JP2826589B2 - Single crystal silicon growing method - Google Patents

Single crystal silicon growing method

Info

Publication number
JP2826589B2
JP2826589B2 JP10017395A JP10017395A JP2826589B2 JP 2826589 B2 JP2826589 B2 JP 2826589B2 JP 10017395 A JP10017395 A JP 10017395A JP 10017395 A JP10017395 A JP 10017395A JP 2826589 B2 JP2826589 B2 JP 2826589B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal
temperature
temperature distribution
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10017395A
Other languages
Japanese (ja)
Other versions
JPH08268794A (en
Inventor
栄治 梶田
正隆 宝来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMITOMO SHICHITSUKUSU KK
Original Assignee
SUMITOMO SHICHITSUKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMITOMO SHICHITSUKUSU KK filed Critical SUMITOMO SHICHITSUKUSU KK
Priority to JP10017395A priority Critical patent/JP2826589B2/en
Publication of JPH08268794A publication Critical patent/JPH08268794A/en
Application granted granted Critical
Publication of JP2826589B2 publication Critical patent/JP2826589B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、チョクラルスキー法
(以下CZ法という)によるシリコン単結晶の育成方法
に関し、更に詳しくは、単結晶の育成中にその内部の温
度分布を操作して結晶品質を制御する単結晶育成方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a silicon single crystal by the Czochralski method (hereinafter referred to as CZ method), and more particularly, to controlling the temperature distribution inside a single crystal during the growth thereof. The present invention relates to a single crystal growing method for controlling quality.

【0002】[0002]

【従来の技術】高集積半導体素子材料として用いられて
いるシリコン単結晶の製造方法は種々あるが、工業的に
量産が可能な方法としては主にCZ法が採用されてい
る。CZ法の実施状態を図3に示す。
2. Description of the Related Art There are various methods for producing a silicon single crystal used as a material for a highly integrated semiconductor device, but the CZ method is mainly employed as a method capable of industrial mass production. FIG. 3 shows an implementation state of the CZ method.

【0003】CZ法では通常、内側が石英、外側が黒鉛
で構成された二重構造の坩堝1が用いられる。坩堝1内
に収容された原料シリコンは坩堝1の外側に配置された
ヒーター2により加熱されて溶融する。そのシリコン融
液3は、下端に種結晶4に取り付けたワイヤ5を上昇さ
せることにより、坩堝1から徐々に引き上げられる。こ
のとき坩堝1および種結晶4を回転させる。これにより
シリコン融液3が凝固した円柱状の単結晶6が育成され
る。通常採用される結晶育成速度は1.0〜2.0mm/min
である。
[0003] In the CZ method, a crucible 1 having a double structure composed of quartz on the inside and graphite on the outside is usually used. The raw silicon contained in the crucible 1 is heated and melted by the heater 2 disposed outside the crucible 1. The silicon melt 3 is gradually pulled up from the crucible 1 by raising the wire 5 attached to the seed crystal 4 at the lower end. At this time, the crucible 1 and the seed crystal 4 are rotated. As a result, a columnar single crystal 6 in which the silicon melt 3 is solidified is grown. Normally used crystal growth rate is 1.0-2.0mm / min
It is.

【0004】このようなCZ法によるシリコン単結晶の
育成では、単結晶をウェーハに加工したのち熱処理を行
うことによって、ウェーハ面にOSFリングと呼ばれる
リング状の酸誘起積層欠陥が発生することが知られてい
る。
In growing a silicon single crystal by such a CZ method, it is known that a ring-shaped acid-induced stacking fault called an OSF ring is generated on the wafer surface by performing a heat treatment after processing the single crystal into a wafer. Have been.

【0005】OSFリングが発生すると、その内側領域
では結晶育成中に成長した熱的安定性の高い酸素析出物
が106 cm-3程度の高密度で分布し、ゲート酸化膜の
耐圧特性が低下する。一方、OSFリングの外側領域で
は、酸化膜耐圧特性は良好であるが、大きさが約400
nmの転位クラスターが約103 個/cm2 の密度で発
生する。このように、OSFリングを境に内側と外側と
ではウェーハの物理的性質が大きく異なるのである。
When the OSF ring is generated, oxygen precipitates having high thermal stability grown during crystal growth are distributed at a high density of about 10 6 cm -3 in the inner region, and the breakdown voltage characteristic of the gate oxide film is reduced. I do. On the other hand, in the region outside the OSF ring, the oxide withstand voltage characteristics are good, but the size is about 400 μm.
nm dislocation clusters are generated at a density of about 10 3 / cm 2 . As described above, the physical properties of the wafer are greatly different between the inside and the outside of the OSF ring.

【0006】CZ法により製造されるシリコン単結晶は
高集積半導体素子材料に用いられるが、高集積半導体素
子の信頼性および歩留は単結晶ウェーハの物理的性質に
強く依存するため、CZ法によるシリコン単結晶の育成
ではOSFリングの位置を制御し、狙いとする位置にO
SFリングを発生させることが重要な技術となる。
A silicon single crystal manufactured by the CZ method is used for a highly integrated semiconductor device material. However, the reliability and the yield of the highly integrated semiconductor device strongly depend on the physical properties of the single crystal wafer. In growing a silicon single crystal, the position of the OSF ring is controlled and the O.S.
Generating an SF ring is an important technique.

