus according to item.
【請求項14】 前記筒体を、前記上下軸と独立して回
転可能に支持したことを特徴とする請求項8〜11のい
ずれか1項に記載の単結晶の成長装置。
14. The single crystal growth apparatus according to claim 8, wherein the cylindrical body is rotatably supported independently of the vertical axis.
【請求項15】 前記筒体を成長装置の不動部分に固定
したことを特徴とする請求項8〜11のいずれか1項に
記載の単結晶の成長装置。
15. The apparatus for growing a single crystal according to claim 8, wherein the cylindrical body is fixed to a non-moving part of the growth apparatus.
JP04585296A 1995-03-16 1996-03-04 Single crystal growth method and apparatus Expired - Fee Related JP3870437B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP04585296A JP3870437B2 (en) 1995-03-16 1996-03-04 Single crystal growth method and apparatus
EP96301808A EP0732427B1 (en) 1995-03-16 1996-03-15 A method and apparatus for the growth of a single crystal
US08/616,350 US5733371A (en) 1995-03-16 1996-03-15 Apparatus for growing a single crystal
DE69619005T DE69619005T2 (en) 1995-03-16 1996-03-15 Method and device for growing a single crystal
KR1019960007094A KR100417606B1 (en) 1995-03-16 1996-03-16 Single Crystal Growth Method and Apparatus
US08/937,889 US5951758A (en) 1995-03-16 1997-09-25 Method and apparatus for the growth of a single crystal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-57099 1995-03-16
JP5709995 1995-03-16
JP04585296A JP3870437B2 (en) 1995-03-16 1996-03-04 Single crystal growth method and apparatus

Publications (2)

Publication Number Publication Date
JPH08310893A true JPH08310893A (en) 1996-11-26
JP3870437B2 JP3870437B2 (en) 2007-01-17

Family

ID=26385943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04585296A Expired - Fee Related JP3870437B2 (en) 1995-03-16 1996-03-04 Single crystal growth method and apparatus

Country Status (1)

Country Link
JP (1) JP3870437B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261495A (en) * 2000-03-23 2001-09-26 Komatsu Electronic Metals Co Ltd Method for producing defect-free crystal
JP2007182361A (en) * 2005-01-31 2007-07-19 Hitachi Cable Ltd Semi-insulating galium-arsenic wafer and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261495A (en) * 2000-03-23 2001-09-26 Komatsu Electronic Metals Co Ltd Method for producing defect-free crystal
JP2007182361A (en) * 2005-01-31 2007-07-19 Hitachi Cable Ltd Semi-insulating galium-arsenic wafer and its manufacturing method
JP4715528B2 (en) * 2005-01-31 2011-07-06 日立電線株式会社 Semi-insulating GaAs wafer for electronic devices and manufacturing method thereof

Also Published As

Publication number Publication date
JP3870437B2 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
EP0732427B1 (en) A method and apparatus for the growth of a single crystal
JPH1029894A (en) Method for regulating specific resistance of single crystal silicon and apparatus for producing single crystal silicon
KR20100056640A (en) Single crystal growth apparatus
JPH08310893A (en) Method for growing single crystal and apparatus therefor
JP3587235B2 (en) Carbon heater for single crystal growing equipment
JP3772376B2 (en) Single crystal growth method and apparatus
JPH10167881A (en) Method for pulling semiconductor single crystal
JP3564830B2 (en) Method for controlling oxygen concentration in silicon single crystal
JP3642175B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
KR20200085489A (en) A heat shield member for single crystal growth and single crystal growth apparatus using the same
JP2719673B2 (en) Single crystal growth method
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2009161395A (en) Method for manufacturing compound semiconductor single crystal
KR100485656B1 (en) Seed chuck of grower silicon single crystal ingot used by Czochralski Method
KR20100071507A (en) Apparatus, method of manufacturing silicon single crystal and method of controlling oxygen density of silicon single crystal
JP2000211994A (en) Melting of polycrystalline silicon before silicon single crystal growth and apparatus for growing silicon single crystal
JP2002234792A (en) Method of producing single crystal
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
JPS644998B2 (en)
JP2766897B2 (en) Single crystal growth equipment
JPH08259371A (en) Method for growing single crystal excellent in sr uniformization
JPH02311390A (en) Device for producing single crystal
JPH03261694A (en) Pull method for single crystal and system therefor
JPS60122791A (en) Pulling up method of crystal under liquid sealing
JPH0312384A (en) Method and apparatus for producing single crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Effective date: 20051219

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060607

A131 Notification of reasons for refusal

Effective date: 20060627

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060926

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20061009

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees