JP2715832B2 - Single crystal silicon substrate - Google Patents

Single crystal silicon substrate

Info

Publication number
JP2715832B2
JP2715832B2 JP27277192A JP27277192A JP2715832B2 JP 2715832 B2 JP2715832 B2 JP 2715832B2 JP 27277192 A JP27277192 A JP 27277192A JP 27277192 A JP27277192 A JP 27277192A JP 2715832 B2 JP2715832 B2 JP 2715832B2
Authority
JP
Japan
Prior art keywords
crystal silicon
silicon substrate
single crystal
oxygen
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27277192A
Other languages
Japanese (ja)
Other versions
JPH06122593A (en
Inventor
直紀 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17518519&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2715832(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27277192A priority Critical patent/JP2715832B2/en
Publication of JPH06122593A publication Critical patent/JPH06122593A/en
Application granted granted Critical
Publication of JP2715832B2 publication Critical patent/JP2715832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は単結晶シリコン基板に関
し、より詳細には例えばLSI等の集積回路素子の基板
として用いられる単結晶シリコン基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal silicon substrate, and more particularly to a single crystal silicon substrate used as a substrate for an integrated circuit device such as an LSI.

【0002】[0002]

【従来の技術】現在、LSI等の集積回路素子の基板を
形成するための単結晶シリコン基板の大部分は、チョク
ラルスキー法(以下、CZ法と記す)により引き上げら
れた単結晶シリコンを用いて作製されている。CZ法は
石英坩堝内にあって炭素製のヒーターにより略1500
℃に加熱・溶融されたシリコン溶融液に対し、引き上げ
軸の先端に取りつけられた種結晶を接触させ、前記引き
上げ軸を回転させながら引き上げることにより、前記シ
リコン溶融液を単結晶として凝固させて成長させる方法
である。このCZ法を用いた場合、前記石英坩堝の一部
がシリコン溶融液に溶解して前記坩堝を構成する石英
(SiO2 )中の酸素が溶出することとなり、引き上げ
られた前記シリコン単結晶中には約1018atoms/cm3
酸素が含有されている。
2. Description of the Related Art At present, most of single-crystal silicon substrates for forming substrates of integrated circuits such as LSIs use single-crystal silicon pulled up by the Czochralski method (hereinafter referred to as CZ method). It is manufactured. The CZ method uses a carbon heater in a quartz crucible for approximately 1500.
A seed crystal attached to the tip of a pull-up shaft is brought into contact with the silicon melt heated and melted at ℃, and the pull-up is performed while rotating the pull-up shaft to solidify the silicon melt as a single crystal and grow. It is a way to make it. When the CZ method is used, a part of the quartz crucible is dissolved in a silicon melt, and oxygen in quartz (SiO 2 ) constituting the crucible is eluted. Contains about 10 18 atoms / cm 3 of oxygen.

【0003】一方、LSI製造工程における熱酸化の代
表的温度は例えば1000℃程度であり、この1000
℃における単結晶シリコン基板中の酸素固溶度は約3×
1017atoms/cm3 である。したがって前記単結晶シリコ
ン基板に含有されている酸素は常に過飽和状態となって
おり、該酸素が析出しやすい状態にある。
On the other hand, a typical temperature of thermal oxidation in an LSI manufacturing process is, for example, about 1000 ° C.
Oxygen solid solubility in single crystal silicon substrate at ℃ is about 3 ×
It is 10 17 atoms / cm 3 . Therefore, the oxygen contained in the single-crystal silicon substrate is always in a supersaturated state, and the oxygen is easily precipitated.

【0004】単結晶シリコン中の酸素の働きは複雑であ
り、かつ多岐にわたっている。前記酸素がシリコンの結
晶格子間に存在するときは転位を固着する作用があり、
熱処理時における単結晶シリコン基板の反りを抑制する
効果を有する。また前記酸素が析出してSiO2 に変化
すると、体積膨張によりシリコン原子が放出されて積層
欠陥を生じしめ、あるいは歪みが大きい場合にはパンチ
アウト転位等の微小欠陥を生じしめる。
[0004] The function of oxygen in single crystal silicon is complex and diversified. When the oxygen is present between silicon crystal lattices, it has the effect of fixing dislocations,
This has the effect of suppressing the warpage of the single crystal silicon substrate during the heat treatment. When the oxygen is precipitated and changed to SiO 2 , silicon atoms are released due to volume expansion to cause stacking faults, or, when the strain is large, micro defects such as punch-out dislocations.

【0005】前記微小欠陥が単結晶シリコン基板の表面
から十分に離れた内部のみに存在する場合には、前記単
結晶シリコン基板の表面に付着している重金属等の汚染
物質を前記微小欠陥が吸着して素子の活性領域から除外
するいわゆるゲッタリング作用を生じる。したがって前
記単結晶シリコン基板内部にある過剰酸素は高品質のL
SIを製造する上できわめて有用である。他方、前記微
小欠陥が単結晶シリコン基板の表面近傍における素子の
活性領域に存在する場合には、リーク電流を増大させる
等の原因となる。したがって前記単結晶シリコン基板の
表面にある過剰酸素は高品質のLSIを製造する上で有
害となる。
In the case where the minute defect exists only in the interior sufficiently separated from the surface of the single crystal silicon substrate, the minute defect adsorbs contaminants such as heavy metals attached to the surface of the single crystal silicon substrate. As a result, a so-called gettering action is performed which is excluded from the active region of the element. Therefore, the excess oxygen inside the single crystal silicon substrate is high quality L
It is extremely useful in manufacturing SI. On the other hand, if the minute defect exists in the active region of the element near the surface of the single crystal silicon substrate, it causes a leak current to increase. Therefore, excess oxygen on the surface of the single crystal silicon substrate is harmful in manufacturing a high quality LSI.

【0006】そこでLSIを製造する前処理として、単
結晶シリコン基板の表面に無欠陥層(Denuded Zone)を
形成し、単結晶シリコン基板の内部に欠陥層(Intrinsi
c Gettering Zone)を形成する処理が行なわれている。
すなわち単結晶シリコンのインゴットをスライスして得
られた単結晶シリコン基板に対し、窒素雰囲気中におい
て例えば1100℃程度の高温で熱処理を行い、酸素を
外方へ拡散させて表面近傍の酸素濃度を低下させるとと
もに、酸素析出物を再固溶させる。次いで例えば700
℃程度の低温で熱処理を施し、単結晶シリコン基板内部
に酸素の析出物を形成する処理が行われている。
Therefore, as a pretreatment for manufacturing an LSI, a defect-free layer (Denuded Zone) is formed on the surface of the single-crystal silicon substrate, and a defect layer (Intrinsic Zone) is formed inside the single-crystal silicon substrate.
c Gettering Zone) is being performed.
That is, a single crystal silicon substrate obtained by slicing a single crystal silicon ingot is subjected to a heat treatment at a high temperature of, for example, about 1100 ° C. in a nitrogen atmosphere to diffuse oxygen outward and reduce the oxygen concentration near the surface. At the same time, the oxygen precipitate is dissolved again. Then for example 700
A heat treatment is performed at a low temperature of about ° C. to form a precipitate of oxygen inside a single crystal silicon substrate.

【0007】[0007]

【発明が解決しようとする課題】上記したCZ法で作製
された単結晶シリコンにおいては、結晶引き上げ時にす
でに高温で安定した酸素析出物が形成されている場合が
多い。そのため単結晶シリコン基板の表面に無欠陥層を
形成することを目的として例えば1100℃程度の熱処
理を行っても、前記酸素析出物の単結晶シリコン中への
再固溶が生じ難く、したがって該酸素析出物が微小欠陥
となって上記素子の活性領域に残存し、前記単結晶基板
上に形成される酸化膜の耐圧特性等が改善され難いとい
う課題があった。
In the single-crystal silicon produced by the above-mentioned CZ method, a high-temperature stable oxygen precipitate is often already formed at the time of crystal pulling. Therefore, even if a heat treatment at, for example, about 1100 ° C. is performed for the purpose of forming a defect-free layer on the surface of the single-crystal silicon substrate, the oxygen precipitates are unlikely to re-dissolve in single-crystal silicon. There is a problem that the precipitate becomes a minute defect and remains in the active region of the device, and it is difficult to improve the withstand voltage characteristics and the like of the oxide film formed on the single crystal substrate.

【0008】本発明はこのような課題に鑑みなされたも
のであり、高温で安定した酸素析出物の形成が抑制さ
れ、素子の活性領域における微小欠陥の存在率が極めて
低い単結晶シリコン基板を提供することを目的としてい
る。
The present invention has been made in view of the above problems, and provides a single-crystal silicon substrate in which the formation of oxygen precipitates stable at high temperatures is suppressed and the percentage of minute defects in the active region of the device is extremely low. It is intended to be.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る単結晶シリコン基板は、CZ法等により
引き上げられた単結晶シリコンを用いて作製された単結
晶シリコン基板において、6Kでの1104cm−1
傍における赤外吸収係数が0.2cm−1以下であるこ
とを特徴としている。
Single crystal silicon substrate according to the present invention in order to achieve the above object, according to an aspect of, in a single crystal silicon substrate which is manufactured using the single-crystal silicon pulled by the CZ method or the like, at 6K it is characterized by the infrared absorption coefficient at 1104cm -1 vicinity of is 0.2 cm -1 or less.

【0010】[0010]

【作用】一般に、単結晶シリコンの結晶格子間に過飽和
に固溶している酸素を酸素析出物として析出させるに
は、析出を促す核(以下、析出核と記す)が必要である
ことが知られている。
In general, it is known that a nucleus for promoting precipitation (hereinafter referred to as a precipitation nucleus) is necessary to precipitate oxygen, which is dissolved in supersaturation between crystal lattices of single crystal silicon, as an oxygen precipitate. Have been.

【0011】発明者が単結晶シリコンを8K以下に冷却
し、赤外分光分析法により調査を行なった結果、他の析
出核に混じって波数が1104cm-1近傍における高温で
安定な炭素・酸素複合体の析出核が見出され、また該炭
素・酸素複合体の赤外吸収係数を0.2cm-1以下に減少
させると酸化膜耐圧特性が向上することが知見された。
As a result of cooling the single crystal silicon to 8K or less by the inventor and conducting an investigation by infrared spectroscopy, the carbon / oxygen complex at a high temperature stable at a wave number of about 1104 cm- 1 mixed with other precipitation nuclei was obtained. Precipitation nuclei of the body were found, and it was found that reducing the infrared absorption coefficient of the carbon / oxygen composite to 0.2 cm- 1 or less improved the oxide film breakdown voltage characteristics.

【0012】該炭素・酸素複合体は上記した加熱用ヒー
タより分解生成された炭素と、上記した石英るつぼより
分解生成された酸素とが化合して形成されたものと考え
られる。また、高温において安定な炭素・酸素複合体を
析出核として析出させた酸素析出物は別の酸素析出物に
比べて高温において安定しており、1100℃程度の熱
処理においては固溶が生じにくいと考えられる。本発明
に係る単結晶シリコン基板によれば、CZ法等により引
き上げられた単結晶シリコンを用いて作製された単結晶
シリコン基板において、低温での1104cm-1近傍にお
ける赤外吸収係数が0. 2cm-1以下であり、炭素・酸素
複合体よりなる析出核の形成が抑制され、高温で安定し
た酸素析出物の形成が抑制されることとなる。そして炭
素・酸素複合体を析出核としない別の酸素析出物が有っ
てもこれらは容易に固溶し、素子の活性領域における微
小欠陥の存在率が極めて低い単結晶シリコン基板が得ら
れることとなる。
It is considered that the carbon / oxygen composite is formed by combining carbon decomposed by the above-described heater for heating and oxygen decomposed by the above-mentioned quartz crucible. In addition, an oxygen precipitate obtained by depositing a carbon / oxygen complex that is stable at a high temperature as a precipitation nucleus is more stable at a higher temperature than another oxygen precipitate, and it is difficult to form a solid solution in a heat treatment at about 1100 ° C. Conceivable. According to the single crystal silicon substrate of the present invention, the infrared absorption coefficient at around 1104 cm -1 at low temperature is 0.2 cm in a single crystal silicon substrate manufactured using single crystal silicon pulled up by the CZ method or the like. −1 or less, the formation of precipitation nuclei composed of a carbon-oxygen complex is suppressed, and the formation of oxygen precipitates stable at high temperatures is suppressed. And even if there are other oxygen precipitates that do not use the carbon / oxygen complex as precipitation nuclei, they can easily form a solid solution, and a single-crystal silicon substrate with extremely low abundance of micro defects in the active region of the device can be obtained. Becomes