【0007】これに関連して本発明者らは、結晶育成速
度をV(mm/min )とし、シリコンの融点から1300
℃までの温度範囲における結晶軸方向の温度勾配をG
(℃/mm)とするとき、V/G(mm2 /℃・min )によ
りOSFリングの発生位置が一義的に決まることを見出
し、特願平6−148939号により、V/Gを2.5以
上にしてOSFリングを素子製造に使用されないウェー
ハの外周部に発生させると共に、1150℃から100
0℃までの温度範囲における冷却速度を2.0℃/min 以
下としてOSFリングの内側での酸素析出物の分布密度
を低下させる単結晶製造法を提案した。
In connection with this, the present inventors set the crystal growth rate to V (mm / min) and set the crystal growth rate to 1300 from the melting point of silicon.
The temperature gradient along the crystal axis in the temperature range up to
(° C./mm), it has been found that the position where the OSF ring is generated is uniquely determined by V / G (mm 2 / ° C. · min), and according to Japanese Patent Application No. 6-148939, V / G is set to 2. 5 or more to generate an OSF ring on the outer peripheral portion of the wafer not used for device manufacture, and from 1150 ° C. to 100 ° C.
A single crystal production method was proposed in which the cooling rate in the temperature range up to 0 ° C. was 2.0 ° C./min or less and the distribution density of oxygen precipitates inside the OSF ring was reduced.

【0008】[0008]

【発明が解決しようとする課題】本発明者らが先に提案
した単結晶製造法では、狙いとする位置にOSFリング
を発生させるために、V/Gを高精度に制御することが
重要な技術となっている。
In the single crystal manufacturing method proposed by the present inventors, it is important to control V / G with high precision in order to generate an OSF ring at a target position. Technology.

【0009】しかし、CZ法によるシリコン単結晶の育
成では、図3に示すように、育成中の単結晶6が融液3
から輻射熱を受ける一方、単結晶6からの輻射抜熱が存
在する。単結晶5の成長に伴いその長さが変化するため
に、単結晶6からの輻射抜熱量の軸方向分布は時々刻々
と変化する。そのため、Gは単結晶6の育成中一定には
維持されない。V/Gを制御するためには、Vだけでな
くGの検出および操作が必要であるが、上述したように
実際の操業ではVの検出および操作が困難なため、V/
Gの制御は非常に難しく、従って、狙いとする位置にO
SFリングを発生させることは容易でない(図2中の従
来法参照)。
However, in growing a silicon single crystal by the CZ method, as shown in FIG.
While radiant heat from the single crystal 6 exists. Since the length of the single crystal 5 changes as the single crystal 5 grows, the axial distribution of the amount of heat radiated from the single crystal 6 changes every moment. Therefore, G is not kept constant during the growth of the single crystal 6. In order to control V / G, it is necessary to detect and operate not only V but also G. However, as described above, it is difficult to detect and operate V in actual operation.
The control of G is very difficult, and therefore O
It is not easy to generate an SF ring (see the conventional method in FIG. 2).

【0010】本発明の目的は、育成中の単結晶内部の温
度分布を意のままに操作することにより、V/Gの制御
ひいてはOSFリング発生位置の制御を高精度に行い得
る単結晶シリコン育成方法を提供することにある。
[0010] It is an object of the present invention to grow a single crystal silicon which can control V / G and thus the position where an OSF ring is generated with high accuracy by manipulating the temperature distribution inside the single crystal during growth as desired. It is to provide a method.

【0011】[0011]

【課題を解決するための手段】本発明の単結晶シリコン
育成方法は、CZ法によってシリコン単結晶を製造する
際に、伝熱計算を用いた炉内全体の温度分布計算により
単結晶内部の温度分布を求め、求めた温度分布を用いて
融液からの輻射を遮断および/または反射することによ
り、単結晶内部の温度分布を操作するものである。
According to the method for growing single crystal silicon of the present invention, when a silicon single crystal is manufactured by the CZ method, the temperature inside the single crystal is calculated by calculating the temperature distribution in the entire furnace using heat transfer calculation. The temperature distribution inside the single crystal is manipulated by obtaining a distribution and blocking and / or reflecting radiation from the melt using the obtained temperature distribution.

【0012】V/Gの制御では、伝熱計算を用いた炉内
全体の温度分布計算により、シリコンの融点から130
0℃までの結晶軸方向の温度勾配G(℃/mm)を求め、
結晶育成速度V(mm/min )と求めた温度勾配G(℃/
mm)との比V/G(mm2 /℃・min )が目標値に制御さ
れるように、Vを操作すると共に融液からの輻射の遮断
および/または反射によりGを操作する。
In the control of V / G, the temperature distribution of the entire furnace is calculated using heat transfer calculation, and the melting point of silicon is reduced by 130 ° C.
A temperature gradient G (° C./mm) in the crystal axis direction up to 0 ° C. is obtained,
The crystal growth rate V (mm / min) and the determined temperature gradient G (° C /
mm) is controlled so that the ratio V / G (mm 2 / ° C. min) to the target value is controlled to a target value, and G is controlled by blocking and / or reflecting radiation from the melt.

