JP2020001977A - Determination method for oxygen stripe flattening manufacture condition of silicon single crystal, manufacturing method for silicon single crystal using the same, and silicon single crystal wafer - Google Patents

Determination method for oxygen stripe flattening manufacture condition of silicon single crystal, manufacturing method for silicon single crystal using the same, and silicon single crystal wafer Download PDF

Info

Publication number
JP2020001977A
JP2020001977A JP2018123935A JP2018123935A JP2020001977A JP 2020001977 A JP2020001977 A JP 2020001977A JP 2018123935 A JP2018123935 A JP 2018123935A JP 2018123935 A JP2018123935 A JP 2018123935A JP 2020001977 A JP2020001977 A JP 2020001977A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
oxygen
ratio
flattening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018123935A
Other languages
Japanese (ja)
Other versions
JP6919629B2 (en
Inventor
星 亮二
Ryoji Hoshi
亮二 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2018123935A priority Critical patent/JP6919629B2/en
Publication of JP2020001977A publication Critical patent/JP2020001977A/en
Application granted granted Critical
Publication of JP6919629B2 publication Critical patent/JP6919629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a determination method for a manufacture condition that can flatten oxygen stripes of a silicon single crystal more than before in manufacture of the silicon single crystal by an MCZ method, and a manufacturing method for the silicon single crystal using the same.SOLUTION: The present invention relates to a determination method for an oxygen stripe flattening manufacturing condition of a silicon single crystal in manufacture of the silicon single crystal by a magnetic field application Czochralski process. The determination method for the oxygen stripe flattening manufacture condition comprises: calculating a ratio Δt/M, where Δt is a temperature difference between a maximum temperature and a minimum temperature of silicon molten liquid and M is magnetic field intensity; finding correlation between the ratio Δt/M and oxygen stripes in the silicon single crystal raised at the ratio Δt/M; and setting a condition of the ratio Δt/M at which a desired silicon single crystal is obtained based upon the correlation; and determining the oxygen stripe flattening manufacture condition of the silicon single crystal.SELECTED DRAWING: Figure 4

Description

本発明は、磁場印加チョクラルスキー法(MCZ法)によって育成され、結晶中に酸素が含まれるシリコン単結晶に関するものであり、その結晶を育成可能な製造条件を決定する方法及びそれを用いたシリコン単結晶の製造方法に関する。   The present invention relates to a silicon single crystal grown by a magnetic field application Czochralski method (MCZ method) and containing oxygen in the crystal, and a method for determining manufacturing conditions under which the crystal can be grown and using the method. The present invention relates to a method for manufacturing a silicon single crystal.

メモリー、CPUや撮像素子などの半導体デバイスの基板として用いられるシリコン単結晶ウェーハを切り出すシリコン単結晶棒は、主にチョクラルスキー(CZ)法により製造されている。CZ法では、一般に、石英ルツボを用いるので、ルツボから酸素原子が溶出し、これがシリコン単結晶に取り込まれるので、CZ結晶(CZ法により製造されたシリコン単結晶)中には酸素原子が含まれている。   2. Description of the Related Art A silicon single crystal rod for cutting a silicon single crystal wafer used as a substrate of a semiconductor device such as a memory, a CPU, and an image sensor is mainly manufactured by a Czochralski (CZ) method. In the CZ method, since a quartz crucible is generally used, oxygen atoms elute from the crucible and are taken into a silicon single crystal. Therefore, oxygen atoms are contained in the CZ crystal (silicon single crystal manufactured by the CZ method). ing.

シリコン単結晶棒から切り出されるシリコン単結晶ウェーハは何段階ものデバイスプロセスを通過し、その際の熱処理過程を通して、シリコン原子と酸素原子とが結合し、ウェーハ中には酸素析出物が形成される。バルク中に形成される酸素析出物はBMD(Bulk Micro Defect)などと呼ばれる。このBMDはウェーハ内部の重金属などの汚染原子を捕獲してデバイス特性を向上させる能力があることが知られている。重金属汚染の影響が大きい撮像素子などの一部のデバイスではBMD密度が高くなるほど高性能かつ高信頼性のデバイスを得られる。一方でBMDが多すぎれば、それらを起因としたリーク電流など電気特性の劣化を招く場合もある。   A silicon single crystal wafer cut from a silicon single crystal rod passes through many stages of device processes, and through the heat treatment process at that time, silicon atoms and oxygen atoms combine to form oxygen precipitates in the wafer. The oxygen precipitate formed in the bulk is called BMD (Bulk Micro Defect) or the like. It is known that this BMD has the ability to improve the device characteristics by capturing contaminant atoms such as heavy metals inside the wafer. For some devices such as an imaging device that is greatly affected by heavy metal contamination, a device with higher performance and higher reliability can be obtained as the BMD density increases. On the other hand, if there are too many BMDs, electrical characteristics such as leakage current may be degraded due to them.

従って、例えば撮像素子においては、BMDが少ないところでは重金属に起因する劣化、逆にBMDが多いところではBMDそのものに起因する劣化に起因して画像ムラが生じてしまう。このように、ウェーハ面内でBMDの多寡が生じるのは、もともとの結晶中に取り込まれている酸素濃度のムラに起因することが知られており、この酸素濃度のムラを酸素縞と呼んでいる。   Therefore, for example, in an image sensor, when the BMD is small, deterioration caused by heavy metal is caused, and when the BMD is large, image unevenness is caused by deterioration caused by the BMD itself. It is known that the occurrence of the BMD in the wafer surface is caused by the unevenness of the oxygen concentration taken into the original crystal. This unevenness of the oxygen concentration is called an oxygen fringe. I have.

従って、良好な撮像素子を得るためには、ウェーハ面内のBMD密度のミリメートルオーダーの周期的な変動、つまりは結晶中の酸素縞を精密に抑制する技術が望まれている。そのような技術は、撮像素子のみならず、メモリー、CPUや太陽電池向け材料の特性の向上に貢献するため、極めて応用範囲が広く、電気特性の向上や、プロセス中の反りあるいはスリップ転位の発生を防止するなどの効果もある。   Therefore, in order to obtain a good image sensor, a technique for precisely suppressing the periodic fluctuation of the BMD density in the wafer surface on the order of millimeters, that is, oxygen stripes in the crystal is desired. Such technology contributes to the improvement of the characteristics of not only the image sensor but also the materials for memories, CPUs, and solar cells. Therefore, the technology has an extremely wide range of applications, and improves the electrical characteristics and the occurrence of warpage or slip dislocation during the process. There are also effects such as preventing.

ところで、CZ法によるシリコン単結晶製造では、石英ルツボ内のシリコン溶融液は、対流により流動し、石英ルツボ中の酸素が溶出し、シリコン単結晶に高濃度で取り込まれる。そこで、石英ルツボ内のシリコン溶融液に磁場を印加し、対流を抑制するMCZ法が行われている。これにより、結晶中の酸素濃度を抑制したり、大直径の結晶を育成しやすくなったりすることが知られている。   By the way, in the production of a silicon single crystal by the CZ method, a silicon melt in a quartz crucible flows by convection, oxygen in the quartz crucible elutes, and is taken into the silicon single crystal at a high concentration. Therefore, an MCZ method for suppressing convection by applying a magnetic field to a silicon melt in a quartz crucible has been performed. As a result, it is known that the oxygen concentration in the crystal is suppressed, and a crystal having a large diameter is easily grown.

このMCZ法においては、酸素縞が低減されることが開示されている。例えば特許文献1では、シリコン溶融液の対流速度を7mm/sec以下に設定し成長縞をなくして酸素濃度を制御する技術が開示されている。もし仮に、対流を完全に抑えることが可能であれば、酸素縞はなくなるのかもしれない。しかし、実際には対流を完全に抑制することは現時点で不可能であり、例えば微視的に見れば、特許文献2などにあるようにミクロ酸素濃度が激しく変動している。特許文献2では、コイル中心位置を制御することでミクロな酸素濃度分布のムラを抑制することができている。しかし、例えば特許文献3に開示されているような近年の撮像素子向けに適した結晶の評価技術で見た場合に十分とは言えない場合がある。   It is disclosed that oxygen stripes are reduced in the MCZ method. For example, Patent Literature 1 discloses a technique in which the convection speed of a silicon melt is set to 7 mm / sec or less to eliminate growth fringes and control the oxygen concentration. If convection could be completely suppressed, oxygen streaks might disappear. However, it is currently impossible to completely suppress convection at present, and for example, microscopically, the micro oxygen concentration fluctuates drastically as disclosed in Patent Document 2. In Patent Document 2, by controlling the coil center position, it is possible to suppress microscopic unevenness in the oxygen concentration distribution. However, in some cases, it may not be sufficient when viewed with a crystal evaluation technique suitable for an image sensor in recent years as disclosed in Patent Document 3, for example.

