JPH09235191A - Growth of single crystal and device therefor - Google Patents

Growth of single crystal and device therefor

Info

Publication number
JPH09235191A
JPH09235191A JP4585396A JP4585396A JPH09235191A JP H09235191 A JPH09235191 A JP H09235191A JP 4585396 A JP4585396 A JP 4585396A JP 4585396 A JP4585396 A JP 4585396A JP H09235191 A JPH09235191 A JP H09235191A
Authority
JP
Japan
Prior art keywords
crystal
growing
single crystal
cylindrical body
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4585396A
Other languages
Japanese (ja)
Other versions
JP3772376B2 (en
Inventor
Katsushi Hashio
克司 橋尾
Shinichi Sawada
真一 澤田
Masami Tatsumi
雅美 龍見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP04585396A priority Critical patent/JP3772376B2/en
Priority to DE69619005T priority patent/DE69619005T2/en
Priority to US08/616,350 priority patent/US5733371A/en
Priority to EP96301808A priority patent/EP0732427B1/en
Priority to KR1019960007094A priority patent/KR100417606B1/en
Publication of JPH09235191A publication Critical patent/JPH09235191A/en
Priority to US08/937,889 priority patent/US5951758A/en
Application granted granted Critical
Publication of JP3772376B2 publication Critical patent/JP3772376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for raising a single crystal little in crystal defects by inhibiting the generation of depressions in an area around the raised crystal to prevent the production of polycrystals without locally heating an interface between the solid and the liquid, and to provide a device therefor. SOLUTION: This method for raising a single crystal comprises lifting the single crystal from the melted liquid of a raw material by a liquid-sealed czochralski method. Therein, the improvement comprises immersing the tip of a cylinder having a larger inner diameter than the target diameter of the straight body portion of the raised crystal in a liquid sealing agent, rotating a crucible and the raised crystal mutually in reverse directions to prevent the generation of depressions on the interface between the solid and the liquid and simultaneously lifting the raised crystal with a lifting shaft. And the device is used for the method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体封止チョクラルス
キー法により、酸化物単結晶、化合物半導体単結晶等を
成長する方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for growing an oxide single crystal, a compound semiconductor single crystal, etc. by a liquid sealed Czochralski method.

【0002】[0002]

【従来の技術】一般にGaAs等の単結晶バルクは、チ
ョクラルスキー法(CZ法)や液体封止チョクラルスキ
ー法(LEC法)で成長するが、成長中に部分的に多結
晶が発生するという問題があった。図6は、従来のLE
C法を実施する装置の概念図である。この装置は、高圧
チャンバ1の中央に、サセプタ4付設のるつぼ5を下軸
3で支持し、るつぼ5には原料融液6と液体封止剤7が
収容されており、上軸2に保持された種結晶8を原料融
液6に浸漬して単結晶9を引き上げるものである。な
お、原料融液6の周囲にはヒータ10が、単結晶9の周
囲にはヒータ11が配置されており、高圧チャンバ1の
内側には保温材12が配置されている。
2. Description of the Related Art Generally, a single crystal bulk of GaAs or the like grows by the Czochralski method (CZ method) or the liquid-encapsulated Czochralski method (LEC method), but polycrystals are partially generated during the growth. There was a problem. FIG. 6 shows a conventional LE
It is a conceptual diagram of the apparatus which implements C method. In this device, a crucible 5 provided with a susceptor 4 is supported by a lower shaft 3 in the center of a high-pressure chamber 1, a raw material melt 6 and a liquid sealant 7 are contained in the crucible 5, and the crucible 5 is held by an upper shaft 2. The seed crystal 8 thus obtained is immersed in the raw material melt 6 to pull up the single crystal 9. A heater 10 is arranged around the raw material melt 6, a heater 11 is arranged around the single crystal 9, and a heat insulating material 12 is arranged inside the high-pressure chamber 1.

【0003】上記多結晶化の原因は、図7に示すよう
に、成長結晶と原料融液との固液界面の形状が成長結晶
の周辺部で凹化し、固液界面に垂直に伝播してきた転位
が周辺部に集積して多結晶化すると考えられる。したが
って、この種の多結晶化を防止するためには、成長結晶
の固液界面周辺部の凹化を防止する必要がある。
The cause of the above polycrystallization is, as shown in FIG. 7, that the shape of the solid-liquid interface between the grown crystal and the raw material melt is dented in the peripheral portion of the grown crystal and propagates perpendicularly to the solid-liquid interface. It is considered that dislocations accumulate in the peripheral portion and become polycrystalline. Therefore, in order to prevent this kind of polycrystallization, it is necessary to prevent depression of the solid-liquid interface peripheral portion of the grown crystal.

【0004】LEC法で固液界面の凹化を防ぐ方法とし
て、固液界面付近に設置したヒータのパワーをできるだ
け増加して成長結晶側面を局所加熱し、結晶から側方へ
の熱の放散を抑える方法が提案されている[HITACHI CAB
LE REVIEW No.9 (1990)55]。
As a method for preventing depression of the solid-liquid interface by the LEC method, the power of the heater installed near the solid-liquid interface is increased as much as possible to locally heat the side surface of the grown crystal to dissipate heat from the crystal to the side. A method to suppress it has been proposed [HITACHI CAB
LE REVIEW No. 9 (1990) 55].

【0005】[0005]

【発明が解決しようとする課題】しかし、上記の方法で
は次のような問題がある。 結晶側面を局所加熱するためには、ヒータ長さをある
程度短くして大きなパワーをかける必要があり、その結
果、ヒータに流れる電流密度が非常に大きくなり、ヒー
タ寿命が非常に短くなる。
However, the above method has the following problems. In order to locally heat the side surface of the crystal, it is necessary to shorten the heater length to some extent and apply a large amount of power. As a result, the current density flowing through the heater becomes very large, and the life of the heater becomes very short.

【0006】ヒータの加熱はカーボンなどで作られた
るつぼ支持用のサセプタを通して行うため、サセプタの
熱伝導により上下方向に均熱化される。それ故、本質的
には局所加熱をすることはできない。また、液体封止剤
のB2 3 はほとんど輻射熱を通さないので、最も重要
な成長界面付近を有効に加熱できない。
Since the heater is heated through the susceptor for supporting the crucible, which is made of carbon or the like, the heat is conducted in the susceptor so that the heat is uniformly distributed in the vertical direction. Therefore, essentially no local heating is possible. Further, since the liquid sealant B 2 O 3 hardly transmits radiant heat, it is impossible to effectively heat the vicinity of the most important growth interface.

【0007】結晶の周辺部だけでなく、結晶側面全体
が加熱され、側方への放熱が抑制されるため、固液界面
が全体的に融液側に大きく凸化することになるので、成
長した結晶に大きな残留歪みが残ったり、その結晶から
切り出したウエハの特性は面内の均一性が悪くなる。
Since not only the peripheral portion of the crystal but also the entire side surface of the crystal is heated to suppress the heat radiation to the side, the solid-liquid interface is largely convexed to the melt side, so that the crystal grows. Large residual strain remains in the formed crystal, and the in-plane uniformity of the characteristics of the wafer cut from the crystal deteriorates.

【0008】揮発性元素を含む単結晶の成長には、通
常液体封止チョクラルスキー法が用いられるが、液体封
止剤から引き上げられた成長結晶はその表面から揮発性
元素が蒸発して結晶が損傷するという問題があるため、
液体封止剤の表面温度を余り高くすることができなかっ
た。その結果、成長軸方向の温度勾配を余り小さくする
ことができず(GaAs単結晶の成長における温度勾配
は通常100℃/cm程度)、成長結晶に大きな熱応力
が発生するため、結晶欠陥(転位)が多く、残留歪の高
い結晶しか得られなかった。
The liquid-encapsulated Czochralski method is usually used to grow a single crystal containing a volatile element, but the grown crystal pulled from the liquid encapsulant is a crystal in which the volatile element evaporates from its surface. Has the problem of being damaged,
The surface temperature of the liquid sealant could not be raised so high. As a result, the temperature gradient in the growth axis direction cannot be made too small (the temperature gradient in the growth of GaAs single crystal is usually about 100 ° C./cm), and large thermal stress is generated in the grown crystal, resulting in crystal defects (dislocations). ), And only crystals with a high residual strain were obtained.

【0009】そこで、本発明は、上記の問題点を解消
し、固液界面の局所加熱によらずに、成長結晶の固液界
面周辺部の凹化を抑制して多結晶化を防止し、結晶欠陥
の少ない単結晶の成長方法及びその装置を提供しようと
するものである。
In view of the above, the present invention solves the above problems and suppresses the depression of the solid-liquid interface peripheral portion of the grown crystal to prevent polycrystallization without relying on local heating of the solid-liquid interface. An object of the present invention is to provide a method for growing a single crystal with few crystal defects and an apparatus for the same.

【0010】[0010]

【課題を解決するための手段】本発明は、以下の構成を
採用することにより、上記の課題の解決に成功した。 (1) 液体封止チョクラルスキー法で原料融液から結晶を
引き上げる単結晶の成長方法において、成長結晶の直胴
部の目標直径より大きな内径を有する円筒体の先端を液
体封止剤中に浸漬し、固液界面の凹化を防止しながら引
上軸で成長結晶を引き上げることを特徴とする単結晶の
成長方法。
The present invention has succeeded in solving the above-mentioned problems by employing the following constitutions. (1) In a single crystal growth method of pulling a crystal from a raw material melt by the liquid-encapsulated Czochralski method, the tip of a cylindrical body having an inner diameter larger than the target diameter of the straight body part of the growing crystal is placed in the liquid sealant. A method for growing a single crystal, which comprises immersing and pulling a grown crystal with a pulling shaft while preventing depression of a solid-liquid interface.

【0011】(2) 前記円筒体の回転を停止して成長結晶
を引き上げることを特徴とする上記(1) 記載の単結晶の
成長方法。
(2) The method for growing a single crystal according to the above (1), wherein the rotation of the cylindrical body is stopped to pull up the grown crystal.

【0012】(3) 前記円筒体を引上軸と一体的に回転さ
せながら成長結晶を引き上げることを特徴とする上記
(1) 記載の単結晶の成長方法。
(3) The grown crystal is pulled while rotating the cylindrical body integrally with the pulling shaft.
(1) The method for growing a single crystal as described above.

【0013】(4) 前記円筒体を引上軸及びるつぼとは異
なる回転数で回転させながら成長結晶を引き上げること
を特徴とする上記(1) 記載の単結晶の成長方法。
(4) The method for growing a single crystal according to the above (1), wherein the growing crystal is pulled while rotating the cylindrical body at a rotation speed different from that of the pulling shaft and the crucible.

【0014】(5) 前記円筒体の代わりに、成長結晶の晶
癖と同じ断面形状の筒体、又は、成長軸に垂直でない方
向にウエハを切り出すための結晶の成長では断面楕円形
の筒体を使用することを特徴とする上記(1) 〜(4) のい
ずれか1つに記載の単結晶の成長方法。
(5) Instead of the cylindrical body, a cylindrical body having the same cross-sectional shape as the crystal habit of the grown crystal, or a cylindrical body having an oval cross-section in the crystal growth for cutting the wafer in a direction not perpendicular to the growth axis The method for growing a single crystal according to any one of the above (1) to (4), characterized in that

【0015】(6) 前記筒体を加熱することを特徴とする
上記(1) 〜(5) のいずれか1つに記載の単結晶の成長方
法。
(6) The method for growing a single crystal according to any one of the above (1) to (5), characterized in that the cylindrical body is heated.

【0016】(7) 前記筒体の上端を閉じ、成長結晶を構
成する揮発性元素の蒸気圧を前記筒体内に印加すること
を特徴とする上記(1) 〜(6) のいずれか1つに記載の単
結晶の成長方法。
(7) One of the above (1) to (6), characterized in that the upper end of the cylinder is closed and the vapor pressure of the volatile element forming the grown crystal is applied to the cylinder. The method for growing a single crystal according to.

【0017】(8) 前記円筒体の内径が成長結晶の直胴部
の目標直径より5〜30mm、好ましくは5〜20mm
大きなものを用い、融液表面から前記円筒体先端までの
距離を30mm以下、好ましくは10mm以下にし、る
つぼの回転数を5rpm以上、好ましくは10〜30r
pm、成長結晶は円筒体との相対回転数を0〜5rp
m、好ましくは0〜3rpmで回転し、円筒体はるつぼ
との相対回転数を5rpm以上、好ましくは10〜30
rpmで回転することにより、固液界面の凹化を防止し
ながら単結晶を引き上げることを特徴とする上記(1) 〜
(7) のいずれか1つに記載の単結晶の成長方法。
(8) The inner diameter of the cylindrical body is 5 to 30 mm, preferably 5 to 20 mm from the target diameter of the straight body of the growing crystal.
A large one is used, the distance from the melt surface to the tip of the cylindrical body is 30 mm or less, preferably 10 mm or less, and the rotation speed of the crucible is 5 rpm or more, preferably 10 to 30 r.
pm, the grown crystal has a relative rotation speed with the cylindrical body of 0 to 5 rp
m, preferably 0 to 3 rpm, and the relative rotational speed of the cylindrical body with the crucible is 5 rpm or more, preferably 10 to 30
By rotating at rpm, the single crystal is pulled up while preventing depression of the solid-liquid interface (1) ~
The method for growing a single crystal according to any one of (7).

【0018】(9) 液体封止チョクラルスキー法で原料融
液から結晶を引き上げる単結晶の成長装置において、成
長結晶の直胴部の目標直径より大きな内径を有する円筒
体をその先端が液体封止剤中に浸漬するように支持する
手段と、原料融液を収容するるつぼを下軸で回転昇降可
能に支持する手段と、上軸の下端に種結晶を回転昇降可
能に支持する手段と、前記形状の変化に対応して上下軸
及び円筒体の回転数及び昇降速度を調節する手段を設け
たことを特徴とする単結晶の成長装置。
(9) Liquid sealing In a single crystal growing apparatus for pulling a crystal from a raw material melt by the Czochralski method, a cylindrical body having an inner diameter larger than the target diameter of the straight body portion of the growing crystal is liquid-sealed at its tip. Means for supporting so as to be immersed in the stopping agent, means for supporting the crucible containing the raw material melt so as to be rotatable up and down by the lower shaft, and means for supporting the seed crystal at the lower end of the upper shaft so as to be rotatable up and down, An apparatus for growing a single crystal, comprising means for adjusting the number of rotations and the ascending / descending speed of the vertical shaft and the cylindrical body in response to the change in the shape.

【0019】(10)前記筒体を引上軸と一体的に回転可能
に支持したことを特徴とする上記(9) 記載の単結晶の成
長装置。
(10) The apparatus for growing a single crystal according to (9) above, wherein the cylindrical body is rotatably supported integrally with the pulling shaft.

【0020】(11)前記筒体を、前記上下軸と独立して回
転可能に支持したことを特徴とする上記(9) 記載の単結
晶の成長装置。
(11) The apparatus for growing a single crystal according to (9) above, wherein the cylindrical body is rotatably supported independently of the vertical axis.

【0021】(12)前記筒体を成長装置の不動部分に固定
したことを特徴とする上記(9) 記載の単結晶の成長装
置。
(12) The apparatus for growing a single crystal according to the above (9), characterized in that the cylindrical body is fixed to a stationary portion of the growth apparatus.

【0022】(13)前記円筒体の代わりに、成長結晶の晶
癖と同じ断面形状の筒体、又は、成長軸に垂直でない方
向にウエハを切り出すための結晶の成長では断面楕円形
の筒体を使用したことを特徴とする上記(9) 〜(12)のい
ずれか1つに記載の単結晶の成長装置。
(13) Instead of the cylinder, a cylinder having the same cross-sectional shape as the crystal habit of the growing crystal, or a cylinder having an elliptical cross-section when growing a crystal for cutting a wafer in a direction not perpendicular to the growth axis. The apparatus for growing a single crystal according to any one of the above (9) to (12), characterized in that

【0023】(14)前記筒体の加熱手段を付設したことを
特徴とする上記(9) 〜(13)のいずれか1つに記載の単結
晶の成長装置。
(14) The apparatus for growing a single crystal according to any one of the above (9) to (13), characterized in that a heating means for the cylindrical body is additionally provided.

【0024】(15)前記筒体として上端を閉じた筒体を用
い、成長結晶を構成する揮発性元素を収容したリザーバ
を設け、前記リザーバを前記筒体と通気可能に接続し、
前記リザーバのヒータ出力を調節して筒体内の前記揮発
性元素の蒸気圧を調整可能にしたことを特徴とする上記
(9) 〜(13)のいずれか1つに記載の単結晶の成長装置。
(15) A cylindrical body having a closed upper end is used as the cylindrical body, and a reservoir containing a volatile element constituting a growing crystal is provided, and the reservoir is connected to the cylindrical body in a ventilable manner,
The vapor pressure of the volatile element in the cylinder can be adjusted by adjusting the heater output of the reservoir.
(9) The single crystal growth apparatus as described in any one of (13).

【0025】[0025]

【発明の実施の態様】本発明者等は、従来の液体封止チ
ョクラルスキー法で成長結晶とるつぼを回転させなが
ら、単結晶を成長するときの原料融液の自然対流と成長
結晶の回転にともなう強制対流を調べたところ、原料融
液及び液体封止剤の流れは、るつぼ内の上下方向の温度
勾配による対流(自然対流)と、るつぼの回転による対
流と、成長結晶の回転にともなう対流が相互に影響し合
う。そして、液体封止剤は、るつぼに近いほどるつぼの
回転数に近くなり、成長結晶に近いほど成長結晶の回転
数に近くなるが、るつぼの方が液体封止剤との接触面が
大きいこともあり、るつぼの回転により大きく影響され
る。その結果、原料融液は、るつぼの回転及びその回転
の影響の強い液体封止剤の回転が、成長結晶の回転より
も大きく影響するため、図2の矢印のように、るつぼ側
壁付近で上昇してから成長結晶に向かって流れる自然対
流が優勢になり、成長結晶の回転による強制対流が固液
界面の下方に制約され、固液界面の外周部付近の融液温
度が高くなって、固液界面周辺部が凹化するものと思わ
れる。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention have found that natural convection of a raw material melt and rotation of a grown crystal when a single crystal is grown while rotating a crucible for growing a crystal by a conventional liquid sealed Czochralski method. When the forced convection accompanied by the flow was investigated, the flows of the raw material melt and the liquid sealant were due to the convection due to the vertical temperature gradient in the crucible (natural convection), the convection due to the rotation of the crucible, and the rotation of the grown crystal. Convection affects each other. The liquid sealant is closer to the rotation speed of the crucible as it is closer to the crucible, and is closer to the rotation speed of the growth crystal as it is closer to the growing crystal, but the crucible has a larger contact surface with the liquid sealant. Also, it is greatly affected by the rotation of the crucible. As a result, in the raw material melt, the rotation of the crucible and the rotation of the liquid sealant, which is strongly influenced by the rotation, have a greater effect than the rotation of the growing crystal, and thus the raw material melt rises near the crucible side wall as shown by the arrow in FIG. After that, natural convection that flows toward the grown crystal becomes dominant, and forced convection due to the rotation of the grown crystal is restricted below the solid-liquid interface, and the melt temperature near the outer periphery of the solid-liquid interface rises, causing solidification. It seems that the peripheral part of the liquid interface becomes concave.

【0026】そこで、本発明者等はB2 3 等の液体封
止剤が大きな粘性を有することに着目し、本発明では、
図1に示すように、成長結晶周囲に配置する円筒体の下
端を液体封止剤中に浸漬させ、円筒体を成長装置の不動
部材に固定するか、成長結晶と一体的に回転させるか、
成長結晶及びるつぼから独立して回転させ、液体封止剤
がるつぼの回転に影響される度合いを緩和することによ
り、固液界面近傍における原料融液の自然対流を抑制
し、成長結晶の回転による固液界面近傍の強制対流の範
囲を拡大させ、その結果、固液界面周辺部における凹化
を防止しようとするものである。
Therefore, the present inventors have noticed that a liquid sealant such as B 2 O 3 has a large viscosity, and in the present invention,
As shown in FIG. 1, by immersing the lower end of the cylindrical body arranged around the grown crystal in the liquid sealant and fixing the cylindrical body to the immovable member of the growth apparatus or rotating integrally with the grown crystal,
By rotating independently of the growing crystal and crucible, and mitigating the degree to which the liquid sealant is affected by the rotation of the crucible, natural convection of the raw material melt in the vicinity of the solid-liquid interface is suppressed, and by the rotation of the growing crystal. It is intended to expand the range of forced convection near the solid-liquid interface, and as a result, prevent depression at the peripheral portion of the solid-liquid interface.

【0027】即ち、本発明では、原料融液の表面近くの
自然対流を弱くして成長結晶による強制対流の範囲を拡
大するために、るつぼの回転が液体封止剤の回転に与え
る影響を抑制するように、成長結晶の直胴部の直径に
対する円筒体の内径(直胴部の直径より5〜30mm大
きい内径)、直胴部成長時の液体封止剤の深さ、円
筒体の液体封止剤中への浸漬深さ、並びに、るつぼ及
び成長結晶の回転に対する円筒体の回転方向及び回転数
を選択することが望ましい。
That is, in the present invention, the influence of the rotation of the crucible on the rotation of the liquid sealant is suppressed in order to weaken the natural convection near the surface of the raw material melt and expand the range of the forced convection due to the grown crystal. So that the inner diameter of the cylindrical body relative to the diameter of the straight body portion of the grown crystal (5 to 30 mm larger than the diameter of the straight body portion), the depth of the liquid sealant at the time of growing the straight body portion, the liquid sealing of the cylindrical body It is desirable to select the depth of immersion in the stopper and the direction and speed of rotation of the cylinder relative to the rotation of the crucible and the growing crystal.

【0028】また、本発明では、円筒体を加熱すること
により、円筒体内の液体封止剤及び/又は引上結晶の保
温を促進することができ、成長結晶から側方への放熱を
抑制することができるので、固液界面周辺部における凹
化を防止効果を高めることができる。
Further, in the present invention, by heating the cylindrical body, it is possible to promote the heat retention of the liquid sealant and / or the pulling crystal in the cylindrical body, and suppress the heat radiation from the grown crystal to the side. Therefore, it is possible to enhance the effect of preventing depression at the peripheral portion of the solid-liquid interface.

【0029】さらに、本発明では、上端を閉じた円筒体
を用い、成長結晶を構成する揮発性元素を収容するため
のリザーバと通気可能に接続し、前記リザーバの周囲に
配置したヒータの出力を調節することにより、前記円筒
体内の前記揮発性元素の蒸気圧を調整し、成長結晶から
の揮発性元素の抜けを防止できるため、固液界面の温度
勾配を緩やかにしても高品質の単結晶を得ることができ
る。なお、るつぼ全体を覆う気密容器に開閉機構を設け
て、揮発性元素蒸気の供給を行うこともできるが、本発
明では、円筒体に前記リザーバを付設するという比較的
簡単な構造で前記蒸気の調整を可能にした。
Further, in the present invention, a cylindrical body having a closed upper end is used, which is connected to a reservoir for accommodating a volatile element constituting a growing crystal so as to be ventilated, and an output of a heater arranged around the reservoir is provided. By adjusting the vapor pressure of the volatile element in the cylindrical body, it is possible to prevent the escape of the volatile element from the growing crystal, high quality single crystal even if the temperature gradient of the solid-liquid interface is gentle. Can be obtained. It should be noted that an airtight container covering the entire crucible can be provided with an opening / closing mechanism to supply volatile element vapor, but in the present invention, it is possible to supply the volatile element vapor with a relatively simple structure in which the reservoir is attached to a cylindrical body. Adjustable.

【0030】本発明で使用する筒体の形状は断面円形が
一般的であるが、晶癖が強い結晶の成長においては、晶
癖と同じ形状にしたり、成長軸に垂直でない方向に基板
を切り出すような結晶の成長においては、断面が楕円形
の筒を使用することが好ましい。
The shape of the cylinder used in the present invention is generally circular in cross section, but in the growth of a crystal having a strong crystal habit, the same shape as the crystal habit or the substrate is cut out in a direction not perpendicular to the growth axis. In growing such a crystal, it is preferable to use a cylinder having an elliptical cross section.

