JPH021119B2 - - Google Patents

Info

Publication number
JPH021119B2
JPH021119B2 JP57031090A JP3109082A JPH021119B2 JP H021119 B2 JPH021119 B2 JP H021119B2 JP 57031090 A JP57031090 A JP 57031090A JP 3109082 A JP3109082 A JP 3109082A JP H021119 B2 JPH021119 B2 JP H021119B2
Authority
JP
Japan
Prior art keywords
crystal
silicon crystal
silicon
heat treatment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57031090A
Other languages
Japanese (ja)
Other versions
JPS58151393A (en
Inventor
Kunihiko Wada
Masamichi Yoshida
Kazunori Imaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3109082A priority Critical patent/JPS58151393A/en
Publication of JPS58151393A publication Critical patent/JPS58151393A/en
Publication of JPH021119B2 publication Critical patent/JPH021119B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明はシリコン結晶の製造方法に係り、特に
シリコン結晶内部に一様に結晶欠陥を形成する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method of manufacturing a silicon crystal, and more particularly to a method of uniformly forming crystal defects inside a silicon crystal.

(b) 技術の背景 近年益々高集積化する超LSIの製造に当つて
は、半導体結晶にある種の加熱処理を施すことに
より半導体結晶内部に含まれる微量の重金属等が
結晶の内部欠陥に析出する所謂イントリンシツ
ク・ゲツタリング(以下IGと略記する)効果が、
積極的に利用される趨勢にある。
(b) Background of the technology In manufacturing VLSIs, which have become increasingly highly integrated in recent years, by subjecting semiconductor crystals to a certain type of heat treatment, trace amounts of heavy metals and other substances contained within the semiconductor crystals are precipitated into internal defects in the crystals. The so-called intrinsic gettering (hereinafter abbreviated as IG) effect is
There is a tendency for it to be actively used.

(c) 従来技術と問題点 上述の半導体結晶の内部欠陥は、当該半導体結
晶を600〜900〔℃〕で加熱処理(以後これを低温
処理と称する)することにより、結晶内部に含ま
れる格子間酸素が析出して欠陥核が形成され、更
に1100〔℃〕程度で加熱処理(以後これを高温処
理と称する)する2段階の加熱処理により、上記
欠陥核が成長して形成される。
(c) Prior art and problems The internal defects in the semiconductor crystal described above can be removed by heating the semiconductor crystal at 600 to 900 [°C] (hereinafter referred to as low temperature treatment). Oxygen precipitates to form defect nuclei, and then the defect nuclei grow and are formed by a two-step heat treatment at about 1100 [° C.] (hereinafter referred to as high temperature treatment).

上述のIG効果の積極的利用とは、このように
結晶中に内部欠陥を形成し、その間の加熱処理工
程、または以後の加熱処理工程において、結晶内
部に含まれる重金属を上記内部欠陥に析出せし
め、半導体装置の製作に適合した結晶特性を得よ
うとするものである。
Active use of the above-mentioned IG effect means that internal defects are formed in the crystal in this way, and heavy metals contained within the crystal are precipitated into the internal defects during the heat treatment process or the subsequent heat treatment process. , which aims to obtain crystal characteristics suitable for manufacturing semiconductor devices.

上記結晶欠陥核の密度は、結晶内部に含まれる
酸素(Oi:添字のiはInterstitial即ち格子間に存
在することを意味する)濃度と上記低温処理時間
に依存する。即ち内部欠陥核密度は、酸素濃度が
大である程、また低温処理時間が長い程大とな
る。
The density of the crystal defect nuclei depends on the concentration of oxygen (O i : subscript i means interstitial) contained inside the crystal and the low temperature treatment time. That is, the density of internal defect nuclei increases as the oxygen concentration increases and as the low temperature treatment time increases.

一方上記シリコン(Si)結晶中に含まれる酸素
(Oi)は、シリコン(Si)結晶をチヨクラルスキ
(CZ)法により引き上げる際に、石英ルツボより
内部の溶融シリコン(Si)中に混入するもので、
その濃度分布は一様ではなく、第1図及び第2図
(後述)に示すように、シリコン(Si)結晶イン
ゴツト1のシード側(Top)が高く、他端
(Bottom)側に行くにつれて低くなる。そのた
めIG効果も一様とならず、結晶インゴツトの
Top側で強く、Bottom側程弱くなる。
On the other hand, the oxygen (O i ) contained in the silicon (Si) crystal mentioned above is mixed into the molten silicon (Si) inside the quartz crucible when the silicon (Si) crystal is pulled by the Czochralski (CZ) method. ,
The concentration distribution is not uniform; as shown in Figures 1 and 2 (described later), the concentration is high on the seed side (Top) of the silicon (Si) crystal ingot 1 and decreases as it goes to the other end (Bottom) side. Become. Therefore, the IG effect is not uniform, and the
Stronger on the Top side, weaker on the Bottom side.