そこで、それ以降も酸素濃度面内分布や酸素縞を改善する技術が開示されてきている。特許文献4では、シリコン溶融液表面の高温部と低温部のいずれかを常に固液界面に位置させる製法が開示されている。しかしこの方法では、操業中の温度測定技術とその制御が必要であるが、具体的な制御方法に関しての言及はない。また特許文献5では融液中の凝固フロント領域で回転対称でない温度分布を生じさせる製法が開示されている。具体的な方法としては、移動性磁場や磁場の回転対称を崩す遮閉部などの装置が必要であり、既存の装置にすぐ適用できる技術ではない。更に、特許文献6では固液界面下でシリコン溶融液を一方から他方に流動させる製法が開示されている。この特許文献には具体的なパラメータが記載されており、既存機にも適用できる可能性がある。しかし、液面高さがその条件に入っており、CZ法のように結晶成長に伴い融液の量が減少して行くなかで、その条件を満足させながら、結晶を育成することは容易ではなく、操業の自由度が小さい。さらに、巨視的な酸素面内分布に大きな影響を与える結晶回転が制約条件に含まれており、例え微視的な酸素分布が改善されたとしても、巨視的な分布に悪影響を及ぼす可能性がある。   Therefore, a technique for improving the oxygen concentration in-plane distribution and oxygen stripes has been disclosed since then. Patent Document 4 discloses a manufacturing method in which either a high-temperature portion or a low-temperature portion on the surface of a silicon melt is always positioned at a solid-liquid interface. However, this method requires a temperature measurement technique during operation and its control, but does not mention a specific control method. Patent Literature 5 discloses a method for producing a temperature distribution that is not rotationally symmetric in a solidification front region in a melt. As a specific method, a device such as a movable magnetic field or a shielding unit that breaks the rotational symmetry of the magnetic field is required, and is not a technology that can be immediately applied to existing devices. Further, Patent Document 6 discloses a manufacturing method in which a silicon melt flows from one side to the other under a solid-liquid interface. This patent document describes specific parameters, and may be applicable to existing machines. However, it is not easy to grow a crystal while satisfying the condition while the liquid level height falls under the condition and the amount of the melt decreases along with the crystal growth as in the CZ method. And the degree of freedom of operation is small. Furthermore, the crystal rotation that greatly affects the macroscopic oxygen plane distribution is included in the constraints, and even if the microscopic oxygen distribution is improved, it may adversely affect the macroscopic distribution. is there.

特開平6−92774号公報JP-A-6-92774 特開平9−188590号公報JP-A-9-188590 特開2014−148448号公報JP 2014-148448 A 特開2000−264784号公報JP 2000-264784 A 特開2004−196655号公報JP 2004-196655 A 国際公開第2017/077701号WO 2017/077701

上記のように、MCZ法によるシリコン単結晶の製造において、シリコン単結晶の酸素縞をさらに低減することが望まれているが、従来の方法では、近年の撮像素子向けに適した結晶の評価技術で見た場合に十分とは言えないという問題があった。   As described above, in the production of a silicon single crystal by the MCZ method, it is desired to further reduce oxygen fringes in the silicon single crystal. However, in the conventional method, a crystal evaluation technique suitable for a recent image sensor is desired. There was a problem that it could not be said that it was enough when viewed from the above.

本発明は上記問題に鑑みてなされたものであり、MCZ法によるシリコン単結晶の製造において、シリコン単結晶の酸素縞を、従来よりも平坦化できる製造条件の決定方法及びそれを用いたシリコン単結晶の製造方法を提供することを目的とする。
また、撮像素子を作製しても画像ムラなどの不良が少なく、デバイスに適したシリコン単結晶ウェーハを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and in the production of a silicon single crystal by the MCZ method, a method for determining production conditions that can flatten oxygen fringes of a silicon single crystal as compared with the conventional method, and a silicon single crystal using the same. An object of the present invention is to provide a method for producing a crystal.
Another object of the present invention is to provide a silicon single crystal wafer suitable for a device, which has few defects such as image unevenness even when an imaging element is manufactured.

上記目的を達成するために、本発明は、
磁場印加チョクラルスキー法によるシリコン単結晶の製造におけるシリコン単結晶の酸素縞平坦化製造条件の決定方法であって、
シリコン溶融液の最高温度と最低温度との温度差をΔt、
磁場強度をMとして、
前記Δtと前記Mとの比Δt/Mを算出し、
該比Δt/Mと前記比Δt/Mで育成されたシリコン単結晶中の酸素縞との相関関係を求め、該相関関係に基づいて所望のシリコン単結晶が得られる比Δt/Mの条件を設定し、シリコン単結晶の酸素縞平坦化製造条件を決定することを特徴とする酸素縞平坦化製造条件の決定方法を提供する。
In order to achieve the above object, the present invention provides
A method for determining oxygen fringe flattening production conditions of a silicon single crystal in the production of a silicon single crystal by a magnetic field application Czochralski method,
Δt is the temperature difference between the highest temperature and the lowest temperature of the silicon melt.
Assuming that the magnetic field strength is M,
Calculating a ratio Δt / M between the Δt and the M,
The correlation between the ratio Δt / M and oxygen fringes in the silicon single crystal grown at the ratio Δt / M is determined, and based on the correlation, the condition of the ratio Δt / M at which a desired silicon single crystal is obtained is determined. The present invention provides a method for determining oxygen fringe flattening manufacturing conditions, wherein the setting is made and oxygen fringe flattening manufacturing conditions of silicon single crystal are determined.

このような本発明の酸素縞平坦化製造条件の決定方法は、MCZ法によりシリコン単結晶を製造する際に、上記酸素縞平坦化製造条件を用いることで、酸素縞が低減されたシリコン単結晶を製造可能となる酸素縞平坦化製造条件を決定することができる。   Such a method for determining oxygen fringe flattening production conditions according to the present invention is directed to a method for manufacturing a silicon single crystal by the MCZ method, by using the above-mentioned oxygen fringe flattening production conditions to reduce a silicon single crystal with reduced oxygen fringes. Can be determined.

また、このとき、前記比Δt/Mの算出を、シリコン単結晶の製造に用いる引上機構成において、初期融液量における石英ルツボの温度分布をシミュレーションにより求め、該求めた石英ルツボの温度分布の最高温度を前記シリコン溶融液の最高温度とし、固液界面での温度を前記シリコン溶融液の最低温度とし、その差分を前記Δt、前記シリコン溶融液の中心磁場強度を前記Mとして算出することが好ましい。   At this time, the calculation of the ratio Δt / M is performed by calculating the temperature distribution of the quartz crucible in the initial melt amount by simulation in a pulling machine configuration used for manufacturing a silicon single crystal, and calculating the calculated temperature distribution of the quartz crucible. The highest temperature of the silicon melt, the temperature at the solid-liquid interface as the lowest temperature of the silicon melt, the difference is Δt, and the central magnetic field strength of the silicon melt is M. Is preferred.

シリコン単結晶の製造に用いる引上機構成(引上機(シリコン単結晶育成装置)とその内部に装備される黒鉛部品や断熱材などのいわゆるHZ(Hot Zone)部品との組合せ)において、比Δt/Mをこのように算出すれば、シリコン単結晶の酸素縞平坦化製造条件を精度よく決定することができる。   In the structure of a pulling machine used for manufacturing a silicon single crystal (combination of a pulling machine (silicon single crystal growing apparatus) and a so-called HZ (Hot Zone) part such as a graphite part and a heat insulating material provided therein), By calculating Δt / M in this manner, the production conditions for flattening oxygen stripes of a silicon single crystal can be determined with high accuracy.

また、前記比Δt/Mで育成されたシリコン単結晶中の酸素縞を、前記比Δt/Mで育成されたシリコン単結晶から切出したシリコン単結晶ウェーハサンプルをFT−IR法を用いて2mmピッチで酸素濃度を測定することで取得し、該測定した酸素濃度の6mm間隔の酸素濃度勾配値を求め、該求めた酸素濃度勾配値の面内最大値が0.04(ppma−JEIDA/mm)以下となるように比Δt/Mの条件を設定することが好ましい。   Further, a silicon single crystal wafer sample obtained by cutting out oxygen fringes in the silicon single crystal grown at the above-mentioned ratio Δt / M from the silicon single crystal grown at the above-mentioned ratio Δt / M by 2 mm pitch using the FT-IR method. The oxygen concentration gradient is obtained by measuring the oxygen concentration at 6 mm intervals of the measured oxygen concentration, and the maximum in-plane value of the determined oxygen concentration gradient is 0.04 (ppma-JEIDA / mm). It is preferable to set the condition of the ratio Δt / M so as to be as follows.

比Δt/Mの条件をこのように設定すれば、より確実に酸素縞が低減されたシリコン単結晶を製造することができる酸素縞平坦化製造条件を決定することができる。   By setting the condition of the ratio Δt / M in this way, it is possible to determine the oxygen fringe flattening production conditions that can more reliably produce a silicon single crystal with reduced oxygen fringes.

また、前記比Δt/Mを、0.05(K/gauss)以下とすることが好ましい。   Further, the ratio Δt / M is preferably set to 0.05 (K / gauss) or less.