【0013】望ましくは、単結晶周囲の温度計測値によ
り温度分布計算を補正する。
Preferably, the temperature distribution calculation is corrected based on the measured temperature around the single crystal.

【0014】[0014]

【作用】V/Gの制御では、単結晶の育成中に単結晶軸
方向の温度勾配を制御することが不可欠の技術である。
この制御技術では、育成中の単結晶内部の温度分布を求
めることと、その温度分布を操作することの2つが必要
である。V/Gの制御で言えばGを求めることとGを操
作することが共に必要である。
In the control of V / G, it is indispensable to control the temperature gradient in the single crystal axis direction during the growth of the single crystal.
In this control technique, it is necessary to obtain the temperature distribution inside the single crystal during growth and to manipulate the temperature distribution. In terms of V / G control, it is necessary to both obtain G and operate G.

【0005】単結晶内部の温度分布を求めることについ
ては、単結晶周囲の温度を多くの箇所で測定することに
より一応これが可能となるが、炉内に多くの測定器を設
置することになるため、炉内や炉内で育成中の単結晶の
汚染が問題になる。そこで本発明では伝熱計算を用いた
炉内全体の温度分布計算によりこれを行う。
[0005] The temperature distribution inside the single crystal can be obtained by measuring the temperature around the single crystal at many points, but it is necessary to install many measuring instruments in the furnace. In addition, contamination of the single crystal grown in the furnace or in the furnace becomes a problem. Therefore, in the present invention, this is performed by calculating the temperature distribution of the entire inside of the furnace using the heat transfer calculation.

【0006】具体的には、例えば炉内全体の輻射熱交
換、単結晶と融液との界面形状、ヒータパワーおよ
び単結晶育成速度等の各項目を考慮して伝熱計算を行
うことより、単結晶内部の温度分布を求め、V/Gの制
御ではGを求める。
More specifically, the heat transfer calculation is performed by taking into consideration items such as radiant heat exchange in the entire furnace, the interface shape between the single crystal and the melt, the heater power, and the growth rate of the single crystal. The temperature distribution inside the crystal is determined, and G is determined in V / G control.

【0007】ここでの項目、すなわち炉内全体の輻射
熱交換では、炉内の保温材および断熱材の形状、育成中
の単結晶の長さの他に、本発明では融液からの輻射の遮
断や反射を行うので、遮断物や反射物の現在位置なども
考慮する必要がある。また、の項目、すなわち単結晶
と融液の界面形状については、Stefan条件とBoundry-fi
tted法から求めることができる。
In this case, ie, in the radiant heat exchange in the entire furnace, in addition to the shape of the heat insulating material and the heat insulating material in the furnace and the length of the single crystal being grown, in the present invention, the radiation from the melt is cut off in the present invention. And reflections, it is necessary to consider the current position of obstacles and reflections. In addition, regarding the item, namely, the interface shape between the single crystal and the melt, the Stefan condition and the Boundry-fi
It can be obtained from the tted method.

【0008】伝熱計算を用いた炉内温度分布計算によれ
ば、温度測定点の数を少なくして、単結晶内部の温度分
布を高精度に求めることができる。なお、この場合の温
度測定は温度分布計算の補正のためであるので必ずしも
必要ではない。温度測定を行う場合、結晶表面温度を固
液界面から一定の距離で測定することが好ましいが、本
発明では温度分布計算を炉内全体にわたって行うため
に、単結晶の温度分布に応答する輻射遮断物や保温材の
特定位置の温度を測定してもよい。
According to the furnace temperature distribution calculation using the heat transfer calculation, the number of temperature measurement points can be reduced and the temperature distribution inside the single crystal can be obtained with high accuracy. Note that the temperature measurement in this case is not necessarily required because it is for correcting the temperature distribution calculation. When performing temperature measurement, it is preferable to measure the crystal surface temperature at a certain distance from the solid-liquid interface. However, in the present invention, in order to perform the temperature distribution calculation over the entire furnace, radiation cutoff responding to the single crystal temperature distribution The temperature of a specific position of an object or a heat insulating material may be measured.

【0009】温度分布の操作については、本発明では融
液からの輻射を遮断および/または反射する。単結晶と
融液との界面の温度は一定であるので、融液から単結晶
への輻射を遮断して単結晶の温度を下げることにより、
単結晶軸方向の温度勾配は大となり、V/Gの制御では
Gを大きくすることができる。一方、融液の上方に反射
率の高い反射物を設置して融液からの輻射を単結晶へ反
射することにより、単結晶の温度が高くなって単結晶軸
方向の温度勾配が小となり、V/Gの制御ではGを小さ
くすることができる。また、遮断および反射の両方を同
時に用いてGを操作することも可能である。
Regarding the operation of the temperature distribution, the present invention blocks and / or reflects radiation from the melt. Since the temperature of the interface between the single crystal and the melt is constant, by blocking radiation from the melt to the single crystal and lowering the temperature of the single crystal,
The temperature gradient in the direction of the single crystal axis becomes large, and G can be increased in V / G control. On the other hand, by installing a high-reflectance reflector above the melt and reflecting radiation from the melt to the single crystal, the temperature of the single crystal increases and the temperature gradient in the single crystal axis direction decreases, In V / G control, G can be reduced. It is also possible to manipulate G using both blocking and reflection simultaneously.