通常使用されているシリコン(Si)結晶はこの
ような酸素(Oi)濃度分布を有するため、内部欠
陥密度が一様とならず、従つてIG効果を一様に
することが出来ない。
Since commonly used silicon (Si) crystals have such an oxygen (O i ) concentration distribution, the internal defect density is not uniform, and therefore the IG effect cannot be made uniform.

(d) 発明の目的 本発明の目的は上記問題点を解消して、内部欠
陥密度を一様にし得るシリコン(Si)結晶の製造
方法を提供することにある。
(d) Object of the Invention An object of the present invention is to solve the above-mentioned problems and provide a method for manufacturing a silicon (Si) crystal that can uniformize the internal defect density.

(e) 発明の構成 本発明のシリコン結晶の製造方法の特徴は、高
周波コイルをシリコン結晶と同心状に周設し、該
高周波コイルまたはシリコン結晶を前記シリコン
結晶の引き上げ軸方向に移動せしめ、且つその移
動速度を該シリコン結晶の前記高周波コイル位置
の酸素濃度に対応して変化せしめながら、高周波
誘導加熱法により前記シリコン結晶に加熱処理を
施し、その後に、第1温度の加熱処理と第1温度
より高い第2温度の加熱処理とを順次施して、前
記シリコン結晶内部に結晶欠陥を一様な密度に発
生せしめる工程を含むことにある。
(e) Structure of the Invention The method for producing a silicon crystal according to the present invention is characterized in that a high-frequency coil is provided concentrically around the silicon crystal, the high-frequency coil or the silicon crystal is moved in the direction of the pulling axis of the silicon crystal, and Heat treatment is applied to the silicon crystal by a high frequency induction heating method while changing its moving speed in accordance with the oxygen concentration at the high frequency coil position of the silicon crystal, followed by heat treatment at a first temperature and The method includes the step of sequentially performing heat treatment at a higher second temperature to generate crystal defects at a uniform density inside the silicon crystal.

(f) 発明の実施例 以下本発明のシリコン結晶の製造方法の一実施
例を第1図〜第4図を用いて説明する。
(f) Embodiments of the Invention An embodiment of the silicon crystal manufacturing method of the present invention will be described below with reference to FIGS. 1 to 4.

第1図において、1はCZ法で作成したシリコ
ン(Si)結晶インゴツト、2はSi結晶1と同心状
に配設された高周波コイルである。
In FIG. 1, 1 is a silicon (Si) crystal ingot prepared by the CZ method, and 2 is a high frequency coil arranged concentrically with the Si crystal 1.

本実施例では同図に見られる如く、矢線3で示
すようにSi結晶1を回転させ、且つコイル2を矢
線4で示す如くSi結晶インゴツト1のTop部より
Bottom部に向かつて移動させながら、コイル3
より高周波電力を供給する誘導加熱法によりSi結
晶インゴツト1を加熱し、上述の低温加熱処理を
施す。温度は従つて凡そ600〜900〔℃〕の範囲で
選択する。なお本実施例は、周波数凡そ300〔k
Hz〕の高周波電源より約10〔kw〕の電力を供給し
て実施した。
In this embodiment, as shown in the figure, the Si crystal 1 is rotated as shown by the arrow 3, and the coil 2 is rotated from the top part of the Si crystal ingot 1 as shown by the arrow 4.
Coil 3 while moving it toward the bottom part.
The Si crystal ingot 1 is heated by an induction heating method that supplies higher frequency power, and subjected to the above-mentioned low-temperature heat treatment. Therefore, the temperature is selected within the range of approximately 600 to 900 [°C]. In this example, the frequency is approximately 300 [k
The experiment was carried out by supplying approximately 10 [kW] of power from a high-frequency power supply of [Hz].

上記Si結晶インゴツト1は第2図に見られる如
く酸素濃度分布を有するので、上記コイル2の移
動速度は、第3図に示す如く各位置における結晶
インゴツト1内部の酸素濃度に比例するよう制御
する。このようにコイル2の掃引速度を酸素濃度
の高い所では速く、低い所では遅くする。即ちSi
結晶インゴツト1各部の加熱処理時間を、Si結晶
インゴツト1のTop側は短く、Bottom側に行く
につれて長くする。
Since the Si crystal ingot 1 has an oxygen concentration distribution as shown in FIG. 2, the moving speed of the coil 2 is controlled to be proportional to the oxygen concentration inside the crystal ingot 1 at each position as shown in FIG. . In this way, the sweep speed of the coil 2 is made faster in areas where the oxygen concentration is high and slowed in areas where the oxygen concentration is low. That is, Si
The heat treatment time for each part of the crystal ingot 1 is shortened on the top side of the Si crystal ingot 1 and lengthened as it goes to the bottom side.