このような比Δt/Mとすれば、より確実に酸素縞が低減されたシリコン単結晶を製造することができる酸素縞平坦化製造条件を決定することができる。   With such a ratio Δt / M, it is possible to determine the oxygen fringe flattening manufacturing conditions that can more reliably manufacture a silicon single crystal with reduced oxygen fringes.

また、本発明は、上記の酸素縞平坦化操業条件の決定方法を用いて前記比Δt/Mの条件を予め決定し、該決定した比Δt/Mの条件に基づいて、磁場印加チョクラルスキー法によりシリコン単結晶を育成することを特徴とするシリコン単結晶の製造方法を提供する。   Further, the present invention determines the condition of the ratio Δt / M in advance by using the above-described method for determining the oxygen fringe flattening operation condition, and based on the determined condition of the ratio Δt / M, applies a magnetic field application Czochralski. A method for producing a silicon single crystal, which comprises growing a silicon single crystal by a method.

このようなシリコン単結晶の製造方法であれば、予め決定された比Δt/Mの条件を用いることで、酸素縞が低減されたシリコン単結晶を製造することができる。   According to such a method of manufacturing a silicon single crystal, a silicon single crystal with reduced oxygen fringes can be manufactured by using a condition of a predetermined ratio Δt / M.

また、本発明は、酸素を含むシリコン単結晶ウェーハであって、該シリコン単結晶ウェーハの6mm間隔の酸素濃度勾配値の面内最大値が0.04(ppma−JEIDA/mm)以下であることを特徴とするシリコン単結晶ウェーハを提供する。   Further, the present invention relates to a silicon single crystal wafer containing oxygen, wherein the in-plane maximum value of the oxygen concentration gradient value at 6 mm intervals of the silicon single crystal wafer is 0.04 (ppma-JEIDA / mm) or less. The present invention provides a silicon single crystal wafer characterized by the following.

このようなシリコン単結晶ウェーハであれば、酸素濃度勾配値の面内最大値が0.04(ppma−JEIDA/mm)以下と小さく、酸素濃度のムラが十分に抑制されているため、撮像素子を作製しても画像ムラなどの不良が少なく、デバイスに適したものとなる。   With such a silicon single crystal wafer, the in-plane maximum value of the oxygen concentration gradient value is as small as 0.04 (ppma-JEIDA / mm) or less, and the unevenness of the oxygen concentration is sufficiently suppressed. Even if it is manufactured, there are few defects such as image unevenness, and it is suitable for a device.

以上のように、本発明の酸素縞平坦化製造条件の決定方法は、比Δt/Mと比Δt/Mで育成されたシリコン単結晶中の酸素縞との相関関係を求め、この相関関係に基づいて所望のシリコン単結晶が得られる比Δt/Mの条件を設定し、シリコン単結晶の酸素縞平坦化製造条件を決定する。これにより、MCZ法によりシリコン単結晶を製造する際に、上記酸素縞平坦化製造条件を用いることで、酸素縞が低減されたシリコン単結晶を製造可能となる酸素縞平坦化製造条件を決定することができる。
また、本発明のシリコン単結晶ウェーハであれば、酸素濃度勾配値の面内最大値が0.04(ppma−JEIDA/mm)以下であるため、撮像素子を作製しても画像ムラなどの不良が少なく、デバイスに適したものとなる。
As described above, the method for determining the oxygen fringe flattening manufacturing condition of the present invention determines the correlation between the ratio Δt / M and the oxygen fringe in the silicon single crystal grown at the ratio Δt / M, and determines the correlation. The conditions for the ratio Δt / M at which a desired silicon single crystal is obtained are set based on this, and the oxygen fringe flattening production conditions for the silicon single crystal are determined. Thereby, when manufacturing the silicon single crystal by the MCZ method, the above-described oxygen fringe flattening manufacturing condition is used to determine the oxygen fringe flattening manufacturing condition that enables the manufacturing of the silicon single crystal with reduced oxygen fringe. be able to.
In addition, in the case of the silicon single crystal wafer of the present invention, since the in-plane maximum value of the oxygen concentration gradient value is 0.04 (ppma-JEIDA / mm) or less, even if an imaging device is manufactured, defects such as image unevenness will occur. Less and suitable for the device.

実験例1及び実験例2において、FT−IR法により2mmピッチで測定した酸素濃度面内分布を示す図である。It is a figure which shows the oxygen concentration in-plane distribution measured by 2 mm pitch by FT-IR method in Experimental example 1 and Experimental example 2. 実験例1及び実験例2において、酸素濃度面内分布から得た6mm間隔の酸素濃度勾配値の面内分布を示す図である。FIG. 9 is a diagram showing the in-plane distribution of oxygen concentration gradient values at 6 mm intervals obtained from the in-plane distribution of oxygen concentration in Experimental Examples 1 and 2. 一般的なシリコン単結晶育成装置の概略図である。It is the schematic of the general silicon single crystal growing apparatus. 実験例で求めた酸素縞指標(酸素濃度勾配の最大値)を比Δt/Mに対してプロットした図である。FIG. 9 is a diagram in which the oxygen fringe index (the maximum value of the oxygen concentration gradient) obtained in the experimental example is plotted with respect to the ratio Δt / M.

以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to the drawings as an example of an embodiment, but the present invention is not limited to this.

上述のように、MCZ法によるシリコン単結晶の製造において、シリコン単結晶の酸素縞をさらに低減することが望まれているが、従来の方法では、近年の撮像素子、メモリー、CPU、及び、太陽電池向け材料の特性の向上に十分と言えるようなシリコン単結晶を製造することは困難であった。   As described above, in the production of a silicon single crystal by the MCZ method, it is desired to further reduce oxygen fringes in the silicon single crystal. However, in the conventional method, a recent imaging device, memory, CPU, It has been difficult to produce silicon single crystals that can be said to be sufficient for improving the properties of materials for batteries.

本発明者は、このような問題について鋭意検討を重ねたところ、予め、シリコン溶融液の最高温度と最低温度との温度差と磁場強度から酸素縞平坦化製造条件を決定し、その酸素縞平坦化製造条件を用いてシリコン単結晶を製造すれば、酸素縞が低減されたシリコン単結晶を製造することが可能となることに想到し、本発明を完成させた。   The present inventor has conducted intensive studies on such a problem, and previously determined the oxygen fringe flattening manufacturing conditions from the temperature difference between the highest temperature and the lowest temperature of the silicon melt and the magnetic field intensity, and determined the oxygen fringe flattening condition. It has been conceived that if a silicon single crystal is manufactured using the chemical manufacturing conditions, a silicon single crystal with reduced oxygen fringes can be manufactured, and the present invention has been completed.

即ち、本発明は、磁場印加チョクラルスキー法によるシリコン単結晶の製造におけるシリコン単結晶の酸素縞平坦化製造条件の決定方法であって、
シリコン溶融液の最高温度と最低温度との温度差をΔt、
磁場強度をMとして、
前記Δtと前記Mとの比Δt/Mを算出し、
該比Δt/Mと前記比Δt/Mで育成されたシリコン単結晶中の酸素縞との相関関係を求め、該相関関係に基づいて所望のシリコン単結晶が得られる比Δt/Mの条件を設定し、シリコン単結晶の酸素縞平坦化製造条件を決定することを特徴とする酸素縞平坦化製造条件の決定方法である。
That is, the present invention is a method for determining the production condition of oxygen fringe flattening of silicon single crystal in the production of silicon single crystal by magnetic field application Czochralski method,
Δt is the temperature difference between the highest temperature and the lowest temperature of the silicon melt.
When the magnetic field strength is M,
Calculating a ratio Δt / M between the Δt and the M,
The correlation between the ratio Δt / M and oxygen fringes in the silicon single crystal grown at the ratio Δt / M is determined, and based on the correlation, the condition of the ratio Δt / M at which a desired silicon single crystal is obtained is determined. This is a method for determining oxygen fringe flattening manufacturing conditions, wherein the conditions are set and oxygen fringe flattening manufacturing conditions for silicon single crystal are determined.

このような本発明の酸素縞平坦化製造条件の決定方法は、比Δt/Mと比Δt/Mで育成されたシリコン単結晶中の酸素縞との相関関係を求め、この相関関係に基づいて所望のシリコン単結晶が得られる比Δt/Mの条件を設定し、シリコン単結晶の酸素縞平坦化製造条件を決定する。これにより、MCZ法によりシリコン単結晶を製造する際に、上記酸素縞平坦化製造条件を用いることで、酸素縞が低減されたシリコン単結晶を製造可能となる酸素縞平坦化製造条件を決定することができる。   Such a method for determining the oxygen fringe flattening manufacturing condition of the present invention obtains a correlation between the ratio Δt / M and oxygen fringes in the silicon single crystal grown at the ratio Δt / M, and based on the correlation. The conditions for the ratio Δt / M to obtain a desired silicon single crystal are set, and the production conditions for flattening oxygen stripes of the silicon single crystal are determined. Thereby, when manufacturing the silicon single crystal by the MCZ method, the above-described oxygen fringe flattening manufacturing condition is used to determine the oxygen fringe flattening manufacturing condition that enables the manufacturing of the silicon single crystal with reduced oxygen fringe. be able to.

特許文献1に記載されるように、酸素縞を抑制するためにはシリコン溶融液(メルト)の対流速度を抑制することが好ましい。流体においては、主に温度が原因となり不均一性が生ずるため流動が生ずる。従って、この対流の強さは温度差に依存する。つまり、メルトの最高温度と最低温度との差Δtが小さければ小さいほど、対流を抑制すると考えられる。一方MCZ法では磁場を印加することにより対流を抑制しているが、この磁場強度Mが強ければ強いほど対流を抑制することができると考えられる。   As described in Patent Document 1, in order to suppress oxygen stripes, it is preferable to suppress the convection velocity of a silicon melt (melt). Fluids flow due to non-uniformity mainly due to temperature. Therefore, the strength of this convection depends on the temperature difference. That is, it is considered that the smaller the difference Δt between the maximum temperature and the minimum temperature of the melt is, the more the convection is suppressed. On the other hand, in the MCZ method, convection is suppressed by applying a magnetic field. However, it is considered that convection can be suppressed as the magnetic field intensity M increases.

従って、この2つのパラメータの比Δt/Mを取ることで、対流の強さを予想することが可能であると考えられる。つまり、比Δt/Mが小さい条件を選定すれば、対流が強くない操業が可能となり、ひいては酸素縞が抑制された製造条件を決定することが可能となる。   Therefore, it is considered that the strength of convection can be estimated by taking the ratio Δt / M between these two parameters. That is, if a condition with a small ratio Δt / M is selected, an operation with low convection is possible, and thus, it is possible to determine a production condition in which oxygen stripes are suppressed.

ここで、操業上の制約条件は、メルトの最高温度と最低温度との差Δtと磁場強度Mの2つだけである。結晶成長速度、結晶の回転速度、ルツボの回転速度、引上機内の炉内圧や結晶育成時に流される不活性ガス量など、微小な酸素濃度分布以外の、例えば巨視的な酸素分布や結晶欠陥などの結晶品質に大きく影響する操業パラメータへの制約はない。もちろん、これらの操業パラメータが微小な酸素濃度分布にも影響を与えることは否定しないが、より大きな影響を与える温度差Δtと磁場強度Mを規定しているので、これらの操業パラメータを用いて微小な酸素濃度分布以外の品質を制御することは基本的に自由に行なうことが可能である。   Here, there are only two operational constraints: the difference Δt between the maximum and minimum temperatures of the melt and the magnetic field strength M. Other than minute oxygen concentration distribution, such as crystal growth speed, crystal rotation speed, crucible rotation speed, furnace pressure in the pulling machine and the amount of inert gas flowing during crystal growth, for example, macroscopic oxygen distribution and crystal defects There are no restrictions on operating parameters that have a significant effect on the crystal quality of. Of course, it is not denied that these operation parameters also affect the minute oxygen concentration distribution, but since the temperature difference Δt and the magnetic field strength M that have a greater effect are defined, the minute difference can be obtained by using these operation parameters. It is basically possible to freely control the quality other than the optimum oxygen concentration distribution.

また、このとき、前記比Δt/Mの算出を、シリコン単結晶の製造に用いる引上機構成において、初期融液量における石英ルツボの温度分布をシミュレーションにより求め、該求めた石英ルツボの温度分布の最高温度を前記シリコン溶融液の最高温度とし、固液界面での温度を前記シリコン溶融液の最低温度とし、その差分を前記Δt、前記シリコン溶融液の中心磁場強度を前記Mとして算出することが好ましい。   At this time, the calculation of the ratio Δt / M is performed by calculating the temperature distribution of the quartz crucible in the initial melt amount by simulation in a pulling machine configuration used for manufacturing a silicon single crystal, and calculating the calculated temperature distribution of the quartz crucible. The highest temperature of the silicon melt, the temperature at the solid-liquid interface as the lowest temperature of the silicon melt, the difference is Δt, and the central magnetic field strength of the silicon melt is M. Is preferred.

比Δt/Mをこのように算出すれば、シリコン単結晶の酸素縞平坦化製造条件を精度よく決定することができる。   By calculating the ratio Δt / M in this way, it is possible to accurately determine the oxygen fringe flattening production conditions of the silicon single crystal.

対流の強さは、先に示したように、Δt/Mである程度予想される。ただし、単純にこの数値だけで対流の強さが決まるわけではなく、メルトの量にも依存する。つまりメルトの量が多ければ対流が強くなるし、メルトの量が少なければ対流が弱くなる。従って、対流が最も強いと考えられる初期融液量の状態でΔt/Mを計算することが好ましい。   The strength of convection is expected to some extent at Δt / M, as indicated above. However, the strength of convection is not determined simply by this value, but also depends on the amount of melt. That is, if the amount of the melt is large, the convection becomes strong, and if the amount of the melt is small, the convection becomes weak. Therefore, it is preferable to calculate Δt / M in the state of the initial melt amount that is considered to have the strongest convection.

また、Δtを求めるために、温度を実測することができればそれに越したことはないが、一般的には、メルト中の最高温度の位置を探し出して温度を実測することはほぼ不可能である。従って、シミュレーションを用いて求めることが現実的である。   Further, if it is possible to actually measure the temperature in order to obtain Δt, there is nothing beyond that, but in general, it is almost impossible to find the position of the highest temperature in the melt and measure the temperature. Therefore, it is realistic to obtain the value using a simulation.

また、CZ法では、一般的に黒鉛ルツボに入れられた石英ルツボの中にメルトが入れられている。これを黒鉛ルツボの外側からヒーターで加熱している。従って、一般にメルト中の最高温度を示す点は石英ルツボと接触している点である。   In the CZ method, a melt is generally placed in a quartz crucible placed in a graphite crucible. This is heated from outside the graphite crucible with a heater. Therefore, generally, the point indicating the highest temperature in the melt is the point in contact with the quartz crucible.

従って、ここではシミュレーションによる石英ルツボの最高温度をメルト最高温度として用いることが可能である。これは計算のための要素が多い(つまりは3次元シミュレーションであれば容積、2次元シミュレーションであれば断面積の大きい)メルトでの最高温度を求めるよりは、計算のための要素が少ない石英ルツボでの最高温度を求める方が簡単であるからである。もちろん、きちんとメルト最高温度を求めて、その温度を用いても良いことは明らかである。   Therefore, the maximum temperature of the quartz crucible obtained by simulation can be used as the maximum melt temperature. This is a quartz crucible with fewer elements for calculation than calculating the maximum temperature at the melt, which has many elements for calculation (that is, a volume for a three-dimensional simulation and a large cross-sectional area for a two-dimensional simulation). It is easier to find the maximum temperature at Of course, it is apparent that the maximum melt temperature may be properly determined and that temperature may be used.

一方、メルトの最低温度としては、固液界面の温度を用いることができる。一般に固液界面は液体と固体が接触している部分で、温度としては融点であり、メルト中で最も温度が低いと考えられる。従って、固液界面での温度、つまり融点をメルト最低温度として用い、メルト最高温度(ここではシミュレーションで求めた石英ルツボの最高温度で代用した温度)との差分をΔtとして用いることができる。もちろん、きちんとシミュレーションでメルト最低温度を求めて、その温度を用いても良いことは明らかである。   On the other hand, as the minimum temperature of the melt, the temperature at the solid-liquid interface can be used. Generally, a solid-liquid interface is a portion where a liquid and a solid are in contact, and has a melting point as a temperature, and is considered to be the lowest temperature in a melt. Therefore, the temperature at the solid-liquid interface, that is, the melting point can be used as the minimum melt temperature, and the difference from the maximum melt temperature (here, the maximum temperature of the quartz crucible obtained by simulation) can be used as Δt. Of course, it is clear that the lowest melt temperature may be obtained by a proper simulation and that temperature may be used.

更に、磁場強度Mとしてメルトの中心磁場強度を用いることができる。メルトにかけられる磁場強度は、一般に分布を持っている。従って、より正確に計算を行なうためには、メルトにかかる、しかも、対流の向きを考慮した磁場成分を、メルト全体に対して積分したような値を、対流を抑制する実効的な磁場強度として用いることが考えられる。しかし現実的にはそれを一々計算することは容易ではない。従って、ここではメルトの中心磁場強度を、対流を抑制する能力と仮定してΔt/Mの比を算出し、この値が小さい条件を酸素縞を平坦化する製造条件として求めることができる。   Further, the central magnetic field strength of the melt can be used as the magnetic field strength M. The magnetic field strength applied to the melt generally has a distribution. Therefore, in order to perform the calculation more accurately, a value obtained by integrating the magnetic field component applied to the melt and considering the direction of the convection with respect to the entire melt as an effective magnetic field intensity for suppressing the convection is used. It can be used. However, it is not easy to calculate them one by one. Therefore, here, the ratio of Δt / M is calculated assuming that the central magnetic field strength of the melt is the ability to suppress convection, and a condition in which this value is small can be obtained as a manufacturing condition for flattening oxygen stripes.