【0013】[0013]

【実施例及び比較例】以下、本発明に係る単結晶シリコ
ン基板の実施例及び比較例を図面に基づいて説明する。
実施例に係る単結晶シリコン基板の作製にはCZ法によ
り略1.3mm/minの引き上げ速度で引き上げて炭
素・酸素複合体の形成量を制御し、直径を約125mm
に形成した単結晶シリコンを使用した。前記単結晶シリ
コンから厚さが略2mmのウエハを切り出し、該ウエハ
の両表面に鏡面研磨を施して分光分析用の測定試料を作
製した。次に前記測定試料を6Kに冷却し、フーリエ変
換型赤外分光分析装置(以下、FT−IRと記す)を用
いて赤外吸収スペクトルを測定し、波数が1104cm
−1近傍におけるピーク強度により炭素・酸素複合体の
含有濃度の評価を行った。この結果、実施例に係る単結
晶シリコン基板における炭素・酸素複合体の吸収係数は
0.15cm−1であった。またFT−IRにより評価
した前記単結晶シリコン基板中の格子間酸素濃度(以
下、[Oi]と記す)は1.5×1018atoms/
cm(換算係数=4.81×1017atoms/c
)、置換型炭素濃度(以下、[Cs]と記す)は検
出限界(検出限界=5.0×1015atoms/cm
)以下であった。
Examples and Comparative Examples Hereinafter, examples and comparative examples of a single crystal silicon substrate according to the present invention will be described with reference to the drawings.
In the production of the single crystal silicon substrate according to the example, the formation amount of the carbon / oxygen composite was controlled by pulling up by a CZ method at a pulling speed of about 1.3 mm / min, and the diameter was about 125 mm.
Was used. A wafer having a thickness of about 2 mm was cut out of the single crystal silicon, and both surfaces of the wafer were mirror-polished to prepare a measurement sample for spectral analysis. Next, the measurement sample was cooled to 6K, and an infrared absorption spectrum was measured using a Fourier transform infrared spectrometer (hereinafter, referred to as FT-IR).
The concentration of the carbon-oxygen complex was evaluated based on the peak intensity near -1 . As a result, the absorption coefficient of the carbon-oxygen composite in the single-crystal silicon substrate according to the example was 0.15 cm -1 . The interstitial oxygen concentration (hereinafter referred to as [Oi]) in the single crystal silicon substrate evaluated by FT-IR was 1.5 × 10 18 atoms /
cm 3 (conversion coefficient = 4.81 × 10 17 atoms / c
m 2 ) and the substitutional carbon concentration (hereinafter referred to as [Cs]) are at the detection limit (detection limit = 5.0 × 10 15 atoms / cm).
3 ) It was the following.