【0010】かくしてV/Gの高精度な制御が可能とな
り、狙った位置にOSFリングを発生させることができ
る。
Thus, V / G can be controlled with high accuracy, and an OSF ring can be generated at a target position.

【0011】[0011]

【実施例】図1に本発明を実施するのに適した装置構成
を示す。
FIG. 1 shows an apparatus configuration suitable for carrying out the present invention.

【0012】図1において、7は単結晶6の引き上げ路
を包囲するように、坩堝2の上方に設けた円筒状の輻射
遮断物である。輻射遮断物7は例えばカーボンからな
り、坩堝1内の融液3から引き上げられる単結晶6を収
容して、融液3から単結晶6への輻射を遮断する。ま
た、その遮断量をコントロールするために、輻射遮断物
7は駆動部8により上下に移動させられる。
In FIG. 1, reference numeral 7 denotes a cylindrical radiation shield provided above the crucible 2 so as to surround the pulling path of the single crystal 6. The radiation shield 7 is made of, for example, carbon and accommodates the single crystal 6 pulled up from the melt 3 in the crucible 1 and blocks radiation from the melt 3 to the single crystal 6. In addition, the radiation blocker 7 is moved up and down by the drive unit 8 in order to control the blocking amount.

【0013】9は輻射遮断物7の昇降路を取り囲むよう
に、周方向に配列設置された複数の輻射反射物である。
輻射反射物9は例えば表面を鏡面に研摩したMo板から
なり、融液3からの輻射を単結晶6に反射させる。ま
た、その反射量をコントロールするために、それぞれの
輻射反射物9は駆動部10により角度が調節される。
Reference numeral 9 denotes a plurality of radiation reflectors arranged circumferentially so as to surround the hoistway of the radiation shield 7.
The radiation reflector 9 is, for example, a Mo plate having a mirror-polished surface, and reflects radiation from the melt 3 to the single crystal 6. Further, in order to control the amount of reflection, the angle of each radiation reflector 9 is adjusted by the drive unit 10.

【0014】11は温度測定計であり、単結晶6の表面
の固液界面から一定距離の点の温度を測定する。
Reference numeral 11 denotes a thermometer, which measures the temperature at a point at a certain distance from the solid-liquid interface on the surface of the single crystal 6.

【0015】12はシリコンの融点から1300℃まで
の温度範囲における結晶軸方向の温度勾配Gを求めるG
演算器である。G演算器12には駆動部8から輻射遮断
物7の位置情報が与えられる。また、駆動部10からは
輻射反射物9の角度情報が、温度測定計11からは単結
晶周囲の温度情報がそれぞれ与えられる。更には、炉内
の保温材および断熱材の形状、育成中の単結晶6の長さ
および育成速度V、単結晶5と融液3との界面形状、ヒ
ータ2のパワーについての各情報も与えられる。
Reference numeral 12 denotes G for determining a temperature gradient G in the crystal axis direction in a temperature range from the melting point of silicon to 1300 ° C.
It is an arithmetic unit. The G calculator 12 is provided with position information of the radiation blocker 7 from the drive unit 8. Further, the drive unit 10 gives angle information of the radiation reflector 9, and the thermometer 11 gives temperature information around the single crystal. Further, information on the shape of the heat insulating material and the heat insulating material in the furnace, the length and growth speed V of the single crystal 6 during growth, the interface shape between the single crystal 5 and the melt 3, and the power of the heater 2 are also given. Can be

【0016】そしてG演算器12は、単結晶6の温度測
定値を除くこれらの情報を用いて伝熱計算により炉内全
体の温度分布計算を行い、更に温度測定値を用いてその
温度分布計算の補正を行うことによりGを求める。
The G calculator 12 calculates the temperature distribution of the entire furnace by heat transfer calculation using the information except for the measured temperature of the single crystal 6, and further calculates the temperature distribution using the measured temperature. G is obtained by performing the above correction.

【0017】13はV/G制御器である。V/G制御器
13は求められたGと単結晶育成速度VとからV/Gを
計算すると共に、その計算値がV/G設定値と一致する
ようにVを操作し、合わせて輻射遮断物7の位置や輻射
反射物9の角度を駆動部8,10に指示してGを操作す
る。また必要に応じてヒータ2のパワーも操作する。
Reference numeral 13 denotes a V / G controller. The V / G controller 13 calculates V / G from the obtained G and the single crystal growth rate V, and manipulates V so that the calculated value matches the V / G set value, and collects radiation. G is operated by instructing the driving units 8 and 10 on the position of the object 7 and the angle of the radiation reflection object 9. Also, the power of the heater 2 is operated as needed.

【0018】かくして、単結晶育成の全期間にわたって
V/Gがその設定値に制御される。その結果、育成され
た単結晶をウェーハに加工しそのウェーハを熱処理した
ときに生じるOSFリングが所定位置に制御される。
Thus, V / G is controlled to the set value over the entire period of single crystal growth. As a result, the OSF ring generated when the grown single crystal is processed into a wafer and the wafer is heat-treated is controlled to a predetermined position.

【0019】すなわち、ある仮定(Cv ez,Ci ez,D
v ,Di の 定数設定値)の下での計算による推定であ
るが、V/Gによって結晶内のT=1300℃〜125
0℃における点欠陥の濃度(空孔と格子間シリコン)が
ほぼ決まり、この点欠陥がその後、酸素と反応して種々
のサイズおよび密度の酸素析出物またはその2次欠陥
(転位)等を発生させる。そのため、V/Gを一定に制
御することにより、OSFリングの発生位置が結晶全体
にわたって一定になる。更に、酸素析出物等の欠陥の分
布(面内および軸方向でのサイズ−密度分布)も一定に
なる。
That is, certain assumptions (C v ez , C i ez , D
v , constants of D i ), but T / 1300 ° C. to 125
The concentration of point defects (vacancies and interstitial silicon) at 0 ° C. is substantially determined, and the point defects subsequently react with oxygen to generate oxygen precipitates of various sizes and densities or secondary defects (dislocations) thereof. Let it. Therefore, by controlling V / G to be constant, the position where the OSF ring is generated becomes constant over the entire crystal. Further, the distribution of defects such as oxygen precipitates (size-density distribution in the plane and in the axial direction) becomes constant.

【0020】ただし、結晶育成末期のTail部形成時およ
びその後の融液からの結晶切り離し時には、結晶が急速
に冷却される。このとき、Top 側は低温からTail側は高
温から急冷されるために、これらの部分は均一な欠陥分
布とはならない。そのため、育成初期および後期に対応
する部分では、OSFリングの発生位置が制御されな
い。均一にならない部分の欠陥は、100〜850℃以
下で結晶冷却時に形成される欠陥であり、非常に小さい
析出物である。一方、1000〜850℃以上で形成さ
れる欠陥は大きく安定で、結晶全長にわたって均一にな
る。このような欠陥はディバイスプロセス中でも安定で
あり、確実にディバイス活性領域(表面近傍)に残留
し、特性を劣化させる。
However, the crystals are rapidly cooled when the tail part is formed at the end of the crystal growth and when the crystals are separated from the melt thereafter. At this time, since the Top side is rapidly cooled from a low temperature and the Tail side is rapidly cooled from a high temperature, these portions do not have a uniform defect distribution. For this reason, the position where the OSF ring is generated is not controlled in portions corresponding to the early and late stages of the growth. The non-uniform portion defect is a defect formed during crystal cooling at 100 to 850 ° C. or lower, and is a very small precipitate. On the other hand, defects formed at 1000 to 850 ° C. or higher are largely stable and uniform over the entire length of the crystal. Such a defect is stable even during the device process, and remains reliably in the device active region (near the surface), thus deteriorating the characteristics.

【0021】次に図1に示す装置を用いて実際にV/G
を制御した結果を説明する。
Next, V / G is actually measured using the apparatus shown in FIG.
Will be described.

【0022】〔実施例1〕直径16″の石英ルツボに高
純度多結晶シリコン50kgを入れ、ボロンをドープ
し、多結晶シリコンを加熱溶解したのち、直径150m
mで結晶育成方位が〈100〉の単結晶を長さ1000
mm育成した。単結晶育成中は、輻射温度計で結晶の表
面温度を計測して、単結晶温度分布計算システムでV/
Gを計算し、V/Gが0.28mm2 /℃・min (一定)
になるように、単結晶育成速度を操作すると共に、単結
晶の周りに配した内径300mm×厚さ30mmのカー
ボンからなる円筒状の輻射反射物を上下に移動させた。
Example 1 A quartz crucible having a diameter of 16 ″ was charged with 50 kg of high-purity polycrystalline silicon, doped with boron, and heated and melted with polycrystalline silicon.
single crystal with a crystal growth orientation of <100>
mm. During single crystal growth, the surface temperature of the crystal is measured with a radiation thermometer, and V / V is calculated with a single crystal temperature distribution calculation system.
Calculate G and V / G is 0.28 mm 2 / ° C · min (constant)
In addition to controlling the growth rate of the single crystal, a cylindrical radiation reflector made of carbon having an inner diameter of 300 mm and a thickness of 30 mm disposed around the single crystal was moved up and down.

【0023】育成した単結晶から結晶軸方向と平行にサ
ンプルを切り出し熱処理した後、OSFリングの発生位
置を調べた。OSFリングは育成初期の20mmと育成
後期の100mmの部分を除き、中心から約67mmの
位置に発生していた。
A sample was cut out of the grown single crystal in parallel to the crystal axis direction and heat-treated, and the position of the OSF ring was examined. The OSF ring was generated at a position of about 67 mm from the center except for a portion of 20 mm in the early stage of growth and a portion of 100 mm in the late stage of growth.

【0024】〔実施例2〕直径16″の石英ルツボに高
純度多結晶シリコン50kgを入れ、ボロンをドープ
し、多結晶シリコンを加熱溶解したのち、直径150m
mで結晶育成方位が〈100〉の単結晶を長さ1000
mm育成した。単結晶育成中は、輻射温度計で結晶の表
面温度を計測して、単結晶温度分布計算システムでV/
Gを計算し、V/Gが0.22mm2 /℃・min (一定)
になるように、単結晶育成速度を操作すると共に、単結
晶の周りに配し表面を鏡面に研摩した5枚のMo板製輻
射反射物(1枚の寸法は250mm×150mm)の角
度を操作した。
Example 2 A quartz crucible having a diameter of 16 ″ was charged with 50 kg of high-purity polycrystalline silicon, doped with boron, and melted by heating the polycrystalline silicon.
single crystal with a crystal growth orientation of <100>
mm. During single crystal growth, the surface temperature of the crystal is measured with a radiation thermometer, and V / V is calculated with a single crystal temperature distribution calculation system.
Calculate G and V / G is 0.22 mm 2 / ° C · min (constant)
In addition to controlling the growth rate of the single crystal, the angle of five Mo plate radiation reflectors (one dimension is 250 mm x 150 mm), which are arranged around the single crystal and whose surface is polished to a mirror surface, is controlled. did.

【0025】育成した単結晶から結晶軸方向と平行にサ
ンプルを切り出し熱処理した後、OSFリングの発生位
置を調べた。OSFリングは育成初期の20mmと育成
後期の100mmの部分を除き、中心から約15mmの
位置に発生していた。
A sample was cut out of the grown single crystal in parallel with the crystal axis direction and heat-treated, and the location of the OSF ring was examined. The OSF ring was formed at a position of about 15 mm from the center except for a portion of 20 mm in the early stage of growth and a portion of 100 mm in the late stage of growth.

【0026】〔実施例3〕直径16″の石英ルツボに高
純度多結晶シリコン50kgを入れ、ボロンをドープ
し、多結晶シリコンを加熱溶解したのち、直径150m
mで結晶育成方位が〈100〉の単結晶を長さ1000
mm育成した。単結晶育成中は、輻射温度計で結晶の表
面温度を計測して、単結晶温度分布計算システムでV/
Gを計算し、単結晶の育成長さが500mmまではV/
Gが0.22mm2 /℃・min 、育成長さが500mm以
降は0.28mm2 /℃・min になるように、単結晶育成
速度を操作すると共に、カーボン輻射反射物の位置およ
びMo輻射反射物の角度を操作した。
Example 3 A quartz crucible having a diameter of 16 ″ was charged with 50 kg of high-purity polycrystalline silicon, doped with boron, and melted by heating the polycrystalline silicon.
single crystal with a crystal growth orientation of <100>
mm. During single crystal growth, the surface temperature of the crystal is measured with a radiation thermometer, and V / V is calculated with a single crystal temperature distribution calculation system.
Calculate G and calculate V / until the growth length of the single crystal is 500 mm.
G is 0.22mm 2 / ℃ · min, as development length since 500mm becomes 0.28mm 2 / ℃ · min, while operating the single crystal growth rate, location and Mo radiation reflection of the carbon radiation reflector The angle of the object was manipulated.

【0027】育成した単結晶から結晶軸方向と平行にサ
ンプルを切り出し熱処理した後、OSFリングの発生位
置を調べた。OSFリングは20mmから450mmま
での部分においては中心から約15mmの位置に発生
し、450mmからは徐々に外周へ移り、550mmか
ら100mmを残すまでの部分においては中心から約6
7mmの位置に発生した。
A sample was cut out of the grown single crystal in parallel with the crystal axis direction and heat-treated, and the position of the OSF ring was examined. The OSF ring is generated at a position of about 15 mm from the center in the portion from 20 mm to 450 mm, gradually moves to the outer periphery from 450 mm, and moves from the center to about 6 mm in the portion from 550 mm to 100 mm.
It occurred at a position of 7 mm.

【0028】各実施例におけるOSFリング発生位置を
図2に示す。また、比較のためにV/Gを制御しない従
来法の場合のOSFリング発生位置を示す。同図からわ
かるように、本発明によりV/Gの高精度な制御が可能
となり、狙いとする位置にOSFリングを発生させるこ
とが可能となる。ちなみに、従来法は結晶の中心から3
5mmの位置にOSFリングを発生させることを狙って
結晶育成を行った場合であるが、実際のOSFリング発
生位置は狙い位置から大きくずれている。
FIG. 2 shows the position where the OSF ring is generated in each embodiment. Also, for comparison, the OSF ring occurrence position in the case of the conventional method in which V / G is not controlled is shown. As can be seen from the figure, the present invention enables high-precision control of V / G, and makes it possible to generate an OSF ring at a target position. By the way, the conventional method is three times from the center of the crystal.
In this case, crystal growth is performed with the aim of generating an OSF ring at a position of 5 mm, but the actual position where the OSF ring is generated is greatly deviated from the target position.

