JPS5953710B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS5953710B2
JPS5953710B2 JP55175648A JP17564880A JPS5953710B2 JP S5953710 B2 JPS5953710 B2 JP S5953710B2 JP 55175648 A JP55175648 A JP 55175648A JP 17564880 A JP17564880 A JP 17564880A JP S5953710 B2 JPS5953710 B2 JP S5953710B2
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
silicon layer
layer
electrode
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55175648A
Other languages
Japanese (ja)
Other versions
JPS57164563A (en
Inventor
恵治 西本
正直 糸賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP55175648A priority Critical patent/JPS5953710B2/en
Publication of JPS57164563A publication Critical patent/JPS57164563A/en
Publication of JPS5953710B2 publication Critical patent/JPS5953710B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に係り、特に多結晶シリ
コン電極の多層構造を有する半導体装置を製造する際に
於ける上層多結晶シリコン電極間の短絡防止方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for preventing short circuits between upper polycrystalline silicon electrodes when manufacturing a semiconductor device having a multilayer structure of polycrystalline silicon electrodes.

ランダム・アクセス・メモリ(RAM)等の半導体集積
回路装置に於ては、多結晶シリコン電極の多層構造が多
く用いられる。
A multilayer structure of polycrystalline silicon electrodes is often used in semiconductor integrated circuit devices such as random access memories (RAMs).

そしてこれら半導体集積回路装置に於いて、多結晶シリ
コン電極を多層に形成するに際しては、従来表面が二酸
化シリコン(SiO0)等の絶縁膜で覆われた第1の多
結晶シリコン層からなる下層電極上に、第2の多結晶シ
リコン層を堆積形成し、該第2の多結晶シリコン層をエ
ッチング精度の高い例えば反応性スパッタ・エッチング
法を用いて選択エッチングを行つて、下層多結晶シリコ
ン電極の端面と、前記絶縁膜をへだてて、例えば直角に
交差する2〔本〕平行した帯状の上層多結晶シリコン電
極を形成していた。然し該従来方法に於ては第1図aの
断面図及び第1図aのA−A’矢視断面を表わした第1
図bに示すように、第1の多結晶シリコン層からなる下
層多結晶シリコン電極1上に、SiO。
In these semiconductor integrated circuit devices, when forming polycrystalline silicon electrodes in multiple layers, conventionally, a lower layer electrode is formed of a first polycrystalline silicon layer whose surface is covered with an insulating film such as silicon dioxide (SiO0). Then, a second polycrystalline silicon layer is deposited, and the second polycrystalline silicon layer is selectively etched using, for example, a reactive sputter etching method with high etching accuracy, so that the end face of the lower polycrystalline silicon electrode is etched. Then, by separating the insulating film, for example, two parallel strip-shaped upper polycrystalline silicon electrodes intersecting at right angles were formed. However, in the conventional method, the cross-sectional view of FIG.
As shown in Figure b, SiO is deposited on the lower polycrystalline silicon electrode 1 made of the first polycrystalline silicon layer.