【0014】次に前記単結晶シリコンから厚さが略0.
8mmのウェハを切り出し、該ウェハの片面に鏡面研磨を
施工して洗浄した後、拡散炉を使用して酸素雰囲気中に
おいて950℃で熱処理を行い、前記ウェハの両面に厚
さが略250Åの酸化膜を形成した。次にLPCVD
(Low Pressure Chemical Vapor Deposition) 装置を使
用し、20%HeベースのSiH4 ガスを流しながら6
30℃で蒸着処理を行い、前記ウェハの酸化膜上に膜厚
が略4000Åの電極となる多結晶シリコン層を形成し
た。次にPOCl3 、O2 、N2 ガスを流しながら90
0℃で熱処理を行い、前記多結晶シリコン層にリンを拡
散させた。さらに前記ウェハの裏面に形成された前記多
結晶シリコン上の酸化膜を除去するため、HF(50
%):H2 O=1:10の弗化水素水溶液を用いて8秒
間ほどエッチングを行った。この後フォトリソグラフィ
ーにより前記ウェハの表面に254個の電極を形成して
単結晶シリコン基板を作製した。
Next, a thickness of about 0.1 mm is obtained from the single crystal silicon.
An 8 mm wafer is cut out, and one side of the wafer is mirror-polished and washed, and then subjected to a heat treatment at 950 ° C. in an oxygen atmosphere using a diffusion furnace. A film was formed. Next, LPCVD
(Low Pressure Chemical Vapor Deposition) 6% while flowing 20% He based SiH 4 gas
Vapor deposition was performed at 30 ° C. to form a polycrystalline silicon layer having an electrode thickness of about 4000 ° on the oxide film of the wafer. Next, while flowing POCl 3 , O 2 , and N 2 gas, 90
Heat treatment was performed at 0 ° C. to diffuse phosphorus into the polycrystalline silicon layer. Further, in order to remove an oxide film on the polycrystalline silicon formed on the back surface of the wafer, HF (50
%): Etching was performed for about 8 seconds using an aqueous hydrogen fluoride solution of H 2 O = 1: 10. Thereafter, 254 electrodes were formed on the surface of the wafer by photolithography to produce a single crystal silicon substrate.

【0015】図1は実施例に係る単結晶シリコン基板に
おける酸化膜耐圧特性の面内分布を示した模式的平面図
である。前記酸化膜耐圧特性は電極間に1mAの電流が流
れたときをブレークダウンとし、該ブレークダウン時の
電界強度が0〜2MV/cm の場合を黒塗り□印、2〜5MV
/cm の場合を×印、5〜8MV/cm の場合を/印、8MV/c
m 以上の場合を□印で表すことにより評価を行った。
FIG. 1 is a schematic plan view showing an in-plane distribution of an oxide film breakdown voltage characteristic in a single crystal silicon substrate according to an embodiment. The oxide film breakdown voltage characteristics are defined as breakdown when a current of 1 mA flows between the electrodes, and black squares and 2-5 MV when the electric field strength at the time of the breakdown is 0-2 MV / cm 2.
/ cm, × mark for 5-8 MV / cm, 8 MV / c
The evaluation was performed by representing the cases of m or more with □ marks.

【0016】図1から明らかなように実施例に係る単結
晶シリコン基板では、8MV/cm の電界強度においてブレ
ークダウンをしなかった素子数は254素子中206素
子であり、良品率は約81%であった。
As is clear from FIG. 1, in the single crystal silicon substrate according to the embodiment, the number of elements that did not break down at an electric field strength of 8 MV / cm was 206 out of 254 elements, and the yield rate was about 81%. Met.

【0017】また比較例として、CZ法により炭素・酸
素複合体の形成量を制御するため略1.1mm/min
の引き上げ速度で引き上げ、直径を約125mmに形成
した単結晶シリコンを使用し、上記した実施例と同様の
方法で単結晶シリコン基板を作製した。この単結晶シリ
コン基板中における炭素・酸素複合体の吸収係数は0.
25cm−1であり、[Oi]は1.5×1018at
oms/cm(換算係数=4.81×1017ato
ms/cm)、[Cs]は検出限界(検出限界=5.
0×1015atoms/cm)以下であった。
As a comparative example, approximately 1.1 mm / min was used to control the amount of carbon / oxygen complex formed by the CZ method.
A single-crystal silicon substrate was produced in the same manner as in the above-described embodiment, using single-crystal silicon formed to have a diameter of about 125 mm by using the above-mentioned pull-up speed. The absorption coefficient of the carbon / oxygen composite in this single crystal silicon substrate is 0.1.
25 cm −1 , and [Oi] is 1.5 × 10 18 at
oms / cm 3 (conversion coefficient = 4.81 × 10 17 atom
ms / cm 2 ), [Cs] is the detection limit (detection limit = 5.
0 × 10 15 atoms / cm 3 ) or less.