この後前述した通常の2段階の加熱処理を施す
ことにより、内部欠陥密度を全インゴツト長にわ
たつて略一様に形成することが出来た。
Thereafter, by carrying out the usual two-step heat treatment described above, it was possible to form a substantially uniform internal defect density over the entire ingot length.

第4図に本実施例により得られたSi結晶インゴ
ツトの内部欠陥密度(曲線A)を、従来の2段階
の加熱処理のみを施したSi結晶インゴツトの内部
欠陥密度(曲線B)と比較して示す。なお上記2
段階加熱処理は両者とも、第1ステツプを凡そ
650〔℃〕の温度で約3〔時間〕、第2ステツプを凡
そ1100〔℃〕の温度で約5〔時間〕とした。
Figure 4 compares the internal defect density (curve A) of the Si crystal ingot obtained in this example with the internal defect density (curve B) of the Si crystal ingot that was subjected to only the conventional two-step heat treatment. show. Note that the above 2
In both stage heat treatments, the first step is approximately
The second step was carried out for about 3 hours at a temperature of 650°C, and for about 5 hours at a temperature of about 1100°C.

同図の縦軸は酸素濃度の減少量を示すが、内部
欠陥は前述した如くインゴツト中に含まれていた
格子間酸素が析出して形成されるので、酸素濃度
の減少量を形成された内部欠陥密度と看做して良
い。
The vertical axis of the figure shows the amount of decrease in oxygen concentration, but since internal defects are formed by precipitation of interstitial oxygen contained in the ingot as described above, the amount of decrease in oxygen concentration is It can be regarded as defect density.

同図の曲線Bに示す従来の製造方法により製作
したSi結晶インゴツトの内部欠陥密度が、場所に
より著しく異なるのに対し、曲線Aに示す本実施
例により製作したSi結晶インゴツトは、どの部分
を取つても内部欠陥密度のバラツキは小さく、略
一様となる。従つて本実施例によれば、得られた
結晶インゴツトを全長にわたつて前記IG効果が
一様となるので、結晶インゴツトを有効に使用す
ることが可能となる。
The internal defect density of the Si crystal ingot manufactured by the conventional manufacturing method shown by curve B in the same figure varies significantly depending on the location, whereas the internal defect density of the Si crystal ingot manufactured by this example shown by curve A differs depending on the location. However, the variation in the internal defect density is small and approximately uniform. Therefore, according to this embodiment, the IG effect is uniform over the entire length of the obtained crystal ingot, so that the crystal ingot can be used effectively.

このあとのSi基板を作成するための結晶インゴ
ツトの切断、研磨工程或いはSi基板に所望の素子
を形成するための素子形成工程等は総て通常の製
造方法に従つて進めて良い。
The subsequent steps of cutting and polishing the crystal ingot for creating the Si substrate, or the element forming step for forming desired elements on the Si substrate, etc., may all be carried out in accordance with conventional manufacturing methods.

なお、前記実施例においてはコイル2を移動さ
せたが、シリコン結晶インゴツト1を移動させて
もよいことは勿論である。
Although the coil 2 was moved in the above embodiment, it goes without saying that the silicon crystal ingot 1 may also be moved.