【0031】前記円筒体の設置の仕方には、るつぼ及
び引上軸の回転に対して独立し、装置の不動部材に固定
保持させる方法、引上軸と一体的に回転させる方法、
及び、引上軸及びるつぼの回転とは独立して回転させ
る方法がある。
The method of installing the cylindrical body is independent of the rotation of the crucible and the pull-up shaft and fixed and held by the immovable member of the apparatus, the method of rotating integrally with the pull-up shaft,
Also, there is a method of rotating the pulling shaft and the crucible independently of the rotation.

【0032】独立して固定保持する方法は、図3に示
すように、円筒体の上端をチャンバ内の断熱材等の不動
部材に固定するものである。円筒体の浸漬深さを一定に
するために、融液深さの減少速度と、下軸の上昇速度を
一致させる必要がある。
The method of independently fixing and holding is to fix the upper end of the cylindrical body to a stationary member such as a heat insulating material in the chamber, as shown in FIG. In order to keep the immersion depth of the cylinder constant, it is necessary to match the decreasing speed of the melt depth with the ascending speed of the lower shaft.

【0033】引上軸と一体的に回転する方法は、図4
に示すように、円筒体の上端を上軸で支持するものであ
り、成長結晶の引き上げに伴い円筒体を降下させる移動
機構を設ける必要がある。なお、円筒体を結晶と共に回
転すると、円筒体による強制対流の効果が最も大きい。
The method of rotating integrally with the pulling shaft is shown in FIG.
As shown in, the upper end of the cylinder is supported by the upper shaft, and it is necessary to provide a moving mechanism for lowering the cylinder as the growing crystal is pulled up. When the cylinder is rotated together with the crystal, the effect of forced convection by the cylinder is greatest.

【0034】引上軸及びるつぼの回転に対して独立し
て回転させる方法は、円筒体をるつぼ及び成長結晶と独
立して回転可能に支持するものであり、3者の回転数を
適宜に選択することにより、所望の対流を得ることがで
きる。なお、本発明の円筒体は、カーボン、pBN、石
英等で作ることができる。
The method of rotating the pulling shaft and the crucible independently of each other is to rotatably support the cylindrical body independently of the crucible and the growing crystal. By doing so, desired convection can be obtained. The cylindrical body of the present invention can be made of carbon, pBN, quartz or the like.

【0035】[0035]

【実施例】【Example】

〔実施例1〕円筒体を断熱材に固定した図3の成長装置
を用いてLEC法でGaAs単結晶を成長させた。成長
結晶の直胴部の目標直径を110mmとし、円筒体の内
径を120mm、厚さ1mmのpBN製の円筒体を用
い、pBN製の直径200mmのるつぼにGaAs原料
を10kg、液体封止剤B2 3 800gを投入し、直
胴部成長時の液体封止剤B2 3 の厚みが約23mm
で、直胴部成長時のるつぼの回転数を10rpm、種結
晶の回転数を2rpm、同引き上げ速度を5mm/Hで
結晶成長を行った。なお、円筒体の先端は、原料融液か
ら5mm上になるようにした。
Example 1 A GaAs single crystal was grown by the LEC method using the growth apparatus shown in FIG. 3 in which a cylindrical body was fixed to a heat insulating material. The target diameter of the straight body part of the grown crystal was 110 mm, the inner diameter of the cylinder was 120 mm, and the thickness of the cylinder was 1 mm. The cylinder made of pBN was used. 800 g of 2 O 3 was added, and the thickness of the liquid sealant B 2 O 3 during the growth of the straight body was about 23 mm.
Then, the number of revolutions of the crucible at the time of growing the straight body portion was 10 rpm, the number of revolutions of the seed crystal was 2 rpm, and the pulling rate was 5 mm / H. The tip of the cylindrical body was located 5 mm above the raw material melt.

【0036】得られた結晶は長さが210mmで平均直
径が108mmの単結晶であった。その単結晶の固液界
面の形状を調べるために成長軸に沿ってスライスし、濃
度50%のHFと、CrO3 100gと、水520cc
からなるエッチング液にウエハを浸漬し、光を照射しな
がら10分間エッチングをして結晶の成長縞を観察する
と、図8のように固液界面周辺部ではほぼ水平であり、
周辺部におけるの凹化を実質的に抑えられたことが分か
る。また、得られた結晶から(100)ウエハを切りだ
して溶融KOHでエッチングして転位密度の面内分布を
調べたところ、図11の●印のようになっており、平均
転位密度は58800cm-2であった。
The obtained crystal was a single crystal having a length of 210 mm and an average diameter of 108 mm. In order to investigate the shape of the solid-liquid interface of the single crystal, it was sliced along the growth axis, HF with a concentration of 50%, CrO 3 100 g, and water 520 cc.
When a wafer is immersed in an etching solution consisting of, and etched for 10 minutes while irradiating with light, and crystal growth fringes are observed, it is almost horizontal at the solid-liquid interface periphery as shown in FIG.
It can be seen that the depression in the peripheral portion was substantially suppressed. Further, when a (100) wafer was cut out from the obtained crystal and etched with molten KOH to examine the in-plane distribution of dislocation density, it was as shown by the ● mark in FIG. 11, and the average dislocation density was 58800 cm −. Was 2 .

【0037】〔実施例2〕円筒体を図4のように成長結
晶と同じ回転数で回転させる点を除いて、実施例1と同
様にしてGaAs単結晶を成長させた。断面が円形でな
い上軸を円筒体上部に開けた上軸断面と同じ形状の穴に
通してセットし、上軸の回転が円筒体に伝わるようにし
た。また、円筒体は上下に動かないように、断熱材で支
持した。円筒体先端と原料融液表面の位置関係は、結晶
の成長にともなう原料融液深さの減少速度と同じ速度で
下軸を上昇させることによって一定に保った。得られた
結晶は長さが200mmで平均直径が110mmの単結
晶であった。実施例1と同様に成長縞を観察すると、図
9のように、固液界面周辺部には凸化の傾向が認められ
た。
Example 2 A GaAs single crystal was grown in the same manner as in Example 1 except that the cylindrical body was rotated at the same rotation speed as the grown crystal as shown in FIG. The upper shaft with a non-circular cross section was set through a hole of the same shape as the upper shaft cross-section opened in the upper part of the cylinder so that the rotation of the upper shaft could be transmitted to the cylinder. Further, the cylindrical body was supported by a heat insulating material so as not to move up and down. The positional relationship between the tip of the cylinder and the surface of the raw material melt was kept constant by raising the lower axis at the same rate as the rate of decrease in the depth of the raw material melt accompanying the growth of crystals. The obtained crystal was a single crystal having a length of 200 mm and an average diameter of 110 mm. When the growth stripes were observed in the same manner as in Example 1, as shown in FIG. 9, a tendency of convexity was recognized in the peripheral portion of the solid-liquid interface.