【0018】図2は比較例に係る単結晶シリコン基板に
おける酸化膜耐圧特性の面内分布を示した模式的平面図
であり、評価の表示法は実施例の場合と同様である。図
2から明らかなように比較例に係る単結晶シリコン基板
では、8MV/cm の電界強度においてブレークダウンをし
なかった素子数は254素子中97素子であり、良品率
は約38%であった。
FIG. 2 is a schematic plan view showing an in-plane distribution of breakdown voltage characteristics of an oxide film in a single crystal silicon substrate according to a comparative example. The display method of evaluation is the same as that of the embodiment. As is clear from FIG. 2, in the single crystal silicon substrate according to the comparative example, 97 out of 254 devices did not break down at an electric field strength of 8 MV / cm 2, and the yield rate was about 38%. .

【0019】この結果から明らかなように、CZ法によ
り引き上げられた単結晶シリコンを用いて作製された単
結晶シリコン基板において、6Kでの1104cm-1近傍
における炭素・酸素複合体の赤外吸収係数が0. 25cm
-1の場合は酸化膜の耐圧特性は悪いが、0.15cm-1
場合は炭素・酸素複合体よりなる析出核の形成が抑制さ
れ、高温で安定した酸素析出物の形成を抑制することが
できる。したがって素子の活性領域における微小欠陥の
形成を抑制することができ、酸化膜の耐圧特性が優れた
単結晶シリコン基板を得ることができる。
As is apparent from the results, the infrared absorption coefficient of the carbon-oxygen complex near 1104 cm -1 at 6K on a single-crystal silicon substrate manufactured using single-crystal silicon pulled up by the CZ method. Is 0.25cm
In the case of -1 , the pressure resistance of the oxide film is poor, but in the case of 0.15 cm -1 , the formation of precipitate nuclei composed of a carbon-oxygen complex is suppressed, and the formation of stable oxygen precipitates at high temperatures is suppressed. Can be. Therefore, formation of minute defects in the active region of the element can be suppressed, and a single-crystal silicon substrate having an excellent withstand voltage characteristic of the oxide film can be obtained.

【0020】図3は低温での1104cm-1近傍における
赤外吸収係数と酸化膜耐圧特性の良品率との関係を示し
たグラフであり、単結晶シリコン中の炭素・酸素複合体
の赤外吸収係数を0. 2cm-1以下にすると単結晶シリコ
ン基板の酸化膜耐圧特性の良品率が49%以上になるこ
とが分かった。
FIG. 3 is a graph showing the relationship between the infrared absorption coefficient near 1104 cm -1 at a low temperature and the yield rate of the oxide film withstand voltage characteristics, and the infrared absorption of the carbon / oxygen composite in single crystal silicon. It was found that when the coefficient was 0.2 cm -1 or less, the yield rate of the oxide film breakdown voltage characteristics of the single crystal silicon substrate was 49% or more.

【0021】また実施例ではCZ法の場合について説明
したが、溶融層法でも同様の結果を得ることができる。
Although the embodiment has been described with reference to the case of the CZ method, the same result can be obtained by the molten layer method.

【0022】[0022]

【発明の効果】以上詳述したように本発明に係る単結晶
シリコン基板にあっては、CZ法等により引き上げられ
た単結晶シリコンを用いて作製された単結晶シリコン基
板において、6Kでの1104cm−1近傍における赤
外吸収係数が0.2cm−1以下であるので、炭素・酸
素複合体よりなる析出核の形成を抑制することができ、
高温で安定した酸素析出物の形成を抑制することができ
る。したがって素子の活性領域における微小欠陥の存在
率を低く抑えることができ、酸化膜の耐圧特性が優れた
単結晶シリコン基板を得ることができる。
As described above in detail, in the single crystal silicon substrate according to the present invention, a single crystal silicon substrate manufactured by using a single crystal silicon pulled up by a CZ method or the like is 1104 cm at 6K. Since the infrared absorption coefficient in the vicinity of -1 is 0.2 cm -1 or less, it is possible to suppress the formation of the precipitation nucleus composed of the carbon-oxygen complex,
The formation of oxygen precipitates stable at high temperatures can be suppressed. Therefore, the abundance of minute defects in the active region of the element can be suppressed low, and a single crystal silicon substrate having an oxide film with excellent withstand voltage characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係る単結晶シリコン基板にお
ける酸化膜耐圧特性の面内分布を示した模式的平面図で
ある。
FIG. 1 is a schematic plan view showing an in-plane distribution of an oxide film breakdown voltage characteristic in a single crystal silicon substrate according to an example of the present invention.