膜2をへだてて該下層多結晶シリコン電極1の端面と直
交する平行な例えば2本の帯状を有する第2の多結晶シ
リコン層からなる上層多結晶シリコン電極3a及び3b
を、反応性スパッタ・エッチング法を用いて形成する際
に、第2の多結晶シリコン層の厚さに見合つた条件でエ
ッチングを行つて上層多結晶シリコン電極3a、3b間
に下層多結晶シリコン電極1上のSiO。膜2を表出せ
しめた状態では、上層多結晶シリコン電極3aと3bの
間の下、層多結晶シリコン電極1端面に形成されている
第2の多結晶シ4フロン層は除去しきれず、第2の多結
晶シリコン残留層4となつて残留する。これは該下層多
結晶シリコン電極1の端面に於ける第2の多結晶シリコ
ン層の縦方向の厚さが厚いため3に、被処理基板面に対
して垂直なエッチングの方向性を有する反応性スパッタ
・エッチング法を用いる限り避けられない現象である。
そして上記第2の多結晶シリコン残留層4は上層多結晶
シリコン電極3aと3b間を短絡せしめ、素子の性能を
損なうので、従来は該上層多結晶シリコン電極3a,3
bをパターンニングする際のエツチング条件を大幅なオ
ーバ・エツチング条件にして、前記第2の多結晶シリコ
ン残留層4の除去を行つていた。(第1図a及びbに於
て6は二酸化シリコン(SiO2)からなるフイールド
絶縁膜、7は同じく二酸化シリコンからなるゲート絶縁
膜、8はチヤネル・カツト領域、9はシリコン基板を示
す。)然しこのようなオーバ・エツチングを行つても、
下層多結晶シリコン電極1の下部に形成されているアン
ダ・カツト部5に満たされている第2の多結晶シリコン
残留層4は残り勝ちで、半導体集積回路装置の製造歩留
まりが低下するという問題があり、又上記のように大幅
なオーバ・エツチングを行うと、フオト・レジストから
なるマスク・パターンもエツチングされて細くなるので
、所望の幅を有する上層多結晶シリコン電極3a,3b
を形成するには、予め更に広い幅を有するマスク・パタ
ーンを形成におく必要があり、そのために素子の集積度
が低下するという問題があつた。本発明は上記問題点に
鑑み、上層多結晶シリコン電極の間隙部にあたる領域の
下層多結晶シリコン電極端面に被着している第2の多結
晶シリコン残留層を予め分断除去するエツチング工程を
設け、以後の工程でパターンニングされる上層多結晶シ
リコン電極間の短絡を防止する半導体装置の製造方法を
提供する。
Upper polycrystalline silicon electrodes 3a and 3b are formed of a second polycrystalline silicon layer having, for example, two strips parallel to each other and perpendicular to the end surface of the lower polycrystalline silicon electrode 1, with the film 2 separated.
When forming using a reactive sputter etching method, etching is performed under conditions suitable for the thickness of the second polycrystalline silicon layer to form a lower polycrystalline silicon electrode between upper polycrystalline silicon electrodes 3a and 3b. SiO on 1. In the state where the film 2 is exposed, the second polycrystalline silicon layer formed on the end surface of the polycrystalline silicon electrode 1 beneath the upper polycrystalline silicon electrodes 3a and 3b cannot be completely removed; The remaining polycrystalline silicon layer 4 of No. 2 remains. This is because the vertical thickness of the second polycrystalline silicon layer at the end face of the lower polycrystalline silicon electrode 1 is large, and this is due to the reactivity that has an etching direction perpendicular to the surface of the substrate to be processed. This phenomenon is unavoidable as long as sputter etching is used.
The second residual polycrystalline silicon layer 4 causes a short circuit between the upper polycrystalline silicon electrodes 3a and 3b, impairing the performance of the device.
The second remaining polycrystalline silicon layer 4 was removed under a large over-etching condition when patterning the second polycrystalline silicon layer 4. (In FIGS. 1a and 1b, 6 indicates a field insulating film made of silicon dioxide (SiO2), 7 indicates a gate insulating film also made of silicon dioxide, 8 indicates a channel cut region, and 9 indicates a silicon substrate.) Even with this kind of over-etching,
The second polycrystalline silicon residual layer 4 filling the undercut portion 5 formed at the bottom of the lower polycrystalline silicon electrode 1 remains, which causes the problem of lowering the manufacturing yield of semiconductor integrated circuit devices. Moreover, when the above-mentioned large over-etching is performed, the mask pattern made of photoresist is also etched and becomes thinner, so that the upper layer polycrystalline silicon electrodes 3a and 3b having the desired width can be formed.
In order to form this, it is necessary to form a mask pattern having a wider width in advance, which poses a problem in that the degree of integration of the element is reduced. In view of the above-mentioned problems, the present invention provides an etching step for preliminarily dividing and removing the second residual polycrystalline silicon layer adhering to the end surface of the lower polycrystalline silicon electrode in the region corresponding to the gap between the upper polycrystalline silicon electrodes, Provided is a method for manufacturing a semiconductor device that prevents short circuits between upper layer polycrystalline silicon electrodes that will be patterned in subsequent steps.

即ち本発明は半導体装置の製造方法に於て、半導体基板
面に設けられた絶縁膜上に、表面が絶縁膜で覆われた第
1の多結晶シリコン層からなる下層電極を形成し、次い
で前記第1の多結晶シリコン層を覆う絶縁膜上に第2の
多結晶シリコン層を堆積形成し、次いで該第2の多結晶
シリコン層上に、該第2の多結晶シリコン層を用いて形
成しようとする、前記下層電極端面と交差する平行な複
数条の上層電極の間隙部に対応する領域に於て、前記下
層電極端面を横切るエツチング窓を有する・フオト・レ
ジスト・パターンを形成し、次いで該フオト・レジスト
・パターンをマスクとして該フオト・レジスト・パター
ンのエツチング窓内に表出する第2の多結晶シリコン層
を選択的にエツチング除去し、次いで該第2の多結晶シ
リコン層のパターンニングを行つて上層電極を形成する
工程を有することを特徴とする。
That is, the present invention provides a method for manufacturing a semiconductor device, in which a lower electrode made of a first polycrystalline silicon layer whose surface is covered with an insulating film is formed on an insulating film provided on a surface of a semiconductor substrate, and then the A second polycrystalline silicon layer is deposited on an insulating film covering the first polycrystalline silicon layer, and then a second polycrystalline silicon layer is formed using the second polycrystalline silicon layer. forming a photoresist pattern having an etching window across the end surface of the lower electrode in a region corresponding to the gap between the plurality of parallel stripes of the upper electrode intersecting the end surface of the lower electrode; Using the photoresist pattern as a mask, the second polycrystalline silicon layer exposed within the etching window of the photoresist pattern is selectively etched away, and then the second polycrystalline silicon layer is patterned. The method is characterized by comprising the step of forming an upper layer electrode.

以下本発明を第2図a乃至eに示す一実施例の工程断面
図及び第3図a乃至dに示す同実施例の工程上面図を用
いて詳細に説明する。
The present invention will be described in detail below with reference to process sectional views of an embodiment shown in FIGS. 2a to 2e and process top views of the same embodiment shown in FIGS. 3a to 3d.

本発明の方法を用いて多結晶シリコン電極の多層構造を
有する半導体装置を形成するには、例えば通常の方法を
用いて第2図aに示すように、フイールドニ酸化シリコ
ン(SiO2)膜11及びチヤネル・カツト領域12に
より素子形成領域13を分離形成したシリコン(Si)
基板14からなる被処理基板の素子形成領域13上に、
先ず熱酸化法により厚さ5000〜1000〔人〕程度
のエツチング・ストツパ用の薄いSiO2膜15を形成
し、次いで該被処理基板上に化学気相成長(CVD)法
を用いて厚さ4000〜5000〔人〕程度の第1の多
結晶シリコン層16を堆積形成し、次いで該第1の多結
晶シリコン層16を表面を熱酸化して該第1の多結晶シ
リコン層16上に厚さ2000〜2500〔人〕程度の
層間絶縁用SiO2膜17を形成する。
In order to form a semiconductor device having a multilayer structure of polycrystalline silicon electrodes using the method of the present invention, for example, a conventional method is used to form a field silicon dioxide (SiO2) film 11 and a channel.・Silicon (Si) with element formation region 13 separated by cut region 12
On the element formation region 13 of the substrate to be processed consisting of the substrate 14,
First, a thin SiO2 film 15 for an etching stopper with a thickness of about 5,000 to 1,000 layers is formed using a thermal oxidation method, and then a thin SiO2 film 15 with a thickness of about 4,000 to 1,000 layers is formed on the substrate to be processed using a chemical vapor deposition (CVD) method. The first polycrystalline silicon layer 16 is deposited to a thickness of about 5,000 [people], and then the surface of the first polycrystalline silicon layer 16 is thermally oxidized to form a layer of about 2,000 [people] thick on the first polycrystalline silicon layer 16. A SiO2 film 17 for interlayer insulation of about 2,500 [persons] is formed.

次いで第2図b及び第3図aに示すように、該層間絶縁
用SiO2膜17上に下層電極形成領域18を覆うフオ
ト・レジスト・パターン19を形成し、該フオト・レジ
スト・パターン19をマスクとして該被処理基板面を先
ず弗酸(HF)系のエツチング液により処理して前記フ
オト・レジスタ・パターン19・から表出している領域
の層間絶縁用SiO2膜17を溶解除去し、続いて四弗
化炭素(CF4)等からなるエツチング・ガスを用いて
プラズマ・エツチングを行い、前記工程により表出せし
められた第1の多結晶シリコン層16をエツチング除去
し、上層に層間絶縁用SiO2膜17を有する多結晶シ
リコン層16からなる下層多結晶シリコン電極(ドレイ
ン電極)16″を形成して後、再びHF系のエツチング
液で処理して素子形成領域13上の薄いSiO2膜15
を溶解除去する。なお図に示すように上記プラズマ・エ
ツチングの際のサイド・エツチングにより、下層多結晶
シリコン電極16″の端面は層間絶縁用SiO2膜17
の端面より若干後退して形成され、又素子形成領域13
の薄いSiO2膜15を除去する際に下層多結晶シリコ
ン電極16″端面下部に浅いアンダ・カツト部20が形
成される。次いで第2図C及び第3図bに示すように前
記フオト・レジスト・パターンを除去した被処理基板の
熱酸化を行つて、素子形成領域13に表出する半導基板
面にゲートSiO2膜21を形成すると同時に、下層多
結晶シリコン電極16″の端面に1000〔人〕程度の
薄いSiO2膜22を形成して後、CVD法を用いて該
被処理基板上に4000〜5000〔人〕程度の厚さを
有する第2の多結晶シリコン層23を堆積形成する。
Next, as shown in FIG. 2b and FIG. 3a, a photoresist pattern 19 is formed on the interlayer insulating SiO2 film 17 to cover the lower electrode formation region 18, and the photoresist pattern 19 is masked. First, the surface of the substrate to be processed is treated with a hydrofluoric acid (HF) based etching solution to dissolve and remove the interlayer insulating SiO2 film 17 in the area exposed from the photo register pattern 19. Plasma etching is performed using an etching gas made of carbon fluoride (CF4), etc., and the first polycrystalline silicon layer 16 exposed in the above process is etched away, and an SiO2 film 17 for interlayer insulation is formed on the upper layer. After forming a lower polycrystalline silicon electrode (drain electrode) 16'' consisting of a polycrystalline silicon layer 16 having
Dissolve and remove. As shown in the figure, due to the side etching during the plasma etching, the end surface of the lower polycrystalline silicon electrode 16'' is exposed to the interlayer insulating SiO2 film 17.
is formed slightly backward from the end face of the element forming region 13.
When removing the thin SiO2 film 15, a shallow undercut 20 is formed at the bottom of the end face of the lower polycrystalline silicon electrode 16''.Then, as shown in FIGS. 2C and 3B, the photoresist film 16 is removed. The substrate to be processed from which the pattern has been removed is thermally oxidized to form a gate SiO2 film 21 on the semiconductor substrate surface exposed in the element formation region 13. At the same time, 1000 [people] After forming a relatively thin SiO2 film 22, a second polycrystalline silicon layer 23 having a thickness of approximately 4,000 to 5,000 layers is deposited on the substrate to be processed using the CVD method.

次いで通常のフオト・プロセスを用いて該第2の多結晶
シリコン層23上に、該第2の多結晶シリコン層23に
より形成される2条の平行した上層多結晶シリコン電極
の間隙部対応する領域に於て、前記層間絶縁用SiO2
膜17の端面24を横切る所望の長さの例えば長方形の
エツチング窓25を有するフオト・レジスト・パターン
26を形成する。しかる後、CF4特のエツチング・ガ
スを用いる通常のプラズマ・エツチング法により前記エ
ツチング窓25内表出している第2の多結晶シリコン層
23を選択的にエツチング除去して、第2図d及び第3
図Cに示すように第2の多結晶シリコン層23に前記層
間絶縁用SlO2膜17の端部の一部、薄いSiO2膜
22に覆われた下層多結晶シリコン電極16″の端面部
の一部、及びフイールドSiO2膜11を表出する例え
ば長方形窓27を形成する。次いで該第2の多結晶シリ
コン層23上に、前記長方形窓27をはさんで前記下層
多結晶シリコン電極16″の端面と例えば直角に交差す
る2条の平行なフオト・レジスト・パターンを形成して
後、該フオト・レジスト・パターンをマスクとして、四
塩化炭素(CCl4)等の塩素系のエツチング・ガスを
用いる反応性スパツタ・エツチングにより第2の多結晶
シリコン層のパターニングを行つて、第2図e及び゛第
3図dに示すように、下層多結晶シリコン電極16″上
に層間絶縁用SiO2膜17及び端面の薄いSiO2膜
22をへだてて、該下層多結晶シリコン電極16″と直
角に交差する平行した2条の上層多結晶シリコン電極(
ゲート電極)28a及び28bを形成する。
Then, using a normal photo process, a region corresponding to the gap between two parallel upper polycrystalline silicon electrodes formed by the second polycrystalline silicon layer 23 is formed on the second polycrystalline silicon layer 23. In the above, the interlayer insulation SiO2
A photoresist pattern 26 having a desired length of, for example, a rectangular etched window 25 across the end surface 24 of the membrane 17 is formed. Thereafter, the second polycrystalline silicon layer 23 exposed within the etching window 25 is selectively etched away by a normal plasma etching method using an etching gas such as CF4. 3
As shown in FIG. , and a rectangular window 27, for example, exposing the field SiO2 film 11. Next, on the second polycrystalline silicon layer 23, an end surface of the lower polycrystalline silicon electrode 16'' is formed with the rectangular window 27 in between. For example, after forming two parallel photoresist patterns that intersect at right angles, a reactive sputtering process is performed using a chlorine-based etching gas such as carbon tetrachloride (CCl4) using the photoresist pattern as a mask.・The second polycrystalline silicon layer is patterned by etching, and as shown in FIG. 2e and FIG. Separate the SiO2 film 22 and form two parallel upper polycrystalline silicon electrodes (
Gate electrodes) 28a and 28b are formed.

そして該上層多結晶シリコン電極28a,28bのパタ
ーンニングを完了した状態に於て、前述のように層間絶
縁用SiO2膜17の端部、薄いSiO2膜22に覆わ
れた下層多結晶シリコン電極16″の端部及び該端面下
部のアンダーカツト部20には第2の多結晶シリコン残
留層23″が残るが、該実施例に於ては前述したように
長方形窓27によつて上層多結晶シリコン電極28aと
28bの間の、下層多結晶シリコン電極16″端面の一
部を含む領域の第2の多結晶シリコン層23が予め除去
されているので該領域には前記第2の多結晶シリコン残
留層23″が形成されず、従つて図に示すように上層多
結晶シリコン電極28a,28b間に形成される第2の
多結晶シリコン残留層23″には切除部29が形成され
るので、上層多結晶シリコン電極28a,28b間の短
絡は防止される。
After the patterning of the upper polycrystalline silicon electrodes 28a and 28b is completed, the lower polycrystalline silicon electrode 16'' covered with the thin SiO2 film 22 is placed at the end of the interlayer insulating SiO2 film 17 as described above. The second polycrystalline silicon residual layer 23'' remains at the end portion of the upper layer and the undercut portion 20 at the bottom of the end surface, but in this embodiment, the upper polycrystalline silicon electrode is formed by the rectangular window 27 as described above. Since the second polycrystalline silicon layer 23 in the region between 28a and 28b including a part of the end face of the lower polycrystalline silicon electrode 16'' has been removed in advance, the second polycrystalline silicon residual layer is left in this region. 23'' is not formed, therefore, as shown in the figure, a cutout portion 29 is formed in the second polycrystalline silicon residual layer 23'' formed between the upper layer polycrystalline silicon electrodes 28a and 28b. A short circuit between crystalline silicon electrodes 28a and 28b is prevented.

以上説明したように本発明によれば、多結晶シノコン電
極の多層構造を有する半導体装置の製造工程に於て、上
層多結晶シリコン電極のパターンニングを行う際に、大
幅なオーバ・エツチング処理をほどこさずに上層多結晶
シリコン配線間の短絡が完全に防止されるので、RAM
等の多結晶シリコン電極多層構造を有する半導体集積回
路装置の製造歩留まり及び集積度の向上が図れる。
As explained above, according to the present invention, in the manufacturing process of a semiconductor device having a multilayer structure of polycrystalline silicon electrodes, a large overetching process is performed when patterning an upper layer polycrystalline silicon electrode. Since short circuits between upper layer polycrystalline silicon interconnections are completely prevented without
It is possible to improve the manufacturing yield and degree of integration of semiconductor integrated circuit devices having a polycrystalline silicon electrode multilayer structure such as the above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の方法で形成した多結晶シリコン電極多層
構造を有する半導体装置の断面図a及びA−N矢視断面
図b、第2図a乃至eは本発明の一実施例に於ける工程
断面図で、第3図a乃至dは同実施例に於ける工程上面
図である。 図に於て、11はフイールド絶縁膜、12はチヤネル・
カツト領域、13は素子形成領域、14はシリコン基板
、15及び22は薄いSiO2膜、16は第1の多結晶
シリコン層、16″は下層多結晶シリコン電極(ドレイ
ン電極)、17は層間絶縁用SiO2膜、18は下層電
極形成領域、19及び26はフオト・レジスト・パター
ン、20はアンダー・カツト部、21はゲート絶縁膜、
23は第2の多結晶シリコン層、24は層間絶縁用Si
O2膜の端面、25はエツチング窓、27は長方形窓、
28a及び28bは上層多結晶シリコン電極(ゲート電
極)、29は切除部を示す。
FIG. 1 is a cross-sectional view a of a semiconductor device having a multilayer structure of polycrystalline silicon electrodes formed by a conventional method, and a cross-sectional view b taken along the line A-N, and FIGS. In the process sectional views, FIGS. 3A to 3D are process top views in the same embodiment. In the figure, 11 is a field insulating film, 12 is a channel.
A cut region, 13 is an element formation area, 14 is a silicon substrate, 15 and 22 are thin SiO2 films, 16 is a first polycrystalline silicon layer, 16'' is a lower polycrystalline silicon electrode (drain electrode), 17 is for interlayer insulation SiO2 film, 18 is a lower electrode formation region, 19 and 26 are photoresist patterns, 20 is an undercut portion, 21 is a gate insulating film,
23 is the second polycrystalline silicon layer, 24 is Si for interlayer insulation.
The end face of the O2 membrane, 25 is an etching window, 27 is a rectangular window,
28a and 28b are upper polycrystalline silicon electrodes (gate electrodes), and 29 is a cutout portion.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板面に設けられた絶縁膜上に、表面が絶縁
膜に覆われた第1の多結晶シリコン層からなる下層電極
を形成し次いで前記第1の多結晶シリコン層を覆う絶縁
膜上に第2の多結晶シリコン層を堆積形成し、次いで該
第2の多結晶シリコン層上に、該第2の多結晶シリコン
層を用いて形成しようとする、前記下層電極の端面と交
差する平行な複数条の上層電極の間隙部に対応する領域
に於て、前記下層電極端面を横切るエッチング窓を有す
るフォト・レジスト・パターンを形成し、次いで該フォ
ト・レジスト・パターンをマスクとして該フォト・レジ
スト・パターンのエッチング窓内に表出する第2の多結
晶シリコン層を選択的にエッチング除去し、次いで該第
2の多結晶シリコン層のパターニングを行つて上層電極
を形成する工程を有することを特徴とする半導体装置の
製造方法。
1. A lower electrode made of a first polycrystalline silicon layer whose surface is covered with an insulating film is formed on an insulating film provided on the surface of the semiconductor substrate, and then a lower electrode is formed on the insulating film covering the first polycrystalline silicon layer. A second polycrystalline silicon layer is deposited, and then a parallel layer is formed on the second polycrystalline silicon layer, which intersects with the end face of the lower electrode to be formed using the second polycrystalline silicon layer. A photoresist pattern having an etching window crossing the end face of the lower electrode is formed in a region corresponding to the gap between the plurality of upper layer electrodes, and then the photoresist pattern is etched using the photoresist pattern as a mask. It is characterized by comprising the step of selectively etching away the second polycrystalline silicon layer exposed within the etching window of the pattern, and then patterning the second polycrystalline silicon layer to form an upper layer electrode. A method for manufacturing a semiconductor device.
JP55175648A 1980-12-12 1980-12-12 Manufacturing method of semiconductor device Expired JPS5953710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55175648A JPS5953710B2 (en) 1980-12-12 1980-12-12 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55175648A JPS5953710B2 (en) 1980-12-12 1980-12-12 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS57164563A JPS57164563A (en) 1982-10-09
JPS5953710B2 true JPS5953710B2 (en) 1984-12-26

