JPS63198334A - Manufacture of semiconductor silicon wafer - Google Patents

Manufacture of semiconductor silicon wafer

Info

Publication number
JPS63198334A
JPS63198334A JP2955687A JP2955687A JPS63198334A JP S63198334 A JPS63198334 A JP S63198334A JP 2955687 A JP2955687 A JP 2955687A JP 2955687 A JP2955687 A JP 2955687A JP S63198334 A JPS63198334 A JP S63198334A
Authority
JP
Japan
Prior art keywords
wafer
silicon
heat treatment
substrate
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2955687A
Other languages
Japanese (ja)
Inventor
Mitsuo Kono
光雄 河野
Hirato Omura
大村 平人
Hiromi Yokoyama
横山 宏美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP2955687A priority Critical patent/JPS63198334A/en
Publication of JPS63198334A publication Critical patent/JPS63198334A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent an IG effect given by the influence of an EP growing atmosphere from decreasing by epitaxially growing on a silicon mirror-surface wafer, and then heat-treating it under specific conditions. CONSTITUTION:In the manufacture of a silicon wafer for a semiconductor device obtained from a semiconductor silicon rod manufactured by a pulling method, a silicon mirror-surface wafer is epitaxially (EP) grown, and intrinsic- getter(IG)-heat treated at 650-900 deg.C for 4-20 hours. When the thus EP-grown wafer is IG-treated at a low temperature, desired internal fine defects are formed only in a substrate, the EP layer remains with no defect, and desired gettering effect is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、LSI、超LSI等の半導体デバイスに用い
られるシリコンウェーハの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing silicon wafers used in semiconductor devices such as LSIs and VLSIs.

[従来の技術] 従来、ICやLSI用のシリコン基板には鏡面ウェーハ
が用いられてきた。
[Prior Art] Conventionally, mirror-finished wafers have been used as silicon substrates for ICs and LSIs.

最近、LSIから超LSIとデバーrスの高集積化、高
密度化が進むにつれて、ドーパント濃度の微少な変化や
、結晶欠陥の発生が少ないエビクキシャルウエーハが注
目されてきつつある。
Recently, as the integration and density of LSIs, VLSIs, and devices have become higher and higher, evictional wafers, which have minute changes in dopant concentration and fewer crystal defects, are attracting attention.

[発明が解決しようとする問題点コ 良質のエピタキシャル(以下、EPという)つ工−ハと
いえども、ICやLSI、超LSIの製造工程中での汚
染や結晶欠陥の発生を防止するためには、いわゆるイン
トリンシックゲッター(以下、IGという)といわれる
、ゲッタリング効果を付与することが必要である。そこ
で、たとえば、従来は、特開昭58−85534号、特
開昭58−44724号にあるように、EP成長に先立
ち、EP層に欠陥が伝播しないように、IG熱処理を行
なって、EP成長させる基板面に、表面無欠陥層(以下
、DZという)を形成している。
[Problems to be solved by the invention: Although high-quality epitaxial (hereinafter referred to as EP) manufacturing is required, it is necessary to prevent contamination and crystal defects from occurring during the manufacturing process of ICs, LSIs, and VLSIs. It is necessary to impart a gettering effect called an intrinsic getter (hereinafter referred to as IG). Therefore, for example, as disclosed in Japanese Patent Application Laid-Open No. 58-85534 and Japanese Patent Application Laid-Open No. 58-44724, prior to EP growth, IG heat treatment is performed to prevent defects from propagating to the EP layer. A surface defect-free layer (hereinafter referred to as DZ) is formed on the surface of the substrate.

すなわち、一旦高温で酸素の外方向拡散をしてDZを形
成し、次に、低温で10時間程IG熱処理を行なうとい
う、高温と低温の2段階の熱処理を施した基板を用いて
、EP成長を行なうという手段が用いられてきた。
That is, EP growth was performed using a substrate that had been heat-treated in two stages: high temperature and low temperature, in which DZ was formed by outward diffusion of oxygen at high temperature, and then IG heat treatment was performed at low temperature for about 10 hours. A method has been used to do this.

しかし、この方法であると、EP成長炉が、1100℃
という高温でしかも、水素ガスを含んだ還元性雰囲気で
あるため、IG熱処理で作られた内部微少欠陥(以下、
BMDという)が、再び溶解し、所望のゲッタリング効
果が得られなくなる。第4図は、この様子を示している
However, with this method, the EP growth furnace is heated to 1100°C.
Because of the high temperature and reducing atmosphere containing hydrogen gas, internal micro defects (hereinafter referred to as
(referred to as BMD) will dissolve again, making it impossible to obtain the desired gettering effect. FIG. 4 shows this situation.

すなわち、前記2段階のIG熱処理を施した鏡面ウェー
ハならば、第5図のようにデバイス工程で格子間酸素濃
度が減少して所望のIC効果が得られるが、前記2段階
のIG熱処理を施した後さらに、EP成長させたウェー
ハの場合は、デバイス工程において、格子間酸素濃度は
、わずかしか減少せず、IC効果が得られない。
In other words, if the mirror-finished wafer was subjected to the two-step IG heat treatment, the interstitial oxygen concentration would be reduced in the device process as shown in FIG. 5, and the desired IC effect would be obtained. Furthermore, in the case of EP-grown wafers, the interstitial oxygen concentration decreases only slightly in the device process, and no IC effect is obtained.

このように、IG熱処理を施した鏡面ウェーハに、さら
にEP成長を行なったウェーハは、ICやLS I、超
LSIに用いても、デバイスとしての性能、たとえばホ
ールドタイムの向上や、生産性、たとえば良品率の向上
にはほとんど寄与しない。
In this way, mirror wafers that have been subjected to IG heat treatment and further subjected to EP growth can be used for ICs, LSIs, and VLSIs, and have improved device performance, such as improved hold time, improved productivity, etc. It hardly contributes to improving the non-defective product rate.

[問題点を解決するための手段] 本発明は前述のように、デバイスにEPウェーハを用い
る場合に、従来法のままのIG熱処理では充分なゲッタ
リング効果を付与できないという問題点を解決するため
になされたもので、引上げ法で製造した半導体シリコン
捧から得られる半導体デバイス用シリコンウェーハの製
造法において、シリコン鏡面ウェーハに、EP成長を行
なった後、650℃乃至900℃の温度範囲下で、4時
間乃至20時間、IG熱処理を施すもので、好ましくは
、EP成長が、1100℃以上の温度下で行なわれるこ
と、さらには又、前記シリコン鏡面つ工−ハが、エピタ
キシャル成長に先立ち1100℃以上で、且つ3分以上
、水素ガス処理または、塩化水素ガスエッチ処理を施さ
れたものであること、また、さらに好ましくは、熱処理
の温度が、650℃から900℃まで、順次上昇するも
のであることを特徴とする。
[Means for Solving the Problems] As described above, the present invention is intended to solve the problem that when using an EP wafer in a device, the conventional IG heat treatment cannot provide a sufficient gettering effect. In a method for manufacturing silicon wafers for semiconductor devices obtained from semiconductor silicon wafers produced by a pulling method, after performing EP growth on a silicon mirror wafer, under a temperature range of 650 ° C. to 900 ° C. IG heat treatment is performed for 4 to 20 hours, and preferably, EP growth is performed at a temperature of 1100°C or higher, and furthermore, the silicon mirror surface is heated at a temperature of 1100°C or higher prior to epitaxial growth. And, it must have been subjected to hydrogen gas treatment or hydrogen chloride gas etching treatment for 3 minutes or more, and more preferably, the temperature of the heat treatment is increased sequentially from 650°C to 900°C. It is characterized by

[作用] 本発明が、鏡面ウェーハに、予めDZ影形成ための熱処
理と、BMD付与のためのIG熱処理という、従来の2
段階の熱処理を施さないのは、前記のように、IG熱処
理で付与されたBMDが、EP成長時に再溶解してしま
い、所望のゲッタリング効果が得られなくなるからであ
る。
[Function] The present invention provides a mirror-finished wafer with two conventional heat treatments: heat treatment for forming a DZ shadow in advance and IG heat treatment for imparting BMD.
The reason why the step heat treatment is not performed is that, as described above, the BMD imparted by the IG heat treatment will be redissolved during EP growth, making it impossible to obtain the desired gettering effect.

本発明は、鏡面ウェーハ基板にEP成長させた後、低温
1段のIG熱処理を行なう。基板中にはB M Dの核
となる酸素原子が存在し、EPMには酸素原子は全く含
まれていないから、本発明のようにEP成長させた後の
ウェーハに低温のIG処理を行なえば、基板中にのみ所
望のBMDが形成され、EPNは無欠陥のままにしてお
くことが可能となる。
In the present invention, after EP growth is performed on a mirror-finished wafer substrate, one stage of low-temperature IG heat treatment is performed. Oxygen atoms, which form the nucleus of BMD, exist in the substrate, and EPM does not contain any oxygen atoms. Therefore, if the wafer is subjected to low-temperature IG treatment after EP growth as in the present invention, , the desired BMD is formed only in the substrate, and the EPN can remain defect-free.

したがって、従来のように、EP成長に先だちEP成長
させる側の基板表面にDZを形成する必要は全くない。
Therefore, there is no need to form a DZ on the surface of the substrate on the side where the EP is to be grown prior to the EP growth, unlike the conventional method.

以下、実施例を掲げながらさらに本発明を詳説する。Hereinafter, the present invention will be further explained in detail with reference to Examples.

[実施例1コ チョクラルスキー法により得たシリコン無転位単結晶イ
ンゴットをウェーハにスライスし、これに面取工程、ラ
ップ工程、エツチング工程、鏡面研磨工程を実施した。
[Example 1] A silicon dislocation-free single crystal ingot obtained by the Koczochralski method was sliced into wafers, which were subjected to a chamfering process, a lapping process, an etching process, and a mirror polishing process.

このウェーハ(以下、原ウェーハという)の物性は、導
電型P型、結晶方位(100)、抵抗率10〜20Ω・
唾、直径150mmφ、厚み625μ、酸素濃度14〜
18 X 10” atoms/cc(1979年版ア
ニュアルブックオブエーエスティエムスタンダーズ[以
下の計測値は、この標準に従うコ表示)であった。
The physical properties of this wafer (hereinafter referred to as the original wafer) are P-type conductivity, crystal orientation (100), and resistivity 10-20Ω.
Saliva, diameter 150mmφ, thickness 625μ, oxygen concentration 14~
18 x 10'' atoms/cc (1979 edition of Annual Book of ASTM Standards [The following measured values are expressed in accordance with this standard).

従来法同様、次に、二〇ウェーハを熱処理炉にセットし
、酸素の外方拡散のため、1100℃で4時間処理しD
Zの形成を行ない、つづいて、BMD形成のため、70
0℃、10時間の熱処理を施した後、5iC14ガスを
用いてこれに約20μのEP層を成長させIC用の基板
を得た。
Similar to the conventional method, 20 wafers were then placed in a heat treatment furnace and treated at 1100°C for 4 hours for outward diffusion of oxygen.
70 to form Z, and then to form BMD.
After heat treatment at 0° C. for 10 hours, an EP layer of about 20 μm was grown thereon using 5iC14 gas to obtain an IC substrate.

[実施例2] 実施例1の原ウェーハを、エピタキシャル成長炉にセッ
トし、実施例1と同様5iC14ガスを用いてこれに約
20μのEP層を成長させIC用の基板を得た。
[Example 2] The original wafer of Example 1 was set in an epitaxial growth furnace, and an EP layer of about 20 μm was grown thereon using 5iC14 gas as in Example 1 to obtain an IC substrate.

[実施例3コ 実施例2によって得られたIC用の基板を、さらにAr
雰囲気中で700℃、10時間熱処理して別のIC用の
基板を得た。
[Example 3] The IC substrate obtained in Example 2 was further heated with Ar
A heat treatment was performed at 700° C. for 10 hours in an atmosphere to obtain another IC substrate.

[実施例4] 実施例1〜3により得られたIC用基板でM○Sメモリ
ーICを作製し、そのホールドタイムの計測を行なった
[Example 4] An M○S memory IC was manufactured using the IC substrates obtained in Examples 1 to 3, and its hold time was measured.

この結果を第1図に示す。The results are shown in FIG.

第1図の横軸はホールドタイム、縦軸は試料数を表す。The horizontal axis in FIG. 1 represents the hold time, and the vertical axis represents the number of samples.

図中。In the figure.

曲線Aは実施例1、すなわち従来法により得られたEP
ウェーハを基板として作製したICの、曲線Bは実施例
2、すなわち熱処理を全く施さない鏡面ウェーハにEP
成長した基板を用いて作製したICの、 曲線Cは本発明の一実施態様である実施例3、すなわち
熱処理を全く施さない鏡面ウェーハにEP成長を行なっ
た後、これにIG熱処理を施した基板で作製したICの
、試料数に対するホールドタイムの分布をそれぞれ示し
ている。
Curve A is EP obtained by Example 1, that is, the conventional method.
Curve B of the IC fabricated using a wafer as a substrate corresponds to Example 2, that is, EP was applied to a mirror-finished wafer that was not subjected to any heat treatment.
Curve C of the IC fabricated using the grown substrate corresponds to Example 3, which is one embodiment of the present invention, that is, the substrate was subjected to IG heat treatment after EP growth was performed on a mirror-surfaced wafer that was not subjected to any heat treatment. The distribution of the hold time with respect to the number of samples is shown for each of the ICs manufactured in .

これからも判るように、実施例1すなわち従来法による
ものは、そのホールドタイムが短く、実施例3の場合は
、得られるICのホールドタイムは長くなる。
As can be seen, the hold time of the first embodiment, that is, the conventional method, is short, and the hold time of the obtained IC is long in the case of the third embodiment.

すなわち、本発明によって得られるEPウェーハは、従
来法によったものにくらべてICの性能を向上させるこ
とが判る。
That is, it can be seen that the EP wafer obtained by the present invention improves the performance of ICs compared to that obtained by the conventional method.

また、実施例3の本発明によるものは、IC作製後、E
P層とウェーハ基板の界面に、約3μのDZが形成され
ていることが確認できた。これは、5iC1,ガスによ
るEP成長開始時に自然にDZが形成されるものと考え
られる。
Further, in Example 3 according to the present invention, after IC fabrication, E
It was confirmed that a DZ of approximately 3 μm was formed at the interface between the P layer and the wafer substrate. This is considered to be because DZ is naturally formed at the start of EP growth using 5iC1 gas.

なお、第3図は、実施例3の各工程経過後のウェーハ内
の格子間酸素濃度及び、最終的にデバイスにしたときの
格子間酸素濃度の値を示す。同様に、第4図は、実施例
1の各工程経過後のウェーハ内の格子間酸素濃度及び、
最終的にデバイスにしたときの格子間酸素濃度の値を示
している。
Note that FIG. 3 shows the interstitial oxygen concentration in the wafer after each process in Example 3 and the value of the interstitial oxygen concentration when it is finally made into a device. Similarly, FIG. 4 shows the interstitial oxygen concentration in the wafer after each process of Example 1,
It shows the value of interstitial oxygen concentration when the device is finally manufactured.

[実施例5コ 原ウェーハをEP炉の中で、H2ガス雰囲気中、118
0℃、5分間の前処理を施した点を除けば、あとは全〈
実施例3と同様にしてEP層を成長させIC用基板を得
た。
[Example 5] Raw wafers were heated in an EP furnace in an H2 gas atmosphere at 118
Except for the pretreatment at 0°C for 5 minutes, all the
An EP layer was grown in the same manner as in Example 3 to obtain an IC substrate.

[実施例6コ 実施例5によって得られたIC用基板に、 Ar雰囲気
中で700℃、4時間の熱処理を施して別のIC用の基
板を得た。
[Example 6] The IC substrate obtained in Example 5 was heat treated at 700° C. for 4 hours in an Ar atmosphere to obtain another IC substrate.

[実施例7] 実施例5によって得られたIC用基板に、Ar雰囲気中
で、650’Cかも900℃まで、4時間かけ順次上昇
させる熱処理を施し、別のIC用基板を得た。
[Example 7] The IC substrate obtained in Example 5 was subjected to a heat treatment in which the temperature was increased to 650'C or 900°C in sequence over 4 hours in an Ar atmosphere to obtain another IC substrate.

温度上昇は、段階的に行なうものと、滑らかに上昇させ
て行なうものとの2通りを試た。
Two methods of increasing the temperature were tested: one in which the temperature was increased stepwise and one in which the temperature was increased smoothly.

[実施例8] 実施例5.6及び7により得られたIC用基板でMOS
メモリー丁Cを作製し、そのホールドタイムの計測を行
なった。
[Example 8] Using the IC substrates obtained in Examples 5, 6 and 7, MOS
A memory cell C was prepared and its hold time was measured.

この結果を第2図に示す。The results are shown in FIG.

第2図の横軸はホールドタイム、縦軸は試料数を表す。The horizontal axis in FIG. 2 represents the hold time, and the vertical axis represents the number of samples.

図中、 曲線Aは実施例1、すなわち従来法により得られたEP
ウェーハを基板として作製したICの、曲線りは実施例
5、すなわち原ウェーハに、肌ガスで、1180’C1
5分間の前処理を施した後、これにEP成長して得た基
板で作製したICの、曲線Eは、本発明の一実施態様で
ある実施例6゜7すなわち、実施例5で得られたIC用
基板にさらに熱処理を施して得た基板を用いて作製した
ICの、 それぞれ試料数に対するホールドタイムの分布を示して
いる。
In the figure, curve A represents the EP obtained in Example 1, that is, the conventional method.
The curve of the IC fabricated using a wafer as a substrate is as shown in Example 5.
The curve E of an IC manufactured using a substrate obtained by performing EP growth on the substrate after 5 minutes of pretreatment is the same as that obtained in Example 6-7, that is, Example 5, which is an embodiment of the present invention. This figure shows the distribution of hold times for each sample number for ICs manufactured using substrates obtained by further heat-treating the IC substrates.

これからも判るように、実施例1すなわち従来法による
ものは、そのホールドタイムが短く、実施例5.6及び
7の場合は、得られるICのホールドタイムは長くなる
As can be seen, the hold time of the IC obtained in Example 1, that is, the conventional method, is short, and in the case of Examples 5, 6, and 7, the hold time of the obtained IC is long.

すなわち、本発明によって得られるEPウェーハは、従
来法によったものにくらべてICの性能を向上させる二
とが判る。
That is, it can be seen that the EP wafer obtained by the present invention improves the performance of ICs compared to that obtained by the conventional method.

なお、実施例5.6及び7の本発明によるものは、IC
作製後、EP層とウェーハ基板の界面に、約10μのD
Zが形成されている二とが確認できた。
Note that Examples 5.6 and 7 according to the present invention are IC
After fabrication, a D of approximately 10μ is applied to the interface between the EP layer and the wafer substrate.
It was confirmed that Z was formed.

これは、EP成長前に11.で前処理を行なったためで
、実施例1の場合に較べ大きな値になっている。
This is 11.0% before EP growth. This is because the pretreatment was carried out in , and the value is larger than that in Example 1.

したがって、DZ幅を制御する必要があるデバイスに対
しては、H,処理において、温度と時間とを適当に選べ
ば、対応が可能であることを示している。
Therefore, it is shown that devices that require control of the DZ width can be handled by appropriately selecting the temperature and time in the H process.

また、上記実施例5における11.ガスの代りに、塩化
水素ガスを用いたものについても、実施例5以下と同様
の実験を行なったが、はとんど回−の結果が得られた。
Also, 11. in Example 5 above. Experiments similar to those in Example 5 and below were also conducted using hydrogen chloride gas instead of the gas, but almost the same results were obtained.

以上、各実施例の熱処理雰囲気はArガスを用いたが、
窒素でも同様の結果が得られ、酸素又は窒素と酸素を交
ぜた場合でも、素子作製プロセス前に熱処理中に形成さ
れた酸化膜を除去するだけで、同様の結果が得られる。
As mentioned above, Ar gas was used as the heat treatment atmosphere in each example.
Similar results can be obtained with nitrogen, and similar results can be obtained with oxygen or a mixture of nitrogen and oxygen by simply removing the oxide film formed during heat treatment before the device fabrication process.

[発明の効果] 本発明によれば、従来のように、EP成長雰囲気の影響
で、付与されたIGの効果が減少してしまうようなこと
はない。
[Effects of the Invention] According to the present invention, the effect of the applied IG is not reduced due to the influence of the EP growth atmosphere, unlike in the conventional case.

また、本発明の実施例からも分かるように、DZ幅を制
御する必要のあるデバイスに対しては、EP成長前に、
H,あるいは塩化水素処理において、温度と時間とを適
当に選ぶことで対応できる。
Furthermore, as can be seen from the examples of the present invention, for devices that require control of the DZ width, before EP growth,
In the H or hydrogen chloride treatment, this can be handled by appropriately selecting the temperature and time.

以上のような、それぞれの効果からしたがって、最終的
に、本発明による基板をデバイスに用いれば、所望のゲ
ッタリング効果が発揮されデバイス性能、良品率ともに
向上する。
Based on the above-mentioned effects, if the substrate according to the present invention is finally used in a device, the desired gettering effect will be exhibited, and both the device performance and the yield rate will improve.

さらにまた、本発明の一実施態様を用いれば、製造工程
においても、従来のようなりZの形成のためと、IG付
与のための2段階の熱処理は必要なくなり、ただIG付
与のための熱処理1段を行なうのみで実施できるから、
工程に要する時間が大中に短縮されて生産性が向上する
Furthermore, if one embodiment of the present invention is used, the manufacturing process does not require the conventional two-step heat treatment for forming Z and for applying IG, but only heat treatment 1 for applying IG. Because it can be done just by doing the steps,
The time required for the process is greatly reduced and productivity is improved.

特許出願人 小松電子金焉株式会社 1:EI      TfiT ホールドタイム 第1因 ボールドタイlゎ 第214 x 10”、Itoms/cc XIO”atoIIS7cc X 10”aLo++s/cc 手続ネm正書(方式) %式% 1、事件の表示 昭和62年特許願第29556号 2、発明の名称 3、補正をする人 事件との関係  特許出願人 4、補正命令の日付  昭和62年4月28日5、補正
の対象 (別紙−1) 本願明細書の[発明の詳細な説明Jの欄の第13頁18
行(最終行)目以降に、
Patent applicant: Komatsu Electronics Kinen Co., Ltd. 1: EI TfiT Hold time 1st factor Bold tie lゎNo. 214 x 10”, Itoms/cc XIO”atoIIS7cc % 1. Indication of the case Patent Application No. 29556 of 1988 2. Name of the invention 3. Person making the amendment Relationship to the case Patent applicant 4. Date of amendment order April 28, 1988 5. Subject of the amendment (Attachment-1) Page 18 of [Detailed Description of the Invention J] of the Specification of the Application
After the row (last row),

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施態様により得られたデバイス
のホールドタイムを従来法により得られたデバイスのそ
れと比較した図。 第2図は、本発明の別の実施態様により得られたデバイ
スのホールドタイムを従来法により得られたデバイスの
それと比較した図。 第3図は、本発明の一実施態様の各工程を経過した後の
ウェーハ内格子間酸素1度を示す図。 第4図は、従来法の各工程を経過した後のウェーハ内格
子間酸素濃度を示す図。 第5図は、別の従来法の各工程を経過した後のウェーハ
内格子間酸素濃度を示す図。 A・・・・従来法によるウェーハを用いて作製したIC
の、試料数に対するホール ドタイムの分布臼1;泉。 B・・・・別の従来法によるウェーハを用いて作製した
ICの、試料数に対するホ ールドタイムの分布曲線。 C・・・・本発明の一実施態様によるウェーハを用いて
作製したICの、試料数に 対するホールドタイムの分布曲線。 D・・・・さらに別の従来法によるウェーハを用いて作
製したICの、試料数に対 するホールドタイムの分布曲線。 E・・・・本発明の別の実施態様によるウェーハを用い
て作製したICの、試料数 の項を設ける。 愕・1祇−2) 図  面 −sec。 ホールドタイム 第1図 ホールドタイム 第2図
FIG. 1 is a diagram comparing the hold time of a device obtained by an embodiment of the present invention with that of a device obtained by a conventional method. FIG. 2 is a diagram comparing the hold time of a device obtained by another embodiment of the present invention with that of a device obtained by a conventional method. FIG. 3 is a diagram showing interstitial oxygen levels in a wafer after passing through each process in an embodiment of the present invention. FIG. 4 is a diagram showing the interstitial oxygen concentration in the wafer after passing through each step of the conventional method. FIG. 5 is a diagram showing the interstitial oxygen concentration in a wafer after passing through each step of another conventional method. A: IC manufactured using a wafer using a conventional method
Distribution of hold time with respect to the number of samples 1; Izumi. B: Distribution curve of hold time versus number of samples for ICs manufactured using wafers using another conventional method. C...Distribution curve of hold time with respect to the number of samples of ICs manufactured using a wafer according to an embodiment of the present invention. D...Distribution curve of hold time with respect to the number of samples for ICs manufactured using wafers according to yet another conventional method. E... Provides a section for the number of samples of ICs manufactured using wafers according to another embodiment of the present invention. Shock 1 yen-2) Drawing surface-sec. Hold time Figure 1 Hold time Figure 2

Claims (1)

【特許請求の範囲】 1、半導体デバイス用シリコンウェーハの製造方法にお
いて、シリコン鏡面ウェーハにエピタキシャル成長を行
なった後、650℃乃至900℃の温度範囲下で、4時
間乃至20時間、熱処理を施すことを特徴とする半導体
デバイス用シリコンウェーハの製造方法。 2、エピタキシャル成長が、1100℃以上の温度下で
行なわれることを特徴とする特許請求の範囲第1項記載
の半導体デバイス用シリコンウェーハの製造方法。 3、シリコン鏡面ウェーハに、エピタキシャル成長に先
立ち1100℃以上で、且つ3分以上、水素ガス処理を
施すことを特徴とする特許請求の範囲第1項又は第2項
記載の半導体デバイス用シリコンウェーハの製造方法。 4、シリコン鏡面ウェーハに、エピタキシャル成長に先
立ち1100℃以上で、且つ3分以上、塩化水素ガスエ
ッチ処理を施すことを特徴とする特許請求の範囲第1項
又は第2項記載の半導体デバイス用シリコンウェーハの
製造方法。 5、熱処理の温度が、650℃から900℃まで、順次
上昇することを特徴とする特許請求の範囲第1項乃至第
4項のいずれか一項に記載の半導体デバイス用シリコン
ウェーハの製造方法。
[Claims] 1. In a method for manufacturing silicon wafers for semiconductor devices, after epitaxial growth is performed on a silicon mirror-finished wafer, heat treatment is performed at a temperature range of 650° C. to 900° C. for 4 hours to 20 hours. A method for manufacturing silicon wafers for semiconductor devices. 2. The method of manufacturing a silicon wafer for a semiconductor device according to claim 1, wherein the epitaxial growth is performed at a temperature of 1100° C. or higher. 3. Manufacturing a silicon wafer for semiconductor devices according to claim 1 or 2, wherein the silicon mirror-finished wafer is subjected to hydrogen gas treatment at 1100° C. or higher for 3 minutes or more prior to epitaxial growth. Method. 4. The silicon wafer for semiconductor devices according to claim 1 or 2, wherein the silicon mirror-finished wafer is subjected to hydrogen chloride gas etching treatment at 1100° C. or higher for 3 minutes or more prior to epitaxial growth. manufacturing method. 5. The method for manufacturing a silicon wafer for a semiconductor device according to any one of claims 1 to 4, wherein the temperature of the heat treatment is gradually increased from 650°C to 900°C.
JP2955687A 1987-02-13 1987-02-13 Manufacture of semiconductor silicon wafer Pending JPS63198334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2955687A JPS63198334A (en) 1987-02-13 1987-02-13 Manufacture of semiconductor silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2955687A JPS63198334A (en) 1987-02-13 1987-02-13 Manufacture of semiconductor silicon wafer

Publications (1)

Publication Number Publication Date
JPS63198334A true JPS63198334A (en) 1988-08-17

Family

ID=12279418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2955687A Pending JPS63198334A (en) 1987-02-13 1987-02-13 Manufacture of semiconductor silicon wafer

Country Status (1)

Country Link
JP (1) JPS63198334A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0496382A2 (en) * 1991-01-22 1992-07-29 Nec Corporation Intrinsic gettering for a semiconducteur epitaxial wafer
EP0948037A1 (en) * 1996-07-29 1999-10-06 Sumitomo Metal Industries, Ltd. Silicon epitaxial wafer and method for manufacturing the same
JP2002076006A (en) * 2000-08-31 2002-03-15 Mitsubishi Materials Silicon Corp Method of manufacturing epitaxial wafer and epitaxial wafer manufactured by the method
US6641888B2 (en) 1999-03-26 2003-11-04 Sumitomo Mitsubishi Silicon Corporation Silicon single crystal, silicon wafer, and epitaxial wafer.
US6878451B2 (en) 1999-07-28 2005-04-12 Sumitomo Mitsubishi Silicon Corporation Silicon single crystal, silicon wafer, and epitaxial wafer
JP2017201647A (en) * 2016-05-02 2017-11-09 ルネサスエレクトロニクス株式会社 Method for manufacturing semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721825A (en) * 1980-07-14 1982-02-04 Nec Corp Increasing method for gettering effect due to internal defect in semiconductor substrate
JPS5814538A (en) * 1981-07-17 1983-01-27 Fujitsu Ltd Manufacture of semiconductor device
JPS58138034A (en) * 1982-02-12 1983-08-16 Nec Corp Manufacture of semiconductor device
JPS60133734A (en) * 1983-12-21 1985-07-16 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS60247935A (en) * 1984-05-23 1985-12-07 Toshiba Ceramics Co Ltd Manufacture of semiconductor wafer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721825A (en) * 1980-07-14 1982-02-04 Nec Corp Increasing method for gettering effect due to internal defect in semiconductor substrate
JPS5814538A (en) * 1981-07-17 1983-01-27 Fujitsu Ltd Manufacture of semiconductor device
JPS58138034A (en) * 1982-02-12 1983-08-16 Nec Corp Manufacture of semiconductor device
JPS60133734A (en) * 1983-12-21 1985-07-16 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS60247935A (en) * 1984-05-23 1985-12-07 Toshiba Ceramics Co Ltd Manufacture of semiconductor wafer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0496382A2 (en) * 1991-01-22 1992-07-29 Nec Corporation Intrinsic gettering for a semiconducteur epitaxial wafer
JPH04237134A (en) * 1991-01-22 1992-08-25 Nec Corp Manufacture of epitaxial wafer
EP0948037A1 (en) * 1996-07-29 1999-10-06 Sumitomo Metal Industries, Ltd. Silicon epitaxial wafer and method for manufacturing the same
EP0948037A4 (en) * 1996-07-29 2000-02-02 Sumitomo Metal Ind Silicon epitaxial wafer and method for manufacturing the same
US6641888B2 (en) 1999-03-26 2003-11-04 Sumitomo Mitsubishi Silicon Corporation Silicon single crystal, silicon wafer, and epitaxial wafer.
US6878451B2 (en) 1999-07-28 2005-04-12 Sumitomo Mitsubishi Silicon Corporation Silicon single crystal, silicon wafer, and epitaxial wafer
JP2002076006A (en) * 2000-08-31 2002-03-15 Mitsubishi Materials Silicon Corp Method of manufacturing epitaxial wafer and epitaxial wafer manufactured by the method
JP2017201647A (en) * 2016-05-02 2017-11-09 ルネサスエレクトロニクス株式会社 Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JPS6124240A (en) Semiconductor substrate
JP3381816B2 (en) Semiconductor substrate manufacturing method
JPH04163920A (en) Manufacture of si substrate
US6599816B2 (en) Method of manufacturing silicon epitaxial wafer
US20120049330A1 (en) Silicon wafer and method for producing the same
JPH06295912A (en) Manufacture of silicon wafer and silicon wafer
JPS63227026A (en) Gettering method for silicon crystal substrate
JPS63198334A (en) Manufacture of semiconductor silicon wafer
JPH09283529A (en) Manufacture and inspection of semiconductor substrate
JPS60247935A (en) Manufacture of semiconductor wafer
JPH03185831A (en) Manufacture of semiconductor device
JPH11204534A (en) Manufacture of silicon epitaxial wafer
JP4035886B2 (en) Silicon epitaxial wafer and manufacturing method thereof
JP3022045B2 (en) Method of manufacturing silicon wafer and silicon wafer
JP4151876B2 (en) Silicon wafer manufacturing method
JPH09223699A (en) Silicon wafer and its manufacturing method
US6893944B2 (en) Method of manufacturing a semiconductor wafer
JPS58138034A (en) Manufacture of semiconductor device
JP3944958B2 (en) Silicon epitaxial wafer and manufacturing method thereof
US7160385B2 (en) Silicon wafer and method for manufacturing the same
JPH0897222A (en) Manufacture of silicon wafer, and silicon wafer
JPH023539B2 (en)
JPH04237134A (en) Manufacture of epitaxial wafer
JPH0897220A (en) Manufacture of silicon epitaxial wafer, and silicon epitaxial wafer
JPH0897221A (en) Manufacture of silicon wafer, and silicon wafer