温度差Δtは基本的に引上機構成で決まるため、操業中に大きく変化することはない。もちろん、正確には、結晶育成に伴うメルトの減少によりΔtは変化するが、ここでは最も対流が強い初期融液量の条件でシミュレーションして決定するので、メルト量が減っていく分には、酸素縞が悪化する方向にはなりにくい。従って、例えば操業中に磁場強度を低下させることも可能である。   Since the temperature difference Δt is basically determined by the structure of the lifting machine, it does not greatly change during operation. Of course, to be precise, Δt changes due to a decrease in the melt accompanying the crystal growth, but here, it is determined by simulation under the condition of the initial melt amount where the convection is strongest. It is unlikely that oxygen stripes will deteriorate. Thus, for example, it is also possible to reduce the magnetic field strength during operation.

また、前記比Δt/Mで育成されたシリコン単結晶中の酸素縞を、前記比Δt/Mで育成されたシリコン単結晶から切出したシリコン単結晶ウェーハサンプルをFT−IR法を用いて2mmピッチで酸素濃度を測定することで取得し、該測定した酸素濃度の6mm間隔の酸素濃度勾配値を求め、該求めた酸素濃度勾配値の面内最大値が0.04(ppma−JEIDA/mm)以下となるように比Δt/Mの条件を設定することが好ましい。   Further, a silicon single crystal wafer sample obtained by cutting out oxygen fringes in the silicon single crystal grown at the above-mentioned ratio Δt / M from the silicon single crystal grown at the above-mentioned ratio Δt / M by 2 mm pitch using the FT-IR method. The oxygen concentration gradient is obtained by measuring the oxygen concentration at 6 mm intervals of the measured oxygen concentration, and the maximum in-plane value of the determined oxygen concentration gradient is 0.04 (ppma-JEIDA / mm). It is preferable to set the condition of the ratio Δt / M so as to be as follows.

比Δt/Mの条件をこのように設定すれば、より確実に酸素縞が低減されたシリコン単結晶を製造することができる酸素縞平坦化製造条件を決定することができる。
以下、実験例を用いて、そのことを説明する。
By setting the condition of the ratio Δt / M in this way, it is possible to determine the oxygen fringe flattening production conditions that can more reliably produce a silicon single crystal with reduced oxygen fringes.
Hereinafter, this will be described using experimental examples.

(実験例)
図3に概略図を示した引上機構成のシリコン単結晶育成装置を用い、内径が約780mm石英ルツボを用いて、MCZ法により、種々の最終製品直径が300mmであるシリコン単結晶を育成した。
(Experimental example)
Using a silicon single crystal growing apparatus of a pulling machine configuration schematically shown in FIG. 3, using a quartz crucible having an inner diameter of about 780 mm, various silicon single crystals having a final product diameter of 300 mm were grown by the MCZ method. .

図3に示すシリコン単結晶育成装置14の外観は、メインチャンバー1、トップチャンバー11、これに連通する引上げチャンバー2で構成されている。メインチャンバー1の内部には、黒鉛ルツボ6及び石英ルツボ5が設置されている。黒鉛ルツボ6及び石英ルツボ5を囲むように加熱ヒーター7が設けられており、加熱ヒーター7によって、石英ルツボ5内に収容された原料シリコン多結晶が溶融されて原料融液4とされる。また、断熱部材8が設けられており、ヒーター7からの輻射熱のメインチャンバー1等への影響を防いでいる。   The external appearance of the silicon single crystal growing apparatus 14 shown in FIG. 3 includes a main chamber 1, a top chamber 11, and a pulling chamber 2 communicating with the main chamber. A graphite crucible 6 and a quartz crucible 5 are provided inside the main chamber 1. A heater 7 is provided so as to surround the graphite crucible 6 and the quartz crucible 5, and the material silicon 4 contained in the quartz crucible 5 is melted by the heater 7 to form a raw material melt 4. Further, a heat insulating member 8 is provided to prevent the radiant heat from the heater 7 from affecting the main chamber 1 and the like.

また、MCZ法によって結晶を育成するに際し、不図示の磁場印加装置によって磁場を印加する。   In growing a crystal by the MCZ method, a magnetic field is applied by a magnetic field application device (not shown).

原料融液4の融液面上では遮蔽部材13が、融液面に所定間隔で対向配置され、原料融液4の融液面からの輻射熱を遮断している。このルツボ中に種結晶を浸漬した後、本発明の酸素縞平坦化製造条件の決定方法により求めた条件下で、原料融液(メルト)4から棒状の単結晶棒3が引き上げられる。ルツボは結晶成長軸方向に昇降可能であり、単結晶の成長が進行して減少した原料融液4の液面下降分を補うように、成長中にルツボを上昇させることにより、原料融液4の融液面の高さはおおよそ一定に保たれる。   On the melt surface of the raw material melt 4, a shielding member 13 is arranged opposite to the melt surface at a predetermined interval, and shields radiant heat from the melt surface of the raw material melt 4. After the seed crystal is immersed in this crucible, the rod-shaped single crystal rod 3 is pulled up from the raw material melt (melt) 4 under the conditions determined by the method for determining the production conditions for oxygen fringe flattening of the present invention. The crucible can be moved up and down in the direction of the crystal growth axis, and the crucible is raised during growth so as to compensate for the decrease in the liquid level of the raw material melt 4 which has been reduced by the growth of the single crystal. The height of the melt surface is kept approximately constant.

さらに、単結晶育成時にパージガスとしてアルゴンガス等の不活性ガスが、ガス導入口10から導入され、引き上げ中の単結晶棒3とガスパージ筒12との間を通過した後、遮蔽部材13と原料融液4の融液面との間を通過し、ガス流出口9から排出している。導入するガスの流量と、不図示のポンプや弁によるガスの排出量を制御することにより、引上げ中のチャンバー内の圧力が制御される。   Further, an inert gas such as an argon gas is introduced as a purge gas from the gas inlet 10 during the growth of the single crystal, passes between the single crystal rod 3 being pulled up and the gas purge cylinder 12, and then the shielding member 13 and the raw material The liquid 4 passes between the surface of the melt and the gas 4 and is discharged from the gas outlet 9. By controlling the flow rate of the gas to be introduced and the amount of gas discharged by a pump or a valve (not shown), the pressure in the chamber during pulling is controlled.

シリコン単結晶育成装置の概略図としては図3の通りだが、実際には引上機の中にセットされるHZは種々のタイプがある。そこでシリコン単結晶製造に用いたそれぞれの引上機構成の初期融液量における温度分布を、FEMAG(総合伝熱解析ソフト:F.Dupret, P.Nicodeme, Y.Ryckmans, P.Wouters, and M.J.Crochet, Int. J. Heat Mass Transfer, 33, 1849(1990))を用いた総合伝熱解析により求めた。   FIG. 3 is a schematic diagram of the silicon single crystal growing apparatus, but there are actually various types of HZ set in the pulling machine. Therefore, the temperature distribution in the initial melt amount of each puller configuration used for the production of the silicon single crystal was calculated by FEMAG (F. Dupret, P. Nicodeme, Y. Ryckmans, P. Waters, and M). J. Crochet, Int. J. Heat Mass Transfer, 33, 1849 (1990)).

シミュレーションにより求められた石英ルツボの最高温度をシリコン溶融液の最高温度とし、シリコンの融点といわれる1685K(1412℃)との差分をΔtとして求めた。その結果、この実験例に用いた引上機構成での初期融液量におけるΔtは125〜185(K)の範囲で振れていた。またシリコン単結晶を育成した際の磁場強度Mはシリコン溶融液の中心磁場強度とし、中心磁場強度は2500−4000gaussの範囲で振った。なお、ここでは中心磁場強度を結晶育成中に変更せず、一定としてシリコン単結晶製造した。これらの結果を用いて、各結晶を育成した製造条件での比Δt/Mを算出した。   The maximum temperature of the quartz crucible obtained by the simulation was taken as the maximum temperature of the silicon melt, and the difference from the melting point of silicon, 1685 K (1412 ° C.), was found as Δt. As a result, Δt in the initial melt amount in the structure of the pulling machine used in this experimental example fluctuated in the range of 125 to 185 (K). The magnetic field strength M when growing a silicon single crystal was the central magnetic field strength of the silicon melt, and the central magnetic field strength was varied in the range of 2500 to 4000 gauss. Here, a silicon single crystal was manufactured without changing the central magnetic field strength during crystal growth. Using these results, the ratio Δt / M under the production conditions under which each crystal was grown was calculated.