【0038】〔比較例1〕円筒体を省略した以外は実施
例1と同様にしてGaAs単結晶を成長させた。得られ
た結晶は長さが200mmで最大直径が111mmであ
った。実施例1と同様に成長縞を観察すると、図10の
ように、固液界面周辺部には凹化の傾向が顕著に認めら
れ、矢印の部分から多結晶化が認められた。
Comparative Example 1 A GaAs single crystal was grown in the same manner as in Example 1 except that the cylindrical body was omitted. The obtained crystal had a length of 200 mm and a maximum diameter of 111 mm. When the growth stripes were observed in the same manner as in Example 1, as shown in FIG. 10, a prominent tendency to be recessed was observed in the peripheral portion of the solid-liquid interface, and polycrystallization was observed from the arrow portion.

【0039】〔比較例2〕実施例1において、円筒体の
内径が成長結晶の目標直径+5mmのものを使用する
と、結晶の直径変動により円筒体一杯まで成長し、円筒
体に引っかかったため、成長を続けることができなかっ
た。また、円筒体の内径が成長結晶の目標直径+40m
mのものを使用すると、固液界面の周辺部に凹化が認め
られ、多結晶が発生した。
[Comparative Example 2] In Example 1, when the inner diameter of the cylindrical body used was the target diameter of the growing crystal + 5 mm, the diameter of the crystal fluctuated and the crystal grew to the full extent of the cylindrical body and was caught by the cylindrical body. I couldn't continue. The inner diameter of the cylinder is the target diameter of the growing crystal + 40m
When m of m was used, depression was observed at the periphery of the solid-liquid interface, and polycrystal was generated.

【0040】さらに、円筒体を断熱材に固定し、るつぼ
を5rpm、結晶を2rpmで回転すると、固液界面の
周辺部の凹化は若干改善されたが、依然として凹化の傾
向を示していた。さらにまた、円筒体を断熱材に固定
し、るつぼを10rpm、結晶を5rpmで回転する
と、固液界面の周辺部の凹化は若干改善されたが、依然
として凹化の傾向を示していた。
Further, when the cylindrical body was fixed to the heat insulating material and the crucible was rotated at 5 rpm and the crystal was rotated at 2 rpm, the pitting at the peripheral portion of the solid-liquid interface was slightly improved, but the pitting still showed a tendency. . Furthermore, when the cylindrical body was fixed to the heat insulating material, the crucible was rotated at 10 rpm, and the crystal was rotated at 5 rpm, the pitting at the peripheral portion of the solid-liquid interface was slightly improved, but the pitting still showed a tendency.

【0041】〔実施例3〕図5のように上端を閉じた円
筒体を用い、Asリザーバを接続して円筒体内にAs蒸
気を負荷した点を除いて、実施例1と同様にしてGaA
s単結晶を成長させた。成長前のB2 3 中の成長軸方
向の温度勾配は、実施例1が約100℃/cmであった
のに対し、As蒸気圧下での成長であったこともあり、
実施例3では約30℃/cmまで小さく抑えることがで
きた。
Example 3 A GaA was prepared in the same manner as in Example 1 except that a cylindrical body having a closed upper end as shown in FIG. 5 was used, and an As reservoir was connected to the cylinder so that As vapor was loaded.
s single crystal was grown. The temperature gradient in the growth axis direction in B 2 O 3 before the growth was about 100 ° C./cm in Example 1, whereas the growth was performed under As vapor pressure.
In Example 3, it could be suppressed to as low as about 30 ° C./cm.

【0042】得られた結晶は長さが215mmで平均直
径が107mmの単結晶であった。一般に温度勾配が小
さな状態でGaAs単結晶を成長させると、As抜けが
あったが、ここで得たGaAs単結晶は表面は金属光沢
をしており、Asの蒸発は全く認められなかった。温度
勾配が小さいため、固液界面の中央部における凸化は少
なめであったが、固液界面周辺部は実施例1とほとんど
変わらなかった。得られた結晶から(100) ウエハを切り
だして溶融KOHでエッチングし、転位密度の面内分布
を調べたところ、図11の▲印のようになっており、平
均転位密度は7750cm-2であった。
The obtained crystal was a single crystal having a length of 215 mm and an average diameter of 107 mm. Generally, when a GaAs single crystal was grown in a state where the temperature gradient was small, there was As loss, but the GaAs single crystal obtained here had a metallic luster on the surface, and no As evaporation was observed. Since the temperature gradient was small, the amount of protrusion in the central portion of the solid-liquid interface was small, but the peripheral portion of the solid-liquid interface was almost the same as in Example 1. A (100) wafer was cut out from the obtained crystal and etched with molten KOH, and the in-plane distribution of dislocation density was examined. The result is as shown by ▲ in Fig. 11, and the average dislocation density is 7750 cm -2 . there were.

【0043】〔実施例4〕実施例1において、PBN製
の円筒体の外周にカーボンヒータをコーティングしたも
のを用い、円筒体を加熱し、その他の条件を実施例1と
同様にして成長を行った。その結果、固液界面の周辺部
の凹化は、実施例1よりもさらに改善されており、図9
と同様に凸化の傾向が認められた。この効果は、円筒体
の加熱により、結晶から側方への放熱が抑制されたため
と思われる。
Example 4 In Example 1, a PBN cylindrical body coated with a carbon heater was used to heat the cylindrical body, and other conditions were the same as in Example 1 for growth. It was As a result, the depression in the peripheral portion of the solid-liquid interface is further improved as compared with the first embodiment, as shown in FIG.
Similar to the above, the tendency of convexity was recognized. This effect is considered to be due to the fact that the heating of the cylindrical body suppressed the heat radiation from the crystal to the side.

