JPS6027678A - Method for growing single crystal - Google Patents

Method for growing single crystal

Info

Publication number
JPS6027678A
JPS6027678A JP13161283A JP13161283A JPS6027678A JP S6027678 A JPS6027678 A JP S6027678A JP 13161283 A JP13161283 A JP 13161283A JP 13161283 A JP13161283 A JP 13161283A JP S6027678 A JPS6027678 A JP S6027678A
Authority
JP
Japan
Prior art keywords
single crystal
oxygen
crucible
oxygen concentration
molten liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13161283A
Other languages
Japanese (ja)
Inventor
Ritsuo Takizawa
滝沢 律夫
Akira Osawa
大沢 昭
Koichiro Honda
耕一郎 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13161283A priority Critical patent/JPS6027678A/en
Publication of JPS6027678A publication Critical patent/JPS6027678A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To grow a single crystal having uniform oxygen concentration by Czochralski process, by enlarging the diameter of the single crystal gradually in the course of the crystal pulling process, thereby decreasing the surface area of the molten liquid. CONSTITUTION:In the growing of a single crystal by Czochralski process using a crucible 1 made of an oxide such as quartz, the oxygen in the crucible material is diffused into the single crystal 4, and its amount decreases with the increase in the solidification ratio, because the convective stirring action of the molten liquid 2 decreases according to the decrease in the molten liquid 2 in the crucible 1 by the progress of solidification, resulting in the decrease of the oxygen supply from the crucible material 1. The decrease of the oxygen supply from the crucible material is compensated by enlarging the diameter of the pulling single crystal 4 gradually according to the progress of solidification, thereby decreasing the surface area of the molten liquid 2 and suppressing the dissipation of oxygen from the surface of the molten liquid. A single crystal having uniform oxygen concentration along the pulling direction can be produced by this process.

Description

【発明の詳細な説明】 (81発明の技術分野 本発明はチョクラルスキー法による単結晶育成に係り、
と(に引き上げ方向における酸素濃度が均一な単結晶の
育成方法に関する。
[Detailed Description of the Invention] (81 Technical Field of the Invention The present invention relates to single crystal growth by the Czochralski method,
(Relates to a method for growing a single crystal with uniform oxygen concentration in the pulling direction.

(1+1技術の背景 半導体集積回路の製造においては、半導体基板自身の性
質を有効に利用したIntrinsic Getter
−;ng (IG>と称される技術によって、半導体回
路が形成される該基板表面に無欠陥層を与えることが行
われる。
(Background of 1+1 technology In the manufacturing of semiconductor integrated circuits, Intrinsic Getter, which effectively utilizes the properties of the semiconductor substrate itself,
A technique called -;ng (IG>) provides a defect-free layer on the surface of the substrate on which a semiconductor circuit is formed.

すなわち、通常の製造工程においては、例えば銅(Cu
)あるいはニッケル(Ni)等の不純物が不可避的に混
入する。その結果、基板の表面付近に該不純物が析出し
たり、あるいは拡散じプロファイルが変化したりして、
形成される半導体回路の特性に好ましくない影響を与え
る。このために、これらの不純物を該基板内で半導体回
路に影響を与えない位置に局在させてしまう手段として
、前記のIGあるいはExtrinsic Gette
ringと呼ばれる効果が用いられる。
That is, in normal manufacturing processes, for example, copper (Cu
) or impurities such as nickel (Ni) are inevitably mixed in. As a result, the impurities may precipitate near the surface of the substrate, or the diffusion profile may change.
This has an undesirable effect on the characteristics of the formed semiconductor circuit. For this reason, the above-mentioned IG or Extrinsic Gette is used as a means to localize these impurities in positions where they do not affect the semiconductor circuit within the substrate.
An effect called "ring" is used.

このIG効果を発揮させるためには、基板内部に適当な
濃度の酸素が含有されていることが必要である。上記の
不純物原子はシリコン等の基板内で比較的移動しやすく
、かつ酸素析出物などの周囲の歪領域に集りやすいこと
を利用するからである。
In order to exhibit this IG effect, it is necessary that an appropriate concentration of oxygen be contained inside the substrate. This is because the above-mentioned impurity atoms are relatively easy to move within a substrate such as silicon and are easy to collect in a strained region around an oxygen precipitate or the like.