【0029】[0029]

【発明の効果】以上に述べた通り、本発明の単結晶シリ
コン育成方法は伝熱計算を用いた炉内全体の温度分布計
算により単結晶内部の温度勾配を求め、且つ融液からの
輻射の遮断および/または反射により単結晶内部の温度
勾配を操作することにより、V/Gの高精度な制御を可
能とし、これにより狙いとする位置にOSFリングを発
生させることができるという効果を奏する。
As described above, the single crystal silicon growing method of the present invention determines the temperature gradient inside the single crystal by calculating the temperature distribution in the entire furnace using the heat transfer calculation, and obtains the radiation from the melt. By manipulating the temperature gradient inside the single crystal by blocking and / or reflection, it is possible to control V / G with high accuracy, thereby producing an effect that an OSF ring can be generated at a target position.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するのに適した装置の構成図であ
る。
FIG. 1 is a configuration diagram of an apparatus suitable for carrying out the present invention.

【図2】本発明の効果を示すグラフである。FIG. 2 is a graph showing the effect of the present invention.

【図3】チョクラルスキー法の実施状態を示す概略断面
図である。
FIG. 3 is a schematic cross-sectional view showing an embodiment of a Czochralski method.

【符号の説明】[Explanation of symbols]

1 坩堝 2 加熱ヒーター 3 融液 4 種結晶 5 ワイヤ 6 単結晶 7 輻射遮断物 9 輻射反射物 DESCRIPTION OF SYMBOLS 1 Crucible 2 Heater 3 Melt 4 Seed crystal 5 Wire 6 Single crystal 7 Radiation blocker 9 Radiation reflector

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C30B 28/00 - 35/00 C30B 15/20 - 15/28──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) C30B 28/00-35/00 C30B 15/20-15/28

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 チョクラルスキー法によってシリコン単
結晶を製造する際に、伝熱計算を用いた炉内全体の温度
分布計算により単結晶内部の温度分布を求め、求めた温
度分布を用いて融液からの輻射を遮断および/または反
射することにより、単結晶内部の温度分布を操作するこ
とを特徴とする単結晶シリコン育成方法。
When a silicon single crystal is produced by the Czochralski method, a temperature distribution inside the single crystal is obtained by calculating a temperature distribution in the whole furnace using heat transfer calculation, and melting is performed using the obtained temperature distribution. A method for growing single-crystal silicon, comprising controlling the temperature distribution inside a single crystal by blocking and / or reflecting radiation from a liquid.
【請求項2】 伝熱計算を用いた炉内全体の温度分布計
算により、シリコンの融点から1300℃までの結晶軸
方向の温度勾配G(℃/mm)を求め、結晶育成速度V
(mm/min )と求めた温度勾配G(℃/mm)との比V/
G(mm2 /℃・min )が目標値に制御されるように、V
を操作すると共に融液からの輻射の遮断および/または
反射によりGを操作することを特徴とする請求項1に記
載の単結晶シリコン育成方法。
2. A temperature gradient G (° C./mm) in a crystal axis direction from the melting point of silicon to 1300 ° C. is determined by calculating a temperature distribution of the entire inside of the furnace using heat transfer calculation.
(Mm / min) and the obtained temperature gradient G (° C./mm).
V (mm 2 / ° C · min) is controlled to the target value so that V
2. The method of growing single-crystal silicon according to claim 1, wherein G is operated by blocking and / or reflecting radiation from the melt.
【請求項3】 単結晶周囲の温度計測値により温度分布
計算を補正することを特徴とする請求項1または2に記
載の単結晶シリコン育成方法。
3. The method of growing a single crystal silicon according to claim 1, wherein the temperature distribution calculation is corrected based on a measured temperature around the single crystal.
JP10017395A 1995-03-30 1995-03-30 Single crystal silicon growing method Expired - Lifetime JP2826589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10017395A JP2826589B2 (en) 1995-03-30 1995-03-30 Single crystal silicon growing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10017395A JP2826589B2 (en) 1995-03-30 1995-03-30 Single crystal silicon growing method

Publications (2)

Publication Number Publication Date
JPH08268794A JPH08268794A (en) 1996-10-15
JP2826589B2 true JP2826589B2 (en) 1998-11-18

Family

ID=14266934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10017395A Expired - Lifetime JP2826589B2 (en) 1995-03-30 1995-03-30 Single crystal silicon growing method

Country Status (1)