【図2】比較例に係る単結晶シリコン基板における酸化
膜耐圧特性の面内分布を示した模式的平面図である。
FIG. 2 is a schematic plan view showing an in-plane distribution of an oxide film breakdown voltage characteristic in a single crystal silicon substrate according to a comparative example.

【図3】6Kでの1104cm−1近傍における赤外吸
収係数と酸化膜耐圧特性の良品率との関係を示したグラ
フである。
FIG. 3 is a graph showing the relationship between the infrared absorption coefficient near 1104 cm −1 at 6K and the yield rate of oxide film breakdown voltage characteristics.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 チョクラルスキー(CZ)法等により引
き上げられた単結晶シリコンを用いて作製された単結晶
シリコン基板において、6Kでの1104cm−1近傍
における赤外吸収係数が0.2cm−1以下であること
を特徴とする単結晶シリコン基板。
1. A single crystal silicon substrate which is manufactured using the single-crystal silicon pulled by Czochralski (CZ) method or the like, infrared absorption coefficient at 1104cm -1 vicinity of at 6K is 0.2 cm -1 A single crystal silicon substrate characterized by the following.
JP27277192A 1992-10-12 1992-10-12 Single crystal silicon substrate Expired - Lifetime JP2715832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27277192A JP2715832B2 (en) 1992-10-12 1992-10-12 Single crystal silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27277192A JP2715832B2 (en) 1992-10-12 1992-10-12 Single crystal silicon substrate

Publications (2)

Publication Number Publication Date
JPH06122593A JPH06122593A (en) 1994-05-06
JP2715832B2 true JP2715832B2 (en) 1998-02-18

Family

ID=17518519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27277192A Expired - Lifetime JP2715832B2 (en) 1992-10-12 1992-10-12 Single crystal silicon substrate

Country Status (1)

Country Link
JP (1) JP2715832B2 (en)

Also Published As

Publication number Publication date
JPH06122593A (en) 1994-05-06

Similar Documents

Publication Publication Date Title
JP4805681B2 (en) Epitaxial wafer and method for manufacturing epitaxial wafer
US6641888B2 (en) Silicon single crystal, silicon wafer, and epitaxial wafer.
JP5121139B2 (en) Annealed wafer manufacturing method
JP2002187794A (en) Silicon wafer and production process for silicon single crystal used for producing the same
JP4460671B2 (en) Silicon semiconductor substrate and manufacturing method thereof
US6878451B2 (en) Silicon single crystal, silicon wafer, and epitaxial wafer
JP3381816B2 (en) Semiconductor substrate manufacturing method
JPH0393700A (en) Heat treating method and device of silicon single crystal and production device thereof
JP3870293B2 (en) Silicon semiconductor substrate and manufacturing method thereof
JPH11314997A (en) Production of semiconductor silicon single crystal wafer
JP2715832B2 (en) Single crystal silicon substrate
JP2001199794A (en) Silicon single crystal ingot, method for producing the same and method for producing silicon wafer
JPH11204534A (en) Manufacture of silicon epitaxial wafer
JP4270713B2 (en) Manufacturing method of silicon epitaxial wafer
EP1215309B1 (en) Silicon wafer and method for manufacture thereof, and method for evaluation of silicon wafer
JP2000272997A (en) Growth of silicon single crystal and silicon wafer using the same and estimation of amount of nitrogen doped in the silicon wafer
JPH11283987A (en) Silicon epitaxial wafer and manufacture thereof
JPH0246560B2 (en)
JPH0543382A (en) Production of silicon single crystal
JP2002201091A (en) Method of manufacturing epitaxial wafer having no epitaxial defect using nitrogen and carbon added substrate
JPH088263A (en) Semiconductor substrate
JPH08290995A (en) Silicon single crystal and its production
JPH08111444A (en) Atomic vacancy distribution evaluation method of silicon wafer for semiconductor substrate
JPH06122592A (en) Single crystal silicon base plate
JPH0521303A (en) Semiconductor substrate and manufacture thereof