すなわち、適当な酸素を含有するシリコン等の基板を、
あらかじめ所定の熱処理を施して表面層の酸素を成田さ
せて無欠陥領域を形成し、その内部にのみ酸素析出物を
形成させることにより、前記不純物は基板内部に閉じ込
められる。このようにして無欠陥となった基板表面層に
半導体回路の形成を行うのである。
In other words, a substrate such as silicon containing an appropriate amount of oxygen,
A predetermined heat treatment is performed in advance to remove oxygen from the surface layer to form a defect-free region, and by forming oxygen precipitates only within the region, the impurities are confined within the substrate. In this way, a semiconductor circuit is formed on the surface layer of the substrate which has become defect-free.

tc+従来技術と問題点 丁導体素子用のシリコン単結晶の工業的育成には、通常
、チョクラルスキー法が用いられている。
tc+Prior Art and Problems The Czochralski method is usually used for industrial growth of silicon single crystals for conductive devices.

この際に原料シリコンを溶融するための坩堝として、酸
化物、例えば石英(Si02)製のものを用いると、該
石英(Si02)がシリコン融液に微量熔解する。その
大部分は一酸化珪素(SiO)等の低級シリコン酸化物
として雰囲気ガス中に逸出するが、残りの一部の酸素が
シリコン単結晶中に取り込まれる。
At this time, if a crucible made of an oxide such as quartz (Si02) is used as a crucible for melting the raw material silicon, a small amount of the quartz (Si02) will melt into the silicon melt. Most of the oxygen escapes into the atmospheric gas as lower silicon oxides such as silicon monoxide (SiO), but the remaining part of the oxygen is taken into the silicon single crystal.

酸化物層の坩堝を用いて育成されたシリコン単結晶中に
は、上記の機構によって酸素が含有されるのであるが、
従来の育成方法で得られた単結晶においては、引き上げ
方向におIIる酸素濃度は均一でなく、一般に第1図に
示すような分布をしていた。同図の固化率(%)は坩堝
中の原料シリコン融液の初期量のうちの結晶とし”ζ固
化した量の割合を百分率で表した値である。
Oxygen is contained in the silicon single crystal grown using an oxide layer crucible due to the above mechanism.
In single crystals obtained by conventional growth methods, the oxygen concentration in the pulling direction was not uniform, and generally had a distribution as shown in FIG. The solidification rate (%) in the figure is a value expressed as a percentage of the amount that has solidified into crystals out of the initial amount of raw silicon melt in the crucible.

同図に示されるように、単結晶中の酸素濃度は坩堝内の
シリコン融液が少なくなるにしたがって減少するのであ
るが、半導体集積回路の製造で要求されるある酸素濃度
範囲(図で)\・ノチを付した範囲)から見ると、育成
された単結晶の数10%程度しかこの要求に適合しない
ことになる。言い替えれば、このような酸素濃度分布を
有する単結晶から得たウェファを用いる場合には、その
酸素濃度によって半導体回路形成プロセスの条件を変え
なければならず、製造コストの増大を招くことを意味す
る。したがって、大量処理に通したウェファを高歩留り
で得ることが半導体集積回路の低コスト化にとって必須
要件となり、このために、酸素濃度ができるだけ均一な
単結晶を育成可能な方法の開発が要望されていた。
As shown in the figure, the oxygen concentration in the single crystal decreases as the amount of silicon melt in the crucible decreases;・Viewed from the notched area), only about 10% of the grown single crystals meet this requirement. In other words, when using a wafer made from a single crystal with such an oxygen concentration distribution, the conditions of the semiconductor circuit formation process must be changed depending on the oxygen concentration, which means an increase in manufacturing costs. . Therefore, obtaining a high yield of wafers that have undergone mass processing is an essential requirement for reducing the cost of semiconductor integrated circuits, and for this reason, there is a need to develop a method that can grow single crystals with as uniform an oxygen concentration as possible. Ta.

(d1発明の目的 本発明は、実質的に任意の要求濃度範囲において均一な
酸素濃度を有する単結晶を育成可能とすることを目的と
する。
(d1 Purpose of the Invention The object of the present invention is to enable the growth of a single crystal having a uniform oxygen concentration in a substantially arbitrary required concentration range.

(e)発明の構成 本発明は、チョクラルスキー法による単結晶育成におい
て、引き上げ中に単結晶の直径を順次大きくして融液の
表面積を減少することにより該単結晶中の酸素濃度を均
一にすることを特徴とする。
(e) Structure of the Invention The present invention provides a uniform oxygen concentration in the single crystal by sequentially increasing the diameter of the single crystal during pulling to reduce the surface area of the melt during single crystal growth using the Czochralski method. It is characterized by making it.

ff)発明の実施例 以下に本発明の実施例を図面を参照して説明する。ff) Examples of the invention Embodiments of the present invention will be described below with reference to the drawings.

前記のように、酸化物層の坩堝を用いた場合、該坩堝材
のrfJ、素が単結晶に対する酸素の供給源となるもの
と考えられている。第2図はこの機構を説明する模式図
であって、石英(Si02)製の坩堝1からシリコン(
Si)の副:液2に溶解したSi02成分3は、例えば
90%程度以上が一酸化シリコン(SiO)等の低級シ
リコン酸化物(SiOx)として融11〉2の自由表面
から逸出し、残りの酸素が単結晶・1に取り込まれる。
As mentioned above, when an oxide layer crucible is used, it is believed that the rfJ of the crucible material serves as a source of oxygen for the single crystal. FIG. 2 is a schematic diagram explaining this mechanism, in which a crucible 1 made of quartz (Si02) is
Substitute of Si): For example, about 90% or more of the Si02 component 3 dissolved in the liquid 2 escapes from the free surface of the melt 11〉2 as a lower silicon oxide (SiOx) such as silicon monoxide (SiO), and the remaining Oxygen is incorporated into single crystal 1.

この場合に、単結晶中におりろ酸素濃度が第1図に示し
たような右下がりの曲Xjl+となる理由は、固化率が
高くなって坩堝中の融液が減少すると、融液の対流によ
る攪拌作用が低くなり、その結果、坩堝材からの酸素供
給量が城るためと説明される。
In this case, the reason why the oxygen concentration in the single crystal becomes a downward-sloping curve Xjl+ as shown in Figure 1 is that when the solidification rate increases and the melt in the crucible decreases, the convection of the melt This is explained by the fact that the stirring action of the crucible material decreases, and as a result, the amount of oxygen supplied from the crucible material decreases.

この考察によれば、供給酸素量の減少を補償するように
融液表面からの逸出酸素量(前記低級シリコン酸化物と
気体酸素を含む)を抑制すれば、単結晶中の酸素濃度を
均一に維持できることになる。そこで、本発明において
は、固化率が大きくなるにしたかっ”で引き上げ中の単
結晶の直径を大きくすることにより、融液の自由表面積
を低減し、。
According to this consideration, if the amount of oxygen escaping from the melt surface (including the lower silicon oxide and gaseous oxygen) is suppressed to compensate for the decrease in the amount of oxygen supplied, the oxygen concentration in the single crystal can be made uniform. This means that it can be maintained at Therefore, in the present invention, the free surface area of the melt is reduced by increasing the diameter of the single crystal being pulled as the solidification rate increases.

逸出酸素量を抑制する。Suppresses the amount of escaping oxygen.

ずなわら、第3図に示すように引き上げ初期から固化率
が20%程度になるまでの間、直径が3インヂとなるよ
うに引き上げ速度あるいは融液2の加熱用ヒータ5の電
力を制御する。そののち固化率が60%程度になるまで
の間、直1yr:が4インチとなるよ・うに、さらにそ
ののち固化率がほぼ100%となるまでの間、直径が5
インチとなるように、それぞれ引き上げ速度あるいはヒ
ータ5の電力制御を行う。
As shown in FIG. 3, from the initial stage of pulling until the solidification rate reaches about 20%, the pulling speed or the power of the heater 5 for heating the melt 2 is controlled so that the diameter is 3 inches. . After that, until the solidification rate reaches about 60%, the diameter of 1yr becomes 4 inches, and then until the solidification rate reaches almost 100%, the diameter becomes 5 inches.
The pulling speed or the power of the heater 5 is controlled so that the pulling speed or the power of the heater 5 is adjusted to 1 inch.

この効果を第4図に示す。同図において曲線■、■、■
はそれぞれ単結晶の直径が3インチ、4インチ、5イン
チの場合の固化率と酸素濃度の関係・分示ず曲線である
。すなわち、同一径の坩堝を使用した場合には、単結晶
の直径が大きいほど融液の自由表面稍が小さくなり、逸
出酸素量が減るたン、うに、該単結晶中の酸素濃度が高
くなることが示さ1′1.ている。
This effect is shown in FIG. In the same figure, curves ■, ■, ■
are curves showing the relationship between solidification rate and oxygen concentration when the diameter of the single crystal is 3 inches, 4 inches, and 5 inches, respectively. In other words, when crucibles of the same diameter are used, the larger the diameter of the single crystal, the smaller the free surface flaw of the melt, which reduces the amount of escaping oxygen, resulting in a higher oxygen concentration in the single crystal. It is shown that 1'1. ing.

上記のように、引き上げ初期から固化率がおよそ25%
に達するまでは直径3インチで引き上げたために、この
部分の単結晶中の酸素濃度は曲線■の実線部分に沿って
分布しており、固化率がおよそ25%からおよそ60%
までの間は直径4インチで引き上げたために、この部分
の単結晶中の酸素濃度は曲線■の実線部分に沿って分布
しており、固化イ4がおよそ60%からおよそ100%
までの間は直径3インチで引き上げたために、この部分
の単結晶中の酸素濃度は曲線■の実線部分に沿って分布
している。
As mentioned above, the solidification rate is approximately 25% from the initial stage of pulling.
The oxygen concentration in the single crystal in this area is distributed along the solid line part of the curve (■), and the solidification rate is from approximately 25% to approximately 60%.
The oxygen concentration in the single crystal in this area is distributed along the solid line part of curve Ⅰ, and solidification Ⅰ is from about 60% to about 100% because the single crystal was pulled up to 4 inches in diameter.
Since the single crystal was pulled up to 3 inches in diameter, the oxygen concentration in the single crystal in this part is distributed along the solid line part of the curve (2).

上記のようにして、固化率がほぼ100%までに(!7
られた単結晶中の酸素濃度を、半導体集積回路の製造プ
ロセスから要求される濃度範囲(第4図でハツチを付し
た範囲)に収めることができた。
As above, the solidification rate is almost 100% (!7
The oxygen concentration in the single crystal obtained could be kept within the concentration range required by the manufacturing process of semiconductor integrated circuits (the hatched range in FIG. 4).

図示と異なる濃度範囲に酸素濃度を制御する必要がある
場合には、第4図の曲線を利用して、直径を変える固化
率範囲を変えることによっても可能であり、さらに大き
く濃度範囲を変える場合には、図示以外の直径について
同様の曲線をめるか、あるいはLl堝の径を変えた場合
に同様の曲線群をめておき、上記と同様にして引き上げ
中に直径を変えることにより、異なる濃度範囲の酸素を
含有する単結晶をi#ることが可能である。
If it is necessary to control the oxygen concentration to a concentration range different from that shown in the diagram, it is possible to use the curve in Figure 4 and change the solidification rate range in which the diameter is changed.If the concentration range is changed even more, it is possible. To do this, you can either draw similar curves for diameters other than those shown in the figure, or draw a similar group of curves when the diameter of the Ll pit is changed, and then change the diameter during pulling in the same way as above to create different curves. It is possible to produce a single crystal containing a range of concentrations of oxygen.

なお、本発明の原理によれば、直径を連続的に大きくす
ることにより、酸素濃度分布を完全に一定に制御可能で
あることは明らかである。
Note that, according to the principle of the present invention, it is clear that by continuously increasing the diameter, it is possible to control the oxygen concentration distribution to be completely constant.

また、本発明におい°ζは、1回の引き上げにより異な
った直径の単結晶を製造でき、多目的用途に対応できる
という別の利点がfWられる。
Further, in the present invention, another advantage of °ζ is that single crystals of different diameters can be produced by one pulling process, and can be used for multiple purposes.

(g)発明の効果 本発明によれば、引き上げ軸方向における酸素濃度が、
半導体集積回路の製造プロセスから要求される濃度範囲
で均一な単結晶を育成可能であり、大量処理に逍したウ
エツブを経済的に供給できるシJ果がある。
(g) Effect of the invention According to the invention, the oxygen concentration in the pulling axis direction is
It is possible to grow uniform single crystals within the concentration range required by the manufacturing process of semiconductor integrated circuits, and it has the advantage that webs suitable for mass processing can be economically supplied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はチョクラルスキー法による単結晶育成における
融液の固化率と単結晶中の酸素濃度の一般的関係を示す
図、第2図はチョクラルスキー法により育成される単結
晶に対する酸素供給機構を説明するための模式図、第3
図は均一酸素濃度の単結晶を育成するための本発明に係
る本発明の詳細な説明するだめの模式図、第4図は第1
図に示す固化率−酸素濃度の関係を利用して単結晶中に
おける酸素濃度を均一化する本発明の単結晶育成方法の
原理を説明するだめの図である。 図において、1は坩堝、2は融液、3は5i02成分、
4は単結晶、5はヒータである。 % 1 図 第4m
Figure 1 shows the general relationship between the solidification rate of the melt and the oxygen concentration in the single crystal during single crystal growth using the Czochralski method, and Figure 2 shows the oxygen supply to the single crystal grown using the Czochralski method. Schematic diagram for explaining the mechanism, Part 3
The figure is a schematic diagram for explaining the details of the present invention for growing a single crystal with uniform oxygen concentration.
FIG. 2 is a diagram illustrating the principle of the single crystal growth method of the present invention in which the oxygen concentration in the single crystal is made uniform by using the solidification rate-oxygen concentration relationship shown in the figure. In the figure, 1 is a crucible, 2 is a melt, 3 is a 5i02 component,
4 is a single crystal, and 5 is a heater. % 1 Figure 4m

Claims (1)

【特許請求の範囲】[Claims] チョクラルスキー法による単結晶育成において、引き上
げ中に単結晶の直径を順次太き(して融液の表面積を減
少することにより該単結晶中の酸素濃度を均一にするこ
とを特徴とする単結晶育成方法。
In single crystal growth using the Czochralski method, the diameter of the single crystal is gradually increased during pulling (by which the surface area of the melt is reduced, thereby making the oxygen concentration in the single crystal uniform). Crystal growth method.
JP13161283A 1983-07-19 1983-07-19 Method for growing single crystal Pending JPS6027678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13161283A JPS6027678A (en) 1983-07-19 1983-07-19 Method for growing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13161283A JPS6027678A (en) 1983-07-19 1983-07-19 Method for growing single crystal

Publications (1)

Publication Number Publication Date
JPS6027678A true JPS6027678A (en) 1985-02-12

Family

ID=15062132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13161283A Pending JPS6027678A (en) 1983-07-19 1983-07-19 Method for growing single crystal

Country Status (1)

Country Link
JP (1) JPS6027678A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445796A (en) * 1987-08-13 1989-02-20 Toshiba Corp Apparatus for pulling up si single crystal and method therefor
US5611855A (en) * 1995-01-31 1997-03-18 Seh America, Inc. Method for manufacturing a calibration wafer having a microdefect-free layer of a precisely predetermined depth

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445796A (en) * 1987-08-13 1989-02-20 Toshiba Corp Apparatus for pulling up si single crystal and method therefor
US5611855A (en) * 1995-01-31 1997-03-18 Seh America, Inc. Method for manufacturing a calibration wafer having a microdefect-free layer of a precisely predetermined depth
US5961713A (en) * 1995-01-31 1999-10-05 Seh America, Inc. Method for manufacturing a wafer having a microdefect-free layer of a precisely predetermined depth

Similar Documents

Publication Publication Date Title
WO2006112054A1 (en) Silicon single crystal manufacturing method and silicon wafer
JPH0453840B2 (en)
JP2008100904A (en) Method for production of semiconductor single crystal using czochralski method, and semiconductor single crystal ingot and wafer produced by the method
US5408951A (en) Method for growing silicon crystal
CN114318500A (en) Crystal pulling furnace and method for pulling single crystal silicon rod and single crystal silicon rod
JP3172389B2 (en) Manufacturing method of silicon wafer
JP2002198375A (en) Method of heat treatment of semiconductor wafer and semiconducor wafer fabricated therby
JPS6027678A (en) Method for growing single crystal
JP4750916B2 (en) Method for growing silicon single crystal ingot and silicon wafer using the same
JPH05294782A (en) Silicon single crystal producing device
JP4080657B2 (en) Method for producing silicon single crystal ingot
JPH0543382A (en) Production of silicon single crystal
JPS59121193A (en) Silicon crystal
JP4463950B2 (en) Method for manufacturing silicon wafer
TWI628318B (en) Method for forming monocrystalline silicon ingot and wafer
JPH08250506A (en) Silicon epitaxial wafer and its manufacture
JPH0367994B2 (en)
JP4016471B2 (en) Crystal growth method
JPH05121319A (en) Manufacture of semiconductor device
JPH08290995A (en) Silicon single crystal and its production
JPH09286688A (en) Method for doping gas to silicon single crystal
JP2003146795A (en) High thermal impact resistant silicon wafer
JPS6097619A (en) Manufacture of semiconductor
JPS63112488A (en) Growth method for single crystal silicon
JPS6344720B2 (en)