【0044】[0044]

【発明の効果】本発明は、上記の構成を採用することに
より、成長結晶の固液界面周辺部の凹化を防止すること
ができ、転位の集積による多結晶化を防止できるように
なった。
According to the present invention, by adopting the above-mentioned structure, it is possible to prevent depression of the peripheral portion of the solid-liquid interface of the growing crystal and prevent polycrystallization due to the accumulation of dislocations. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において、円筒体の下端を液体封止剤中
に浸漬するときの、原料融液の対流の状況を説明した図
である。
FIG. 1 is a diagram illustrating a convection state of a raw material melt when a lower end of a cylindrical body is immersed in a liquid sealant in the present invention.

【図2】従来のLEC法における原料融液の対流の状況
を説明した図である。
FIG. 2 is a diagram illustrating a convection state of a raw material melt in a conventional LEC method.

【図3】本発明の円筒体を断熱材に固定する場合の説明
図である。
FIG. 3 is an explanatory diagram for fixing the cylindrical body of the present invention to a heat insulating material.

【図4】本発明の円筒体を上軸で支持する場合の説明図
である。
FIG. 4 is an explanatory diagram of a case where a cylindrical body of the present invention is supported by an upper shaft.

【図5】本発明の円筒体にV族原料リザーバを接続した
結晶成長装置の説明図である。
FIG. 5 is an explanatory diagram of a crystal growth apparatus in which a group V source material reservoir is connected to the cylindrical body of the present invention.

【図6】従来のLEC法を実施するための装置の概念図
である。
FIG. 6 is a conceptual diagram of an apparatus for performing a conventional LEC method.

【図7】従来の固液界面における多結晶化の状況を説明
するための図である。
FIG. 7 is a diagram for explaining a state of polycrystallization at a conventional solid-liquid interface.

【図8】実施例1で得た結晶の成長縞を示した模式図で
ある。
FIG. 8 is a schematic diagram showing growth fringes of the crystal obtained in Example 1.

【図9】実施例2で得た結晶の成長縞を示した模式図で
ある。
FIG. 9 is a schematic view showing growth fringes of the crystal obtained in Example 2.

【図10】比較例1(従来のLEC法)で得た結晶の成
長縞を示した模式図である。
FIG. 10 is a schematic diagram showing growth fringes of a crystal obtained in Comparative Example 1 (conventional LEC method).

【図11】実施例3、4、5で得た結晶から切り出した
(100) ウエハの転位密度の面内分布を示したグラフであ
る。
FIG. 11: Cut out from the crystals obtained in Examples 3, 4, and 5.
3 is a graph showing in-plane distribution of dislocation density of a (100) wafer.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 液体封止チョクラルスキー法で原料融液
から結晶を引き上げる単結晶の成長方法において、成長
結晶の直胴部の目標直径より大きな内径を有する円筒体
の先端を液体封止剤中に浸漬し、固液界面の凹化を防止
しながら引上軸で成長結晶を引き上げることを特徴とす
る単結晶の成長方法。
1. A method for growing a single crystal in which a crystal is pulled from a raw material melt by the liquid-encapsulated Czochralski method, wherein the tip of a cylindrical body having an inner diameter larger than the target diameter of the straight body of the grown crystal is sealed with a liquid sealant. A method for growing a single crystal, which is characterized in that the grown crystal is pulled up by a pulling shaft while being immersed in the solution and preventing the solid-liquid interface from being dented.
【請求項2】 前記円筒体を固定して成長結晶を引き上
げることを特徴とする請求項1記載の単結晶の成長方
法。
2. The method for growing a single crystal according to claim 1, wherein the cylinder is fixed and the grown crystal is pulled up.
【請求項3】 前記円筒体を引上軸と一体的に回転させ
ながら成長結晶を引き上げることを特徴とする請求項1
記載の単結晶の成長方法。
3. The grown crystal is pulled while rotating the cylindrical body integrally with the pulling shaft.
The method for growing a single crystal described.
【請求項4】 前記円筒体を引上軸及びるつぼとは異な
る回転数で回転させながら成長結晶を引き上げることを
特徴とする請求項1記載の単結晶の成長方法。
4. The method for growing a single crystal according to claim 1, wherein the growing crystal is pulled while rotating the cylindrical body at a rotation speed different from that of the pulling shaft and the crucible.
【請求項5】 前記円筒体の代わりに、成長結晶の晶癖
と同じ断面形状の筒体、又は、成長軸に垂直でない方向
にウエハを切り出すための結晶の成長では断面楕円形の
筒体を使用することを特徴とする請求項1〜4のいずれ
か1項に記載の単結晶の成長方法。
5. Instead of the cylinder, a cylinder having the same cross-sectional shape as the crystal habit of the grown crystal, or a cylinder having an elliptical cross-section when growing a crystal for cutting a wafer in a direction not perpendicular to the growth axis is used. The method for growing a single crystal according to any one of claims 1 to 4, which is used.
【請求項6】 前記筒体を加熱することを特徴とする請
求項1〜5のいずれか1項に記載の単結晶の成長方法。
6. The method for growing a single crystal according to claim 1, wherein the cylinder is heated.
【請求項7】 前記筒体の上端を閉じ、成長結晶を構成
する揮発性元素の蒸気圧を前記筒体内に印加することを
特徴とする請求項1〜6のいずれか1項に記載の単結晶
の成長方法。
7. The unit according to claim 1, wherein an upper end of the cylinder is closed and a vapor pressure of a volatile element forming a growing crystal is applied to the cylinder. Crystal growth method.
【請求項8】 液体封止チョクラルスキー法で原料融液
から結晶を引き上げる単結晶の成長装置において、成長
結晶の直胴部の目標直径より大きな内径を有する円筒体
をその先端が液体封止剤中に浸漬するように支持する手
段と、原料融液を収容するるつぼを下軸で回転昇降可能
に支持する手段と、上軸の下端に種結晶を回転昇降可能
に支持する手段と、前記形状の変化に対応して上下軸及
び円筒体の回転数及びそれらの昇降速度を調節する手段
を設けたことを特徴とする単結晶の成長装置。
8. A single crystal growing apparatus for pulling a crystal from a raw material melt by a liquid sealed Czochralski method, wherein a tip of a cylindrical body having a larger inner diameter than a target diameter of a straight body portion of the grown crystal is liquid sealed. Means for supporting so as to be immersed in the agent, means for supporting the crucible containing the raw material melt so as to be rotatable up and down with a lower shaft, means for supporting the seed crystal at the lower end of the upper shaft so as to be rotatable up and down, and An apparatus for growing a single crystal, which is provided with means for adjusting the number of rotations of the vertical shaft and the cylindrical body and the ascending / descending speed thereof in response to changes in the shape.
【請求項9】 前記円筒体を成長装置の不動部分に固定
したことを特徴とする請求項8記載の単結晶の成長装
置。
9. The apparatus for growing a single crystal according to claim 8, wherein the cylindrical body is fixed to a stationary portion of the growth apparatus.
【請求項10】 前記円筒体を引上軸と一体的に回転可
能に支持する手段を設けたことを特徴とする請求項8記
載の単結晶の成長装置。
10. An apparatus for growing a single crystal according to claim 8, further comprising means for supporting the cylindrical body so as to be rotatable integrally with the pulling shaft.
【請求項11】 前記円筒体を、前記上下軸と独立して
回転可能に支持したことを特徴とする請求項8記載の単
結晶の成長装置。
11. The single crystal growth apparatus according to claim 8, wherein the cylindrical body is rotatably supported independently of the vertical axis.
【請求項12】 前記円筒体の代わりに、成長結晶の晶
癖と同じ断面形状の筒体、又は、成長軸に垂直でない方
向にウエハを切り出すための結晶の成長では断面楕円形
の筒体を使用したことを特徴とする請求項8〜11のい
ずれか1項に記載の単結晶の成長装置。
12. Instead of the cylinder, a cylinder having the same cross-sectional shape as the crystal habit of the grown crystal, or a cylinder having an elliptical cross-section for crystal growth for cutting a wafer in a direction not perpendicular to the growth axis is used. The single crystal growth apparatus according to any one of claims 8 to 11, which is used.
【請求項13】 前記筒体の加熱手段を付設したことを
特徴とする請求項8〜12のいずれか1項に記載の単結
晶の成長装置。
13. The apparatus for growing a single crystal according to claim 8, further comprising heating means for the cylindrical body.
【請求項14】 前記筒体として上端を閉じた筒体を用
い、成長結晶を構成する揮発性元素を収容したリザーバ
を設け、前記リザーバを前記筒体と通気可能に接続し、
前記リザーバのヒータ出力を調節して筒体内の前記揮発
性元素の蒸気圧を調整可能にしたことを特徴とする請求
項8〜12のいずれか1項に記載の単結晶の成長装置。
14. A cylindrical body having a closed upper end is used as the cylindrical body, a reservoir containing a volatile element constituting a growing crystal is provided, and the reservoir is connected to the cylindrical body in a ventilable manner.
13. The single crystal growth apparatus according to claim 8, wherein the heater output of the reservoir is adjusted to adjust the vapor pressure of the volatile element in the cylinder.
JP04585396A 1995-03-16 1996-03-04 Single crystal growth method and apparatus Expired - Fee Related JP3772376B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP04585396A JP3772376B2 (en) 1996-03-04 1996-03-04 Single crystal growth method and apparatus
DE69619005T DE69619005T2 (en) 1995-03-16 1996-03-15 Method and device for growing a single crystal
US08/616,350 US5733371A (en) 1995-03-16 1996-03-15 Apparatus for growing a single crystal
EP96301808A EP0732427B1 (en) 1995-03-16 1996-03-15 A method and apparatus for the growth of a single crystal
KR1019960007094A KR100417606B1 (en) 1995-03-16 1996-03-16 Single Crystal Growth Method and Apparatus
US08/937,889 US5951758A (en) 1995-03-16 1997-09-25 Method and apparatus for the growth of a single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04585396A JP3772376B2 (en) 1996-03-04 1996-03-04 Single crystal growth method and apparatus