(g) 発明の効果 以上説明したごとく本発明により内部欠陥密度
を一様に形成し得るシリコン結晶の製造方法が提
供される。
(g) Effects of the Invention As explained above, the present invention provides a method for manufacturing a silicon crystal that can form a uniform internal defect density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す要部側面図、
第2図はシリコン結晶インゴツト内部の格子間酸
素濃度分布を示す曲線図、第3図はコイルの掃引
速度を示す曲線図、第4図は本実施例により得ら
れたSi結晶インゴツトの内部欠陥密度を従来の製
造方法と比較して示す曲線図である。 図において、1はシリコン(Si)結晶インゴツ
ト、2はコイル、4はコイル2の掃引方向を示す
矢線、Aは本発明の効果としての内部欠陥密度を
示す曲線である。
FIG. 1 is a side view of essential parts showing one embodiment of the present invention;
Figure 2 is a curve diagram showing the interstitial oxygen concentration distribution inside the silicon crystal ingot, Figure 3 is a curve diagram showing the coil sweep speed, and Figure 4 is the internal defect density of the Si crystal ingot obtained in this example. FIG. In the figure, 1 is a silicon (Si) crystal ingot, 2 is a coil, 4 is an arrow line showing the sweeping direction of the coil 2, and A is a curve showing the internal defect density as an effect of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 高周波コイルをシリコン結晶と同心状に周設
し、該高周波コイルまたはシリコン結晶を、前記
シリコン結晶の引き上げ軸方向に移動せしめ、且
つその移動速度を該シリコン結晶の前記高周波コ
イル位置の酸素濃度に対応して変化せしめなが
ら、高周波誘導加熱法により前記シリコン結晶に
加熱処理を施し、その後に、第1温度の加熱処理
と第1温度より高い第2温度の加熱処理とを順次
施して、前記シリコン結晶内部に結晶欠陥を一様
な密度に発生せしめる工程を含むことを特徴とす
るシリコン結晶の製造方法。
1. A high frequency coil is provided concentrically around the silicon crystal, the high frequency coil or the silicon crystal is moved in the direction of the pulling axis of the silicon crystal, and the moving speed is adjusted to the oxygen concentration at the position of the high frequency coil of the silicon crystal. The silicon crystal is heated by a high-frequency induction heating method while the silicon crystal is heated in a corresponding manner, and then a heat treatment at a first temperature and a heat treatment at a second temperature higher than the first temperature are sequentially performed to heat the silicon crystal. A method for producing a silicon crystal, comprising a step of generating crystal defects at a uniform density inside the crystal.
JP3109082A 1982-02-26 1982-02-26 Production of silicon crystal Granted JPS58151393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3109082A JPS58151393A (en) 1982-02-26 1982-02-26 Production of silicon crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3109082A JPS58151393A (en) 1982-02-26 1982-02-26 Production of silicon crystal

Publications (2)

Publication Number Publication Date
JPS58151393A JPS58151393A (en) 1983-09-08
JPH021119B2 true JPH021119B2 (en) 1990-01-10

Family

ID=12321702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3109082A Granted JPS58151393A (en) 1982-02-26 1982-02-26 Production of silicon crystal

Country Status (1)

Country Link
JP (1) JPS58151393A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242984A (en) * 1985-04-19 1986-10-29 Shinetsu Sekiei Kk Crucible for pulling up silicon single crystal
JP2020520129A (en) * 2017-05-10 2020-07-02 マクマホン, シェーン トマスMCMAHON, Shane Thomas Thin film crystallization process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130897A (en) * 1979-03-30 1980-10-11 Chiyou Lsi Gijutsu Kenkyu Kumiai Silicon single crystal
JPS5645894A (en) * 1979-09-25 1981-04-25 Nippon Telegr & Teleph Corp <Ntt> Reducing method for defect of silicon single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130897A (en) * 1979-03-30 1980-10-11 Chiyou Lsi Gijutsu Kenkyu Kumiai Silicon single crystal
JPS5645894A (en) * 1979-09-25 1981-04-25 Nippon Telegr & Teleph Corp <Ntt> Reducing method for defect of silicon single crystal

Also Published As

Publication number Publication date
JPS58151393A (en) 1983-09-08

Similar Documents

Publication Publication Date Title
JPH10163220A (en) Heat treatment method of semiconductor wafer, and semiconductor wafer formed thereby
JPH02263792A (en) Heat treatment of silicon
JP2001151596A (en) Silicon wafer for epitaxially growing, epitaxial wafer and method of producing the same
US7235133B2 (en) Method for growing single crystal of semiconductor
JP4055343B2 (en) Heat treatment method for silicon semiconductor substrate
JPH021119B2 (en)
JP3172389B2 (en) Manufacturing method of silicon wafer
JPH1192283A (en) Silicon wafer and its production
JPH04104988A (en) Growth of single crystal
JPS61201692A (en) Method for pulling and growing silicon single crystal with less generation of defect
JPS6027684A (en) Apparatus for producing single crystal
JPH0119265B2 (en)
JPS63198334A (en) Manufacture of semiconductor silicon wafer
JPH04175300A (en) Heat treatment of silicon single crystal
JPH03184345A (en) Silicon wafer and manufacture thereof
JPH023539B2 (en)
JPH0818907B2 (en) Method for pulling and growing silicon single crystal with high IG effect
JPS6344720B2 (en)
JPS58120591A (en) Production of single crystal
JPH05102167A (en) Heat treatment of silicon
JPS6027678A (en) Method for growing single crystal
JPH03193698A (en) Silicon single crystal and its production
JPH10194890A (en) Manufacture of silicon single crystal
JPH01313384A (en) Method for growing silicon single crystal
JPH0692781A (en) Production of single crystal and apparatus therefor