Family

ID=15999763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55175648A Expired JPS5953710B2 (en) 1980-12-12 1980-12-12 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5953710B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142531U (en) * 1984-02-28 1985-09-20 株式会社明電舎 Gate turn-off thyristor

Also Published As

Publication number Publication date
JPS57164563A (en) 1982-10-09

Similar Documents

Publication Publication Date Title
JPH0313744B2 (en)
JPS5953710B2 (en) Manufacturing method of semiconductor device
JP3097338B2 (en) Method of forming contact hole
US6162696A (en) Method of fabricating a feature in an integrated circuit using a two mask process with a single edge definition layer
JPS5953709B2 (en) Manufacturing method of semiconductor device
US6558999B2 (en) Method for forming a storage electrode on a semiconductor device
JP2699454B2 (en) Manufacturing method of memory device
KR100204018B1 (en) Forming method of charge storage electrode in semiconductor device
JPS6254427A (en) Manufacture of semiconductor device
JPS6387741A (en) Manufacture of semiconductor device
JPH04123458A (en) Manufacture of semiconductor device
KR100411239B1 (en) Method for forming storage node of capacitor
JPH07221110A (en) Interconnection structure of semiconductor device and manufacture thereof
JPH0287621A (en) Manufacture of semiconductor device
JPH028451B2 (en)
JPH0376127A (en) Manufacture of semiconductor device
JPS6358373B2 (en)
JPH0222844A (en) Semiconductor integrated circuit
JPH09107030A (en) Method for manufacturing semiconductor device
JPS6396937A (en) Semiconductor device and its manufacture
JPH09321299A (en) Fabrication of semiconductor device
JPS6249735B2 (en)
JPH09102481A (en) Manufacture of semiconductor device
JPH01278048A (en) Manufacture of semiconductor device
JPH09260608A (en) Manufacture of semiconductor device