Publications (2)

Publication Number Publication Date
JPH09235191A true JPH09235191A (en) 1997-09-09
JP3772376B2 JP3772376B2 (en) 2006-05-10

Family

ID=12730777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04585396A Expired - Fee Related JP3772376B2 (en) 1995-03-16 1996-03-04 Single crystal growth method and apparatus

Country Status (1)

Country Link
JP (1) JP3772376B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182361A (en) * 2005-01-31 2007-07-19 Hitachi Cable Ltd Semi-insulating galium-arsenic wafer and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182361A (en) * 2005-01-31 2007-07-19 Hitachi Cable Ltd Semi-insulating galium-arsenic wafer and its manufacturing method
JP4715528B2 (en) * 2005-01-31 2011-07-06 日立電線株式会社 Semi-insulating GaAs wafer for electronic devices and manufacturing method thereof

Also Published As

Publication number Publication date
JP3772376B2 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
EP0732427B1 (en) A method and apparatus for the growth of a single crystal
JPH09235191A (en) Growth of single crystal and device therefor
JP3870437B2 (en) Single crystal growth method and apparatus
JP2006327879A (en) Method for manufacturing compound semiconductor single crystal
JPH1087392A (en) Production of compound semiconductor single crystal
JP4344021B2 (en) Method for producing InP single crystal
JP2009161395A (en) Method for manufacturing compound semiconductor single crystal
JP3885245B2 (en) Single crystal pulling method
JP2002234792A (en) Method of producing single crystal
JPH0699233B2 (en) Single crystal manufacturing method
JPH05319973A (en) Single crystal production unit
JP2531875B2 (en) Method for producing compound semiconductor single crystal
KR100485656B1 (en) Seed chuck of grower silicon single crystal ingot used by Czochralski Method
JPH08333189A (en) Apparatus for pulling up crystal
JP2757865B2 (en) Method for producing group III-V compound semiconductor single crystal
JP3788077B2 (en) Semiconductor crystal manufacturing method and manufacturing apparatus
KR20030070477A (en) Crystal Growing Apparatus For Increasing GaAs Single Crystal Yield
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
JPH02311390A (en) Device for producing single crystal
JPH03193689A (en) Production of compound semiconductor crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
KR920007335B1 (en) Manufacturing apparatus of gaas single crystalline structure
JPH10338591A (en) Production of compound semiconductor single crystal
JPH03271186A (en) Method and apparatus for pulling up single crystal
JPH02212390A (en) Single crystal producing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20051020

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Effective date: 20051219

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060206

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100224

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees