JPS58103154A - Formation of interlayer insulating film for polycrystalline silicon layers - Google Patents

Formation of interlayer insulating film for polycrystalline silicon layers

Info

Publication number
JPS58103154A
JPS58103154A JP20289281A JP20289281A JPS58103154A JP S58103154 A JPS58103154 A JP S58103154A JP 20289281 A JP20289281 A JP 20289281A JP 20289281 A JP20289281 A JP 20289281A JP S58103154 A JPS58103154 A JP S58103154A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
silicon layer
insulating film
interlayer insulating
gate oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20289281A
Other languages
Japanese (ja)
Other versions
JPS6248379B2 (en
Inventor
Shuichi Mayumi
周一 真弓
Toshiya Yamato
大和 俊哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP20289281A priority Critical patent/JPS58103154A/en
Publication of JPS58103154A publication Critical patent/JPS58103154A/en
Publication of JPS6248379B2 publication Critical patent/JPS6248379B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To enhance dielectric strength of an interlayer insulating film for polycrystalline silicon layers, and to reduce a leakage current by a method wherein the eaves type projecting part of the first polycrystalline silicon layer to be generated when etching of a first gate oxide film is performed is removed, and the interlayer insulating film under the corner part is made thick. CONSTITUTION:After a photo resist 5 is exfoliated, a first gate oxide film 3 is etched using a fluoric acid:ammonium fluoride aqueous solution making the first polycrystalline silicon layer 4 as the mask. After then, the first polycrystalline silicon layer 4 is etched using a nitric acid/fluoric acid system aqueous solution up to the grade to make the eaves type projecting part to be extinguished and to expose a part of the first gate oxide film 3 from the tip of the side. Then the heat treatment is performed in steam of 900 deg.C for 30min to form simultaneously the interlayer insulating film 6 for the second polycrystalline silicon layer 8 on the first polycrystalline silicon layer 4 and a second gate oxide film 7 on a silicon substrate 1. After the second polycrystalline silicon layer 8 is adhered, plasma etching in CF4 gas is performed to the second polycrystalline silicon layer 8 using a photo resist as the mask, and the photo resist is exfoliated to complete two-layered polycrystalline silicon structure.

Description

【発明の詳細な説明】 本発明は半導体装置における2層あるいはそれ以上の多
結晶シリコン層間絶縁膜形成方法に関し、その目的とす
るところは上層及び下層多結晶シリコンの層間に位置す
る絶縁膜の絶縁耐圧を向上せしめ、上層及び下層多結晶
シリコン間のリーク電流を減少することができる多結晶
シリコン層間絶2 −1 縁膜形成方法を提供することである。
Detailed Description of the Invention The present invention relates to a method for forming an insulating film between two or more polycrystalline silicon layers in a semiconductor device, and its purpose is to insulate an insulating film located between upper and lower polycrystalline silicon layers. It is an object of the present invention to provide a method for forming a polycrystalline silicon interlayer insulation film that can improve breakdown voltage and reduce leakage current between upper and lower polycrystalline silicon layers.

初めに、従来技術の一例として2層多結晶シリコン構造
を有するMO8型半導体集積回路の層間絶縁膜形成方法
について第1図(−)〜(d)を照して詳細に説明する
。まず、シリコン基板1の上に、LOGOSプロセスと
呼ばれる局部酸化法によって形成した膜厚70ooへの
選択酸化膜2及び膜厚660人の第1ゲート酸化膜3を
覆うように被着した膜厚5000人の第1(下層)多結
晶シリコン層4をホトレジスト6をマスクにして、CF
4 ガスによるプラズマエツチングを行う(第1図(a
))。
First, as an example of the prior art, a method for forming an interlayer insulating film of an MO8 type semiconductor integrated circuit having a two-layer polycrystalline silicon structure will be described in detail with reference to FIGS. 1(-) to 1(d). First, a selective oxide film 2 with a thickness of 7000 mm was formed on a silicon substrate 1 by a local oxidation method called LOGOS process, and a film with a thickness of 5000 mm was deposited to cover the first gate oxide film 3 with a thickness of 660 mm. Using the photoresist 6 as a mask, the first (lower) polycrystalline silicon layer 4 is coated with CF.
4 Perform plasma etching using gas (see Figure 1 (a)
)).

次に、ホトレジスト6を剥離後、第1多結晶シリコン層
4をマスクにして第1ゲート酸化膜3を弗酸:弗化アン
モニウム系水溶液を用いてエツチングするCM1図山図
中Qその後、第1多結晶シリコン層4上に絶縁膜6を形
成するために、例えば水蒸気中、900℃で30分間の
熱処理を施し、第1多結晶シリコン層4の表面を酸化す
る。この時、同時に基板1の露出部には第2ゲート酸化
膜7が形成される(第1図(C))。次に、第2(上層
)多3’ニー7 結晶シリコン層8を被着して後、ホトレジストをマスク
にして第2多結晶シリコン層8をCF4 ガス中でプラ
ズマエツチングし、その後、これに使用したホトレジス
トを剥離することにより、上述の2層多結晶シリコン構
造を完成する(第1図(d))。
Next, after peeling off the photoresist 6, the first gate oxide film 3 is etched using a hydrofluoric acid/ammonium fluoride aqueous solution using the first polycrystalline silicon layer 4 as a mask. In order to form the insulating film 6 on the polycrystalline silicon layer 4, heat treatment is performed at 900° C. for 30 minutes in water vapor, for example, to oxidize the surface of the first polycrystalline silicon layer 4. At this time, a second gate oxide film 7 is simultaneously formed on the exposed portion of the substrate 1 (FIG. 1(C)). Next, after depositing a second (upper) polycrystalline silicon layer 8, the second polycrystalline silicon layer 8 is plasma etched in CF4 gas using a photoresist as a mask. By peeling off the photoresist, the above-mentioned two-layer polycrystalline silicon structure is completed (FIG. 1(d)).

しかしながら、このようにして形成される2層多結晶シ
リコン構造では層間絶縁膜の絶縁耐圧が必らずしも十分
でなく、第1多結晶シリコン層と第2多結晶シリコン層
間に流れるリーク電流が大きいという欠点がある。
However, in the two-layer polycrystalline silicon structure formed in this way, the dielectric strength of the interlayer insulating film is not necessarily sufficient, and leakage current flows between the first polycrystalline silicon layer and the second polycrystalline silicon layer. It has the disadvantage of being large.

ところで、上記シリコン基板1上に酸化成長させる第2
ゲート酸化膜7の厚さを一定の値とすると、第1多結晶
シリコン層4の上面及び側面に成長する眉間絶縁膜6の
厚さは第1多結晶シリコン層4に含まれるリン濃度と熱
処理条件に依存する。
By the way, the second layer grown by oxidation on the silicon substrate 1 is
Assuming that the thickness of the gate oxide film 7 is a constant value, the thickness of the glabella insulating film 6 that grows on the top and side surfaces of the first polycrystalline silicon layer 4 depends on the phosphorus concentration contained in the first polycrystalline silicon layer 4 and the heat treatment. Depends on conditions.

例えば、第1多結晶シリコン層4のシート抵抗が45Ω
の場合、水蒸気中、900℃の熱処理を30分施すと、
第2ゲート酸化膜7の膜厚は650人であり、この時、
眉間絶縁膜6の厚さは第1多結晶シリコン層7の上面及
び側面で約1300八である。
For example, the sheet resistance of the first polycrystalline silicon layer 4 is 45Ω.
In the case of , heat treatment at 900℃ in steam for 30 minutes will result in
The thickness of the second gate oxide film 7 is 650 mm, and at this time,
The thickness of the glabella insulating film 6 on the top and side surfaces of the first polycrystalline silicon layer 7 is about 1300 mm.