Country Link
JP (1) JP2826589B2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY137778A (en) 1997-04-09 2009-03-31 Memc Electronic Materials Low defect density, ideal oxygen precipitating silicon
US6379642B1 (en) 1997-04-09 2002-04-30 Memc Electronic Materials, Inc. Vacancy dominated, defect-free silicon
CN101070621B (en) 1997-04-09 2012-09-05 Memc电子材料有限公司 Low defect density, self-interstitial dominated silicon
JPH1179889A (en) 1997-07-09 1999-03-23 Shin Etsu Handotai Co Ltd Production of and production unit for silicon single crystal with few crystal defect, and silicon single crystal and silicon wafer produced thereby
EP1035234A4 (en) 1997-08-26 2003-05-28 Sumitomo Mitsubishi Silicon High-quality silicon single crystal and method of producing the same
JP3460551B2 (en) * 1997-11-11 2003-10-27 信越半導体株式会社 Silicon single crystal wafer with few crystal defects and method of manufacturing the same
JP3747123B2 (en) 1997-11-21 2006-02-22 信越半導体株式会社 Method for producing silicon single crystal with few crystal defects and silicon single crystal wafer
US6245430B1 (en) * 1997-12-12 2001-06-12 Sumitomo Sitix Corporation Silicon single crystal wafer and manufacturing method for it
JP2003517412A (en) 1998-06-26 2003-05-27 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Method for growing defect-free silicon crystals with arbitrarily large diameter
JP2002524845A (en) 1998-09-02 2002-08-06 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Silicon-on-insulator structure obtained from single crystal silicon with low defect density
EP1133590B1 (en) 1998-10-14 2003-12-17 MEMC Electronic Materials, Inc. Epitaxial silicon wafers substantially free of grown-in defects
US6312516B2 (en) 1998-10-14 2001-11-06 Memc Electronic Materials, Inc. Process for preparing defect free silicon crystals which allows for variability in process conditions
EP1125008B1 (en) 1998-10-14 2003-06-18 MEMC Electronic Materials, Inc. Thermally annealed, low defect density single crystal silicon
TW505710B (en) * 1998-11-20 2002-10-11 Komatsu Denshi Kinzoku Kk Production method for silicon single crystal and production device for single crystal ingot, and heat treating method for silicon single crystal wafer
JP3601328B2 (en) * 1998-12-14 2004-12-15 信越半導体株式会社 Method for producing silicon single crystal and silicon single crystal and silicon wafer produced by this method
JP4293395B2 (en) 1999-04-28 2009-07-08 Sumco Techxiv株式会社 CZ method single crystal ingot manufacturing apparatus and method
US6858307B2 (en) 2000-11-03 2005-02-22 Memc Electronic Materials, Inc. Method for the production of low defect density silicon
US7105050B2 (en) 2000-11-03 2006-09-12 Memc Electronic Materials, Inc. Method for the production of low defect density silicon
EP2295619B1 (en) 2001-01-26 2014-04-23 MEMC Electronic Materials, Inc. Process for producing Low Defect Density Silicon Having a Vacancy-Dominated Core Substantially Free of Oxidation Induced Stacking Faults
JP4486889B2 (en) 2002-11-12 2010-06-23 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Method for growing single crystal ingot and crystal pulling apparatus
JP4496723B2 (en) * 2003-06-27 2010-07-07 信越半導体株式会社 Single crystal manufacturing method and single crystal manufacturing apparatus
JP2005015312A (en) * 2003-06-27 2005-01-20 Shin Etsu Handotai Co Ltd Method for manufacturing single crystal, and single crystal
JP4701738B2 (en) * 2005-02-17 2011-06-15 株式会社Sumco Single crystal pulling method
EP2027312B1 (en) 2006-05-19 2015-02-18 MEMC Electronic Materials, Inc. Controlling agglomerated point defect and oxygen cluster formation induced by the lateral surface of a silicon single crystal during cz growth
JP4513798B2 (en) * 2006-10-24 2010-07-28 信越半導体株式会社 Single crystal manufacturing apparatus and single crystal manufacturing method
US9711110B2 (en) 2012-04-06 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Display device comprising grayscale conversion portion and display portion
CN112301419A (en) * 2019-07-31 2021-02-02 内蒙古中环光伏材料有限公司 Multi-directional temperature measurement large-size monocrystalline silicon temperature-stabilizing welding method

Also Published As

Publication number Publication date
JPH08268794A (en) 1996-10-15

Similar Documents

Publication Publication Date Title
JP2826589B2 (en) Single crystal silicon growing method
JPH1179889A (en) Production of and production unit for silicon single crystal with few crystal defect, and silicon single crystal and silicon wafer produced thereby
JPH08330316A (en) Silicon single crystal wafer and its production
KR100453850B1 (en) Silicon single crystal with no crystal defect in peripheral part of wafer
JPH10152395A (en) Production of silicon single crystal
JPH11199386A (en) Production of silicon single crystal and silicon single crystal wafer
JP4701738B2 (en) Single crystal pulling method
US6277715B1 (en) Production method for silicon epitaxial wafer
JP2000313691A (en) Apparatus and method for producing single crystal ingot by czochralski method
JP4151474B2 (en) Method for producing single crystal and single crystal
KR20180051827A (en) Method and apparatus for manufacturing silicon monocrystalline ingot
JP2001316199A (en) Manufacturing method and manufacturing device for silicon single crystal
JP4496723B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JP2005015314A (en) Method for manufacturing single crystal, and single crystal
JP5223513B2 (en) Single crystal manufacturing method
JP2007308335A (en) Method for pulling single crystal
US20230023541A1 (en) System and method for producing single crystal
JP2579761B2 (en) Control method of single crystal diameter
JP2003327494A (en) Method for manufacturing silicon single crystal, program for operating silicon single crystal production, and apparatus for manufacturing silicon single crystal
CN114908415B (en) Method and apparatus for growing silicon single crystal ingot
JP4315502B2 (en) Method for producing silicon single crystal
JP4134800B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method
JPH07133187A (en) Method for growing semiconductor single crystal
JP5182234B2 (en) Method for producing silicon single crystal
JP2002234794A (en) Method of puling up silicon single crystal and silicon wafer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110918

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110918

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term