これらのシリコン単結晶をFT−IR法を用いて評価した。その評価方法は以下の通りである。まず育成したシリコン単結晶から切出したおよそ1mm厚さのシリコン単結晶ウェーハサンプルに鏡面加工を施した後、1/4形状に分割した。次に、FT−IR法により、シリコン単結晶ウェーハサンプルの径方向に2mmピッチで走査させ、1107cm−1にある格子間酸素に起因するピークを用いて格子間酸素濃度を測定した。その際、空間分解能がmmオーダーである一般的なFT−IR法ではなく、所謂顕微FT−IR法やμFT−IR法などと呼ばれる方法で、空間分解能を100μm×100μmとし、酸素濃度の測定ばらつきを0.01ppma以下に抑えて測定した。これは、1つの測定点がmmオーダー領域の平均値となってしまう空間分解能がmmオーダーの測定法よりも、所謂顕微FT−IR法やμFT−IR法などと呼ばれる方法の方が、mmオーダーの酸素濃度勾配をより正確に求められるためである。 These silicon single crystals were evaluated using the FT-IR method. The evaluation method is as follows. First, a silicon single crystal wafer sample having a thickness of about 1 mm cut out from a grown silicon single crystal was mirror-finished and then divided into quarters. Next, the silicon single crystal wafer sample was scanned at a pitch of 2 mm in the radial direction by the FT-IR method, and the interstitial oxygen concentration was measured using a peak at 1107 cm −1 caused by interstitial oxygen. At that time, the spatial resolution was set to 100 μm × 100 μm by a method called a so-called micro FT-IR method or μFT-IR method instead of a general FT-IR method having a spatial resolution of the order of mm, and the measurement variation of the oxygen concentration was measured. Was controlled to 0.01 ppma or less. This is because a method called a so-called micro FT-IR method or μFT-IR method has an order of magnitude smaller than a measurement method in which the spatial resolution, in which one measurement point is an average value in the mm order region, is mm order. This is because the oxygen concentration gradient can be obtained more accurately.

このとき、シリコン単結晶ウェーハサンプルのサンプル端部ではエッジの影響等により値が不正確な場合があるので、公正を期すために、外周部、サンプル端部の十数mm程度の値は省いた。この測定方法で求められた酸素濃度値から6mm間隔の酸素濃度勾配を求め、その面内の最大値を酸素縞指標として求めた。   At this time, the value of the sample edge portion of the silicon single crystal wafer sample may be incorrect due to the influence of the edge and the like. . An oxygen concentration gradient at 6 mm intervals was obtained from the oxygen concentration value obtained by this measurement method, and the maximum value in the plane was obtained as an oxygen fringe index.

特許文献3にあるように酸素縞による撮像素子等のデバイスへの悪影響を抑えるため4−10mmの酸素濃度勾配を抑制することが重要である。図1には、実験例に記載した評価方法を用いて、FT−IR法により測定した2mmピッチの酸素濃度面内分布を示した。図2には、この測定値から求められた6mm間隔の酸素濃度勾配の面内分布を示した。   As described in Patent Document 3, it is important to suppress the oxygen concentration gradient of 4 to 10 mm in order to suppress adverse effects on devices such as an image sensor due to oxygen fringes. FIG. 1 shows the in-plane oxygen concentration distribution at a pitch of 2 mm measured by the FT-IR method using the evaluation method described in the experimental example. FIG. 2 shows the in-plane distribution of the oxygen concentration gradient at 6 mm intervals obtained from the measured values.

上記実験例のそれぞれの引上機構成において、Δt及びMを振って引き上げたシリコン単結晶のうち、FT−IR法による評価で、小さな酸素濃度の面内変動を示す一例を実験例1、実験例1よりも大きな酸素濃度の面内変動を示す別の一例を実験例2として図1及び2に示した。   In each of the puller configurations of the above experimental examples, among the silicon single crystals pulled up by shaking Δt and M, an example showing a small in-plane variation of oxygen concentration by the FT-IR method is shown in Experimental Examples 1 and 2. Another example showing a larger in-plane variation in oxygen concentration than in Example 1 is shown in FIGS.

実験例1に示したシリコン単結晶は酸素濃度の面内変動が小さい結晶であり、このシリコン単結晶から切出されたシリコン単結晶ウェーハで撮像素子を作製したところ、酸素縞起因と思われる不良は発生しなかった。一方で実験例2に示したシリコン単結晶は酸素濃度の面内変動が大きい結晶であり、この結晶から切出されたシリコン単結晶ウェーハで撮像素子を作製したところ、酸素縞起因と思われる不良が発生した。しかし、実験例2のシリコン単結晶においても全量不良というわけではなく、部分的な不良であった。その不良分布と図2の分布との比較から、6mm間隔の酸素濃度勾配がおおよそ0.05(ppma−JEIDA/mm)以上の大きい部分で不良が発生しており、0.03(ppma−JEIDA/mm)以下の小さい部分では不良が発生していないように分析された。   The silicon single crystal shown in Experimental Example 1 was a crystal in which the in-plane variation of the oxygen concentration was small. When an image sensor was manufactured using a silicon single crystal wafer cut from this silicon single crystal, a defect considered to be caused by oxygen fringes was obtained. Did not occur. On the other hand, the silicon single crystal shown in Experimental Example 2 is a crystal in which the in-plane variation of the oxygen concentration is large. When an image sensor was manufactured using a silicon single crystal wafer cut out from this crystal, a defect considered to be caused by oxygen fringes was obtained. There has occurred. However, even in the silicon single crystal of Experimental Example 2, the total amount was not defective, but was a partial defect. From the comparison between the defect distribution and the distribution shown in FIG. 2, a defect occurred at a large portion where the oxygen concentration gradient at intervals of 6 mm was approximately 0.05 (ppma-JEIDA / mm) or more, and 0.03 (ppma-JEIDA). / Mm) was analyzed so that no defect occurred in a small portion.

従って、育成された結晶の酸素濃度勾配値の最大値(酸素縞指標)が0.04(ppma−JEIDA/mm)以下であるようなウェーハでは、酸素濃度勾配値が0.03(ppma−JEIDA/mm)以上になる箇所はほとんどなく、その平均値は十分に小さいので、撮像素子作製に適したウェーハであると考えられる。   Therefore, in a wafer in which the maximum value of the oxygen concentration gradient value (oxygen fringe index) of the grown crystal is 0.04 (ppma-JEIDA / mm) or less, the oxygen concentration gradient value is 0.03 (ppma-JEIDA). / Mm) or more, and the average value is sufficiently small, so it is considered that the wafer is suitable for manufacturing an imaging device.

また、従来、酸素濃度勾配値を0.02(ppma−JEIDA/mm)以下まで低くすることは困難であったが、本発明の方法であれば、図2の実験例1に示されるように、酸素縞指標が0.02(ppma−JEIDA/mm)以下と極めて良好なシリコン単結晶ウェーハを作製することができる。   Conventionally, it was difficult to lower the oxygen concentration gradient value to 0.02 (ppma-JEIDA / mm) or less. However, according to the method of the present invention, as shown in Experimental Example 1 in FIG. An extremely good silicon single crystal wafer having an oxygen fringe index of 0.02 (ppma-JEIDA / mm) or less can be produced.

また、前記比Δt/Mを、0.05(K/gauss)以下とすることが好ましい。   Further, the ratio Δt / M is preferably set to 0.05 (K / gauss) or less.

このような比Δt/Mとすれば、より確実に酸素縞を低減されたシリコン単結晶を製造することができる酸素縞平坦化製造条件を決定することができる。   With such a ratio Δt / M, it is possible to determine the oxygen fringe flattening manufacturing conditions that can more reliably manufacture a silicon single crystal with reduced oxygen fringes.

上記実験例の方法で求めたΔt及びMを振ったそれぞれの引上機構成での酸素縞指標を比Δt/Mに対してプロットした。図4に結果を示すように、シミュレーションに用いた総合伝熱解析ソフトFEMAGを用いて計算したΔtと、磁場強度Mとしての中心磁場強度との比のΔt/Mに対して、酸素縞指標をプロットすると、両者の間には良い相関があった。図4の点線で示される相関関係から、比Δt/Mが0.05(K/gauss)程度以下であれば、酸素濃度指標0.04(ppma−JEIDA/mm)以下であるシリコン単結晶を得られることがわかった。従ってΔt/Mが0.05(K/gauss)以下である製造条件とすることが好ましい。   The oxygen fringe indices in the respective puller configurations obtained by varying Δt and M obtained by the method of the above experimental example were plotted against the ratio Δt / M. As shown in FIG. 4, the oxygen fringe index is calculated based on the ratio Δt / M between Δt calculated using the integrated heat transfer analysis software FEMAG used for the simulation and the central magnetic field intensity M as the magnetic field intensity M. When plotted, there was a good correlation between the two. From the correlation shown by the dotted line in FIG. 4, if the ratio Δt / M is about 0.05 (K / gauss) or less, a silicon single crystal having an oxygen concentration index of 0.04 (ppma-JEIDA / mm) or less can be obtained. It turned out to be obtained. Therefore, it is preferable to set the production conditions such that Δt / M is 0.05 (K / gauss) or less.

なお中心磁場強度は、対流抑制の効果を十分に得るため、最低でも500gauss以上あることが好ましい。一方で、中心磁場強度は6000gauss以下が好ましい。このような磁場強度であれば、対流が抑制されすぎてメルト内に酸素濃度の不均一が蓄積され、それが印加している磁場強度で抑えきれなくなったときに、一挙に開放されて逆に不均一性が増強される現象の発生を防止することができる。またΔtは、最低でも50K以上あることが望ましい。このようなΔtであれば、結晶育成中に固化が発生してしまうこともない。またメルト最高温度、つまりはルツボ最高温度を、ルツボ軟化点以下とすることが好ましい。これにより、ルツボの軟化も抑制できる。   The central magnetic field strength is preferably at least 500 gauss or more in order to sufficiently obtain the effect of suppressing convection. On the other hand, the central magnetic field strength is preferably 6000gauss or less. With such a magnetic field strength, when convection is suppressed too much and oxygen concentration non-uniformity is accumulated in the melt and cannot be suppressed by the applied magnetic field strength, it is opened at once and conversely The occurrence of a phenomenon in which the non-uniformity is enhanced can be prevented. It is desirable that Δt is at least 50K or more. With such Δt, no solidification occurs during crystal growth. Further, it is preferable that the maximum melt temperature, that is, the maximum crucible temperature be equal to or lower than the crucible softening point. Thereby, softening of the crucible can also be suppressed.

ただし、ここで示した温度は、本発明者が計算に用いた条件の下で計算値である。これらの値は計算条件によって、大きく変化するので、ここで示した値は絶対的なものではなく、あくまで参考値であり、このような考え方の操業条件決定法は、全てこの技術の範疇に入る。   However, the temperatures shown here are calculated values under the conditions used for calculation by the present inventors. Since these values greatly change depending on the calculation conditions, the values shown here are not absolute values, but are only reference values, and all the operating condition determination methods based on such a concept fall into the category of this technology. .

また、本発明は、上記の酸素縞平坦化操業条件の決定方法を用いて前記比Δt/Mの条件を予め決定し、該決定した比Δt/Mの条件に基づいて、磁場印加チョクラルスキー法によりシリコン単結晶を育成することを特徴とするシリコン単結晶の製造方法を提供する。   Further, the present invention determines the condition of the ratio Δt / M in advance by using the above-described method for determining the oxygen fringe flattening operation condition, and based on the determined condition of the ratio Δt / M, applies a magnetic field application Czochralski. A method for producing a silicon single crystal, which comprises growing a silicon single crystal by a method.

このようなシリコン単結晶の製造方法であれば、予め決定された比Δt/Mの条件を用いることで、酸素縞が低減されたシリコン単結晶を製造することができる。   According to such a method of manufacturing a silicon single crystal, a silicon single crystal with reduced oxygen fringes can be manufactured by using a condition of a predetermined ratio Δt / M.

シリコン単結晶の製造方法で用いる製造装置は、例えば、上記した図3のシリコン単結晶育成装置14を用いることができる。   As a manufacturing apparatus used in the method for manufacturing a silicon single crystal, for example, the above-described silicon single crystal growing apparatus 14 in FIG. 3 can be used.

また、本発明は、酸素を含むシリコン単結晶ウェーハであって、該シリコン単結晶ウェーハの6mm間隔の酸素濃度勾配値の面内最大値が0.04(ppma−JEIDA/mm)以下であることを特徴とするシリコン単結晶ウェーハを提供する。   Further, the present invention relates to a silicon single crystal wafer containing oxygen, wherein the in-plane maximum value of the oxygen concentration gradient value at 6 mm intervals of the silicon single crystal wafer is 0.04 (ppma-JEIDA / mm) or less. The present invention provides a silicon single crystal wafer characterized by the following.

酸素縞指標が0.04(ppma−JEIDA/mm)以下であれば、撮像素子を作製しても画像ムラなどの不良が少なく、デバイスに適したウェーハであると言えるし、酸素縞指標が0.04(ppma−JEIDA/mm)を超えるウェーハは、撮像素子を作製すると画像ムラなどの不良が発生し、デバイスに適したウェーハではないと言える。   If the oxygen fringe index is 0.04 (ppma-JEIDA / mm) or less, it can be said that the wafer is suitable for a device with few defects such as image unevenness even when an imaging device is manufactured. Wafers exceeding 0.04 (ppma-JEIDA / mm) cause defects such as image unevenness when an imaging device is manufactured, and can be said to be not suitable for devices.

以下、実施例及び比較例を示して、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

(実施例1)
図4の関係から、酸素縞が平坦化された良好な結晶を得ることを行なった。実験例に用いた引上機構成の中からFEMAGを用いて計算した初期融液量における温度差Δt=137.4(K)であるHZ(ホットゾーン)構成のものを用いて、中心磁場強度Mを4000(gauss)一定として結晶を育成することとした。この時の比Δt/Mは0.034(K/gauss)であり、0.05(K/gauss)を下回っているので、良好な酸素縞品質が期待される。
(Example 1)
From the relationship shown in FIG. 4, a good crystal with flattened oxygen stripes was obtained. Using the HZ (hot zone) configuration in which the temperature difference Δt = 137.4 (K) in the initial melt amount calculated using FEMAG from the puller configuration used in the experimental example, the central magnetic field intensity was used. The crystal was grown with M being constant at 4000 (gauss). At this time, the ratio Δt / M is 0.034 (K / gauss), which is lower than 0.05 (K / gauss). Therefore, good oxygen stripe quality is expected.

この条件で育成したシリコン単結晶から実験例と同じ評価方法で酸素縞指標を求めたところ、0.022(ppma−JEIDA/mm)と0.04(ppma−JEIDA/mm)を下回る値が得られた。この結晶から切出されたウェーハを撮像素子のプロセスに投入したところ、不良品の少ない良好な結果を得ることができた。   When the oxygen fringe index was determined from the silicon single crystal grown under these conditions by the same evaluation method as in the experimental example, values less than 0.022 (ppma-JEIDA / mm) and 0.04 (ppma-JEIDA / mm) were obtained. Was done. When the wafer cut out of the crystal was put into an image sensor process, good results with few defective products could be obtained.

(比較例1)
図3に概略図を示した引上機構成のシリコン単結晶育成装置を用い、内径が約780mm石英ルツボを用いて最終製品直径300mm結晶を育成した。この時、比Δt/Mという指標を気にすることなく結晶を育成した。後から確認したところ、FEMAGを用いて計算した初期湯量における温度差Δt=183.6(K)であり、中心磁場強度Mは2500(gauss)一定であった。これらから計算される比Δt/Mは0.073(K/gauss)であり、0.05(K/gauss)を上回っていた。
(Comparative Example 1)
Using a silicon single crystal growing apparatus having a pulling machine configuration schematically shown in FIG. 3, a crystal having a final product diameter of 300 mm was grown using a quartz crucible having an inner diameter of about 780 mm. At this time, the crystal was grown without concern for the index of the ratio Δt / M. When confirmed later, the temperature difference Δt at the initial hot water amount calculated using FEMAG was 183.6 (K), and the central magnetic field intensity M was constant at 2500 (gauss). The ratio Δt / M calculated from these was 0.073 (K / gauss), which was greater than 0.05 (K / gauss).

この条件で育成した結晶から、実験例と同じ評価方法で酸素縞指標を求めたところ、0.078(ppma−JEIDA/mm)と0.04(ppma−JEIDA/mm)を上回る値となってしまっていた。この結晶から切出されたシリコン単結晶ウェーハを撮像素子のプロセスに投入したところ、不良品が多く良好な結果を得ることができなかった。   When the oxygen fringe index was determined from the crystal grown under these conditions by the same evaluation method as that of the experimental example, the values were 0.078 (ppma-JEIDA / mm) and more than 0.04 (ppma-JEIDA / mm). It was gone. When a silicon single crystal wafer cut out of this crystal was put into the process of an image sensor, good results could not be obtained because of many defective products.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   Note that the present invention is not limited to the above embodiment. The above embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and has the same effect. Within the technical scope of

1…メインチャンバー、 2…引上げチャンバー、 3…単結晶棒、
4…原料融液(メルト)、 5…石英ルツボ、 6…黒鉛ルツボ、
7…加熱ヒーター、 8…断熱部材、 9…ガス流出口、 10…ガス導入口、
11…トップチャンバー、 12…ガスパージ筒、 13…遮蔽部材、
14…シリコン単結晶育成装置(引上機)。
1. Main chamber, 2. Pulling chamber, 3. Single crystal rod,
4: raw material melt (melt), 5: quartz crucible, 6: graphite crucible,
7 ... heater, 8 ... heat insulating member, 9 ... gas outlet, 10 ... gas inlet,
11: top chamber, 12: gas purge cylinder, 13: shielding member,
14 ... Silicon single crystal growing device (pulling machine).

Claims (6)

磁場印加チョクラルスキー法によるシリコン単結晶の製造におけるシリコン単結晶の酸素縞平坦化製造条件の決定方法であって、
シリコン溶融液の最高温度と最低温度との温度差をΔt、
磁場強度をMとして、
前記Δtと前記Mとの比Δt/Mを算出し、
該比Δt/Mと前記比Δt/Mで育成されたシリコン単結晶中の酸素縞との相関関係を求め、該相関関係に基づいて所望のシリコン単結晶が得られる比Δt/Mの条件を設定し、シリコン単結晶の酸素縞平坦化製造条件を決定することを特徴とする酸素縞平坦化製造条件の決定方法。
A method for determining oxygen fringe flattening production conditions of a silicon single crystal in the production of a silicon single crystal by a magnetic field application Czochralski method,
Δt is the temperature difference between the highest temperature and the lowest temperature of the silicon melt.
When the magnetic field strength is M,
Calculating a ratio Δt / M between the Δt and the M,
The correlation between the ratio Δt / M and oxygen fringes in the silicon single crystal grown at the ratio Δt / M is determined, and based on the correlation, the condition of the ratio Δt / M at which a desired silicon single crystal is obtained is determined. A method for determining oxygen fringe flattening manufacturing conditions, comprising setting and setting oxygen fringe flattening manufacturing conditions of a silicon single crystal.
前記比Δt/Mの算出を、シリコン単結晶の製造に用いる引上機構成において、初期融液量における石英ルツボの温度分布をシミュレーションにより求め、該求めた石英ルツボの温度分布の最高温度を前記シリコン溶融液の最高温度とし、固液界面での温度を前記シリコン溶融液の最低温度とし、その差分を前記Δt、前記シリコン溶融液の中心磁場強度を前記Mとして算出することを特徴とする請求項1に記載の酸素縞平坦化製造条件の決定方法。   The calculation of the ratio Δt / M is performed in a pulling machine configuration used for the production of a silicon single crystal, and the temperature distribution of the quartz crucible in the initial melt amount is obtained by simulation, and the highest temperature of the obtained temperature distribution of the quartz crucible is obtained by the above-mentioned method. The maximum temperature of the silicon melt, the temperature at the solid-liquid interface is the minimum temperature of the silicon melt, the difference is calculated as Δt, and the central magnetic field strength of the silicon melt is calculated as M. Item 3. The method for determining oxygen stripe flattening production conditions according to Item 1. 前記比Δt/Mで育成されたシリコン単結晶中の酸素縞を、前記比Δt/Mで育成されたシリコン単結晶から切出したシリコン単結晶ウェーハサンプルをFT−IR法を用いて2mmピッチで酸素濃度を測定することで取得し、該測定した酸素濃度の6mm間隔の酸素濃度勾配値を求め、該求めた酸素濃度勾配値の面内最大値が0.04(ppma−JEIDA/mm)以下となるように比Δt/Mの条件を設定することを特徴とする請求項1又は請求項2に記載の酸素縞平坦化製造条件の決定方法。   Oxygen fringes in the silicon single crystal grown at the ratio Δt / M were cut out from a silicon single crystal wafer sample cut from the silicon single crystal grown at the ratio Δt / M at a pitch of 2 mm using the FT-IR method. Obtained by measuring the concentration, the oxygen concentration gradient value of the measured oxygen concentration at 6 mm intervals is obtained, and the maximum value of the obtained oxygen concentration gradient value in the plane is 0.04 (ppma-JEIDA / mm) or less. 3. The method according to claim 1, wherein the condition of the ratio .DELTA.t / M is set so as to satisfy the condition. 前記比Δt/Mを、0.05(K/gauss)以下とすることを特徴とする請求項1から請求項3のいずれか一項に記載の酸素縞平坦化製造条件の決定方法。   The method for determining oxygen stripe flattening production conditions according to any one of claims 1 to 3, wherein the ratio Δt / M is set to 0.05 (K / gauss) or less. 請求項1から請求項4に記載の酸素縞平坦化操業条件の決定方法を用いて前記比Δt/Mの条件を予め決定し、該決定した比Δt/Mの条件に基づいて、磁場印加チョクラルスキー法によりシリコン単結晶を育成することを特徴とするシリコン単結晶の製造方法。   The condition of the ratio Δt / M is determined in advance by using the method for determining the operation condition of the oxygen fringe flattening according to claim 1, and a magnetic field application choke is determined based on the determined condition of the ratio Δt / M. A method for producing a silicon single crystal, comprising growing a silicon single crystal by a Ralsky method. 酸素を含むシリコン単結晶ウェーハであって、該シリコン単結晶ウェーハの6mm間隔の酸素濃度勾配値の面内最大値が0.04(ppma−JEIDA/mm)以下であることを特徴とするシリコン単結晶ウェーハ。   What is claimed is: 1. A silicon single crystal wafer containing oxygen, wherein an in-plane maximum value of an oxygen concentration gradient value at 6 mm intervals of the silicon single crystal wafer is 0.04 (ppma-JEIDA / mm) or less. Crystal wafer.
JP2018123935A 2018-06-29 2018-06-29 A method for determining oxygen stripe flattening production conditions for a silicon single crystal, and a method for producing a silicon single crystal using the same. Active JP6919629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018123935A JP6919629B2 (en) 2018-06-29 2018-06-29 A method for determining oxygen stripe flattening production conditions for a silicon single crystal, and a method for producing a silicon single crystal using the same.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018123935A JP6919629B2 (en) 2018-06-29 2018-06-29 A method for determining oxygen stripe flattening production conditions for a silicon single crystal, and a method for producing a silicon single crystal using the same.

Publications (2)

Publication Number Publication Date
JP2020001977A true JP2020001977A (en) 2020-01-09
JP6919629B2 JP6919629B2 (en) 2021-08-18

Family

ID=69098555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018123935A Active JP6919629B2 (en) 2018-06-29 2018-06-29 A method for determining oxygen stripe flattening production conditions for a silicon single crystal, and a method for producing a silicon single crystal using the same.

Country Status (1)

Country Link
JP (1) JP6919629B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7025502B1 (en) 2020-08-28 2022-02-24 晶科▲緑▼能(上海)管理有限公司 Continuous single crystal pulling device and continuous pulling method for single crystal rods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7025502B1 (en) 2020-08-28 2022-02-24 晶科▲緑▼能(上海)管理有限公司 Continuous single crystal pulling device and continuous pulling method for single crystal rods
JP2022039874A (en) * 2020-08-28 2022-03-10 晶科▲緑▼能(上海)管理有限公司 Continuous type single crystal lifting device, and continuous lifting method for single crystal rod
US11739436B2 (en) 2020-08-28 2023-08-29 Jinko Green Energy (Shanghai) Management Co., LTD Apparatus and method for continuous crystal pulling

Also Published As

Publication number Publication date
JP6919629B2 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
KR100848435B1 (en) Method and apparatus for growing silicon crystal by controlling melt-solid interface shape as a function of axial length
JP5167651B2 (en) Method for measuring distance between heat shield member lower end surface and raw material melt surface, and method for controlling the distance
JP5946001B2 (en) Method for producing silicon single crystal rod
KR100818677B1 (en) Method for producing silicon single crystal and apparatus for producing the same, and single crystal and wafer produced with the method
JP5120337B2 (en) Silicon single crystal manufacturing method, silicon single crystal temperature estimation method
KR101385997B1 (en) Apparatus for producing single crystal and method for producing single crystal
JP4930487B2 (en) Method for measuring distance between melt surface and lower end of in-furnace structure, method for controlling position of melt surface using the same, method for producing single crystal and single crystal production apparatus
KR101252404B1 (en) Method for evaluating a quality of wafer or Single Crystal Ingot and Method for controlling a quality of Single Crystal Ingot
KR101117477B1 (en) Method for Producing Single Crystal and Single Crystal
JP6135611B2 (en) Point defect concentration calculation method, Grown-in defect calculation method, Grown-in defect in-plane distribution calculation method, and silicon single crystal manufacturing method using them
JP6919629B2 (en) A method for determining oxygen stripe flattening production conditions for a silicon single crystal, and a method for producing a silicon single crystal using the same.
KR101862157B1 (en) Method and apparatus for manufacturing silicon monocrystalline ingot
JP2008189485A (en) Method and apparatus for manufacturing silicon single crystal
JP6237605B2 (en) Method for producing silicon single crystal
WO2019167986A1 (en) Method of controlling convection patterns of silicon melt and method of manufacturing silicon single crystal
KR101751789B1 (en) Silicon single crystal ingot and method for growing the same
JP5928363B2 (en) Evaluation method of silicon single crystal wafer
JP6107308B2 (en) Silicon single crystal manufacturing method
JP4715528B2 (en) Semi-insulating GaAs wafer for electronic devices and manufacturing method thereof
JP5282762B2 (en) Method for producing silicon single crystal
KR100549260B1 (en) A method of producing silicon single crystal
JP6665797B2 (en) Silicon single crystal growing method, silicon single crystal and silicon single crystal wafer
JP7052694B2 (en) Method for manufacturing silicon single crystal
JP5509636B2 (en) Defect analysis method of silicon single crystal
JP2010116271A (en) Growing method of silicon single crystal and silicon single crystal ingot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210705

R150 Certificate of patent or registration of utility model

Ref document number: 6919629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150