   − しかしながら、第1多結晶シリコン層4のひさし状の先
端下側部分では多結晶シリコンの酸化反応が進み4く、
この部分での層間絶縁膜の厚さは約60OAとなる。ま
た、第1多結晶シリコン層4の上面と側面が交差する角
に成長する層間絶縁膜6の厚さも第1多結晶シリコン層
4の上面及び側面に成長する層間絶縁膜6の厚さと比較
して薄く、約800八である。更に、熱処理の温度ある
いは多結晶シリコン層7のシート抵抗を変化させた場合
も、第1多結晶シリコン層7の下面と側面との交差する
角の下側部分に成長する絶縁膜の厚さが、第1多結晶シ
リコン層4のその他の部分に成長する絶縁膜の厚さと比
較して薄いだめに、この部分において層間絶縁膜6の破
壊が起り易く、絶縁耐圧低下の原因となっている。例え
ば、上述のような厚みの関係で層間絶縁膜では、第1多
結晶シリコン層4と第2多結晶シリコン層間8の耐圧は
約aaVであった。
- However, the oxidation reaction of polycrystalline silicon progresses in the lower part of the eave-shaped tip of the first polycrystalline silicon layer 4,
The thickness of the interlayer insulating film at this portion is approximately 60 OA. Also, the thickness of the interlayer insulating film 6 grown at the corner where the upper surface and side surfaces of the first polycrystalline silicon layer 4 intersect is compared with the thickness of the interlayer insulating film 6 grown on the upper surface and side surfaces of the first polycrystalline silicon layer 4. It is thin and about 800 mm. Furthermore, even when the heat treatment temperature or the sheet resistance of the polycrystalline silicon layer 7 is changed, the thickness of the insulating film grown at the lower part of the corner where the lower surface and the side surface of the first polycrystalline silicon layer 7 intersect can be changed. Since the interlayer insulating film 6 is thinner than the thickness of the insulating film grown in other parts of the first polycrystalline silicon layer 4, breakdown of the interlayer insulating film 6 is likely to occur in this part, causing a decrease in dielectric strength voltage. For example, in the interlayer insulating film due to the above-mentioned thickness relationship, the breakdown voltage between the first polycrystalline silicon layer 4 and the second polycrystalline silicon layer 8 was about aaV.

本発明は上記従来の欠点を除去することのできる多結晶
シリコン層間絶縁膜形成方法を提供する6 ヘージ ものであり、第1ゲート酸化膜エツチング時に生ずる第
1多結晶シリコン層のひさし状の突出部を除去し、第1
多結晶シリコン層の角部分の下の層間絶縁膜を厚くする
ことによって絶縁耐圧を向上させるところに特徴がある
The present invention provides a method for forming a polycrystalline silicon interlayer insulating film that can eliminate the above-mentioned conventional drawbacks. and remove the first
The feature is that the dielectric breakdown voltage is improved by thickening the interlayer insulating film under the corner portions of the polycrystalline silicon layer.

以下、本発明にかかる多結晶シリコン層間絶縁膜形成方
法の一実施例について第2図(−)〜(−)を参照にし
て詳細に説明する。なお、第1図(−)〜(d)の場合
と同一番号を付している。まず、シリコン基板1の上に
形成した膜厚7000人の選択酸化膜2及び膜厚65〇
への第1ゲート酸化膜3を覆うように被着した膜厚50
00人、シート抵抗46Ωの第1多結晶シリコン層4を
ホトレジスト5をマスクにしてCF4 ガス中でプラズ
マエツチングする(第2図(a))。次に、ホトレジス
ト6を剥離後、第1多結晶シリコン層4をマスクにして
第1ゲート酸化膜3を弗酸:弗化アンモニウム水溶液を
用いてエツチングする(第2図(b))。その後、第1
ゲート酸化膜エツチング時の横方向エツチングによって
生じた第1多結晶シリコン層4のひさし状の6 −1 突出部が消滅し、第1多結晶シリコン層下の第1ゲート
酸化膜3の一部が、例えば幅1000八程度その第1多
結晶シリコン層4の側面先端から現われる程度に、硝酸
二部酸系水容液を用いて第1結晶シリコン層4をエツチ
ングする(第2図(C))。
Hereinafter, an embodiment of the method for forming a polycrystalline silicon interlayer insulating film according to the present invention will be described in detail with reference to FIGS. Note that the same numbers as in the case of FIGS. 1(-) to (d) are given. First, a selective oxide film 2 with a thickness of 7,000 formed on a silicon substrate 1 and a first gate oxide film 3 with a thickness of 650 are deposited to cover the film with a thickness of 50.
The first polycrystalline silicon layer 4 having a sheet resistance of 46 Ω was plasma etched in CF4 gas using the photoresist 5 as a mask (FIG. 2(a)). Next, after peeling off the photoresist 6, the first gate oxide film 3 is etched using a hydrofluoric acid:ammonium fluoride aqueous solution using the first polycrystalline silicon layer 4 as a mask (FIG. 2(b)). Then the first
The eave-shaped 6-1 protrusion of the first polycrystalline silicon layer 4 caused by lateral etching during gate oxide film etching disappears, and a part of the first gate oxide film 3 under the first polycrystalline silicon layer is removed. For example, the first crystalline silicon layer 4 is etched using a nitric acid-based aqueous solution to the extent that a width of about 1000 mm is exposed from the tip of the side surface of the first polycrystalline silicon layer 4 (FIG. 2(C)). .

このエツチング工程により、同第1多結晶シリコン層4
の上面、側面交差部の角も好ましくエツチングされる。
Through this etching process, the first polycrystalline silicon layer 4
The top surface and the corners of the side intersections are also preferably etched.

次に、例えば900℃の水蒸気中で30分間の熱処理を
施し、第1多結晶シリコン層4上に第2多結晶シリコン
層8に対する層間絶縁膜6及びシリコン基板1上に第2
ゲート酸化膜7を同時に形成する(第2図(d))。こ
の後、第2多結晶シリコン層8を被着して後、ホトレジ
ストをマスクにして、第2多結晶シリコン層8をCF4
ガス中でスラズマエッチングする。そして、ホトレジス
トを剥離して、所望の2層多結晶シリコン構造を完成さ
せる(第2図(e))。
Next, a heat treatment is performed for 30 minutes in water vapor at 900° C., for example, to form an interlayer insulating film 6 on the first polycrystalline silicon layer 4 for the second polycrystalline silicon layer 8 and a second film on the silicon substrate 1.
A gate oxide film 7 is formed at the same time (FIG. 2(d)). After this, after depositing the second polycrystalline silicon layer 8, the second polycrystalline silicon layer 8 is covered with CF4 using a photoresist as a mask.
Plasma etching in gas. Then, the photoresist is peeled off to complete the desired two-layer polycrystalline silicon structure (FIG. 2(e)).

本実施例の方法によれば、第1多結晶シリコン層4の上
面及び側面の層間絶縁膜6の膜厚は上記第1図示の従来
例の場合と同様に約1300人であ71\−ノ るが、第1多結晶シリコン層4の側面と下面とが交差す
る角の部分に成長する層間絶縁膜6の最小膜厚は約1o
oo人であり、従来の方法で同様絶縁膜を形成した場合
の上述の従来例における最小膜厚よりも約40OA厚い
。この理由は、従来方法と異なり層間絶縁膜6形成前に
第1結晶シリコン層4の下面と側面の交差する角の下側
部分に第1ゲート酸化膜3が存在しているために層間絶
縁膜6の極端に薄くなる部分がなくなっているだめであ
る。尚、第1多結晶シリコン層4の上面と側面の交差す
る角の部分に成長する絶縁膜の厚さは約880人となり
、従来方法の場合よりわずかに厚い膜厚である。ところ
で、第1多結晶シリコン層4と第2多結晶シリコン層8
との間の耐圧は層間絶縁膜6全体の膜厚が最も薄い部分
で決定されるとすると、本実施例の方法の場合、眉間絶
縁膜6全体の最小膜厚は約880八であり、従来方法を
用いた場合よりも280人厚い。実際、第1多結晶シリ
コン層4と第2多結晶シリコン層8との間の耐圧は約6
2Vあり、従来方法により製造した上述の従来例2層多
結晶シリコン構造のものよりも約14V向上した。
According to the method of this embodiment, the thickness of the interlayer insulating film 6 on the top and side surfaces of the first polycrystalline silicon layer 4 is approximately 1,300 and 71\-no. However, the minimum thickness of the interlayer insulating film 6 grown at the corner where the side surface and the bottom surface of the first polycrystalline silicon layer 4 intersect is approximately 10.
The thickness of the insulating film is about 40 OA thicker than the minimum film thickness in the above-mentioned conventional example when a similar insulating film is formed using the conventional method. The reason for this is that, unlike the conventional method, the first gate oxide film 3 is present at the lower part of the corner where the lower surface and the side surface of the first crystalline silicon layer 4 intersect before the formation of the interlayer insulating film 6. The extremely thin part of 6 is gone. The thickness of the insulating film grown at the corner where the top and side surfaces of the first polycrystalline silicon layer 4 intersect is approximately 880 mm, which is slightly thicker than in the conventional method. By the way, the first polycrystalline silicon layer 4 and the second polycrystalline silicon layer 8
If the breakdown voltage between the 280 people thicker than when using the method. In fact, the breakdown voltage between the first polycrystalline silicon layer 4 and the second polycrystalline silicon layer 8 is approximately 6
2V, which is approximately 14V higher than that of the conventional two-layer polycrystalline silicon structure manufactured by the conventional method.

尚、本方法では、第1ゲート酸化膜3のエツチングの際
に、横方向エッチレグによって生じた第1多結晶シリコ
ン層4のひさし状突出部を除去する工程で、硝酸二部酸
系水溶液を用いだが、同エツチングをCF4 ガス中の
プラズマエツチングで実施した場合も、第1及び第2多
結晶シリコン層間の耐圧は約50Vであシ、本方法を用
いた場合と同程度であった。
In addition, in this method, in the step of removing the eave-like protrusion of the first polycrystalline silicon layer 4 caused by the lateral etching legs during etching of the first gate oxide film 3, a nitric acid dipartic acid-based aqueous solution is used. However, when the same etching was performed by plasma etching in CF4 gas, the withstand voltage between the first and second polycrystalline silicon layers was about 50V, which was about the same as when using this method.

以上、説明したように、本発明の多結晶シリコン層間絶
縁膜形成方法を用いて多結晶シリコン層間の絶縁膜を形
成すると従来の多層多結晶シリコン構造における絶縁耐
圧不足の問題を効果的に解決することが可能である。本
発明は2層多結晶シリコン構造の製造方法を例示して説
明しだが、本発明の方法は3層あるいはそれ以上の多層
結晶シリコン構造を有する半導体装置全般に適用できる
ものである。
As explained above, forming an insulating film between polycrystalline silicon layers using the polycrystalline silicon interlayer insulating film forming method of the present invention effectively solves the problem of insufficient dielectric strength in the conventional multilayer polycrystalline silicon structure. Is possible. Although the present invention has been described by exemplifying a method for manufacturing a two-layer polycrystalline silicon structure, the method of the present invention is applicable to all semiconductor devices having a multilayer crystalline silicon structure of three or more layers.

【図面の簡単な説明】[Brief explanation of drawings]

91・−7 第1図(−)〜(d)は従来の多結晶シリコン層間絶縁
膜形成方法を示す工程図、第2図(、)〜(e)は本発
明の一実施例における多結晶シリコン層間絶縁膜形成方
法を示す。 1・・・・・・シリコン基板、2・・・・・・選択酸化
膜、3・・・・・・第1ゲート酸化膜、4・・・・・・
第1(下層)多結晶シリコン層、6・・・・・・ホトレ
ジスト、6・・・・・・多結晶シリコン間の眉間絶縁膜
(酸化ケイ素瓦7・・・・・・第2ゲート酸化膜、8・
・・・・・第2(上層)多結晶シリコン層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名II
I図 ((II
91・-7 FIGS. 1(-) to (d) are process diagrams showing a conventional polycrystalline silicon interlayer insulating film forming method, and FIGS. 2(,) to (e) are polycrystalline silicon in an embodiment of the present invention. A method for forming a silicon interlayer insulating film is shown. 1...Silicon substrate, 2...Selective oxide film, 3...First gate oxide film, 4...
First (lower layer) polycrystalline silicon layer, 6... Photoresist, 6... Insulating film between eyebrows between polycrystalline silicon (silicon oxide tile 7... Second gate oxide film , 8・
...Second (upper) polycrystalline silicon layer. Name of agent: Patent attorney Toshio Nakao and one other person II
Figure I ((II

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上の絶縁膜の上に形成された多結晶シリコン
層を選択的にエツチングする工程と、この多結晶シリコ
ン層をマスクにして上記半導体基板上の絶縁膜をエツチ
ングする工程と、上記絶縁膜のエツチングの際に形成さ
れた上記多結晶シリコン層のひさし状突出部を除去する
工程と、上記多結晶シリコン層上に熱酸化によシ絶縁膜
を形成する工程とをそなえたことを特徴とする多結晶シ
リコン層間絶縁膜形成方法。
a step of selectively etching a polycrystalline silicon layer formed on an insulating film on a semiconductor substrate; a step of etching the insulating film on the semiconductor substrate using the polycrystalline silicon layer as a mask; and a step of etching the insulating film on the semiconductor substrate. The method is characterized by comprising the steps of: removing the eaves-like protrusion of the polycrystalline silicon layer formed during etching; and forming an insulating film by thermal oxidation on the polycrystalline silicon layer. A method for forming a polycrystalline silicon interlayer insulating film.
JP20289281A 1981-12-15 1981-12-15 Formation of interlayer insulating film for polycrystalline silicon layers Granted JPS58103154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20289281A JPS58103154A (en) 1981-12-15 1981-12-15 Formation of interlayer insulating film for polycrystalline silicon layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20289281A JPS58103154A (en) 1981-12-15 1981-12-15 Formation of interlayer insulating film for polycrystalline silicon layers

Publications (2)

Publication Number Publication Date
JPS58103154A true JPS58103154A (en) 1983-06-20
JPS6248379B2 JPS6248379B2 (en) 1987-10-13

Family

ID=16464923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20289281A Granted JPS58103154A (en) 1981-12-15 1981-12-15 Formation of interlayer insulating film for polycrystalline silicon layers

Country Status (1)

Country Link
JP (1) JPS58103154A (en)

Also Published As

Publication number Publication date
JPS6248379B2 (en) 1987-10-13

Similar Documents

Publication Publication Date Title
JPS58103154A (en) Formation of interlayer insulating film for polycrystalline silicon layers
JP2674406B2 (en) Method for manufacturing semiconductor device
JPS6213047A (en) Manufacture of semiconductor device
JP3323264B2 (en) Method for manufacturing semiconductor device
JPS5943549A (en) Method of forming aluminum wiring layer
JPH0122731B2 (en)
JPS6387741A (en) Manufacture of semiconductor device
JPS5823745B2 (en) MOS
JPS5933873A (en) Manufacture of semiconductor element
JPH0620138B2 (en) Method of manufacturing thin film MOS structure semiconductor device
JPS6027187B2 (en) Manufacturing method of semiconductor device
JPH0367351B2 (en)
JPS59168661A (en) Manufacture of semiconductor integrated circuit
JPS5953710B2 (en) Manufacturing method of semiconductor device
JPS5889869A (en) Manufacture of semiconductor device
JPS6260231A (en) Manufacture of semiconductor device
JPS6387742A (en) Manufacture of semiconductor device
JPH01146341A (en) Forming method for multilayer interconnection
JPH05251443A (en) Manufacture of semiconductor device
JPS6279625A (en) Manufacture of semiconductor device
JPH08236475A (en) Formation of contact window
JPS6210034B2 (en)
JPS6145859B2 (en)
JPH02309639A (en) Manufacture of semiconductor device
JPS6310572A (en) Manufacture of semiconductor device