JPS5953709B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS5953709B2
JPS5953709B2 JP55173600A JP17360080A JPS5953709B2 JP S5953709 B2 JPS5953709 B2 JP S5953709B2 JP 55173600 A JP55173600 A JP 55173600A JP 17360080 A JP17360080 A JP 17360080A JP S5953709 B2 JPS5953709 B2 JP S5953709B2
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
electrode
film
layer
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55173600A
Other languages
Japanese (ja)
Other versions
JPS5796564A (en
Inventor
恵治 西本
正直 糸賀
政男 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP55173600A priority Critical patent/JPS5953709B2/en
Publication of JPS5796564A publication Critical patent/JPS5796564A/en
Publication of JPS5953709B2 publication Critical patent/JPS5953709B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に係り、特に多結晶シリ
コン電極の多層構造を有する半導体装置を製造する際に
於ける上層電極間の短絡防止方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for preventing short circuits between upper layer electrodes when manufacturing a semiconductor device having a multilayer structure of polycrystalline silicon electrodes.

ランダム・アクセス・メモリー(RAM)等の半導体集
積回路装置に於ては、多結晶シリコン電極の多層構造が
多く用いられる。
A multilayer structure of polycrystalline silicon electrodes is often used in semiconductor integrated circuit devices such as random access memories (RAMs).

そしてこれら半導体集積回路装置に於ける多結晶シリコ
ン電極を多層に形成するに際しては、従来上面及び端面
が二酸化シリコン(SiO0)等の絶縁膜で覆われた下
層即ち第1の多結晶シリコン電極上に、第2の多結晶シ
リコン層を被着し、該第2の多結晶シリコン層をエッチ
ング精度の高い例えば反応性スパッタ・エッチシダ法に
より選択エッチングを行つて、下層の第1の多結晶シリ
コン電極の端面と、前記絶縁膜をへだてて例えば直角に
交差する二本の平行した帯状を有する上層即ち第2の多
結晶シリコン電極を形成していた。然し該従来方法に於
ては第1図aの断面図及び第1図aC7)A−A’矢視
断面を表わした第1図bに示すように、第1の多結晶シ
リコン電極1上にSiO2膜2をへだてて第1の多結晶
シリコン電極1の端面と直交する平行な2 〔本〕の帯
状を有する第2の多結晶シリコン電極3a及び3bを、
第2の多結晶シリコン層の厚さに見合つた条件で反応性
スパッタ・エッチングを行つてパターニングし、第2の
多結晶シリコン電極3a、3b間に第1の多結晶シリコ
ン電極1の上面のSiO。
When forming polycrystalline silicon electrodes in multiple layers in these semiconductor integrated circuit devices, conventionally, the top surface and end surfaces are covered with an insulating film such as silicon dioxide (SiO0) on the lower layer, that is, on the first polycrystalline silicon electrode. , a second polycrystalline silicon layer is deposited, and the second polycrystalline silicon layer is selectively etched using a highly accurate etching method, for example, a reactive sputter etch fern method, so that the underlying first polycrystalline silicon electrode is etched. An upper layer, that is, a second polycrystalline silicon electrode, having two parallel band shapes intersecting at right angles, for example, was formed apart from the end face and the insulating film. However, in this conventional method, as shown in the cross-sectional view of FIG. 1a and FIG. Separating the SiO2 film 2, second polycrystalline silicon electrodes 3a and 3b having two parallel strips perpendicular to the end surface of the first polycrystalline silicon electrode 1 are formed.
Patterning is performed by reactive sputter etching under conditions suitable for the thickness of the second polycrystalline silicon layer, and SiO2 on the upper surface of the first polycrystalline silicon electrode 1 is formed between the second polycrystalline silicon electrodes 3a and 3b. .

膜を表’出せしめた状態では、第2の多結晶シリコン電
極3aと3bの間の第1の多結晶シリコン電極1端面に
形成されている第2の多結晶シリコン層はそのまま除去
されずに第2の多結晶シリコン残留層4となる。これは
該第1の多結晶シリコン電極1・端面に於ける第2の多
結晶シリコン層の縦方向の厚さが厚いために、被処理基
板面に対して垂直な方向性を有する反応性スパッタ・エ
ッチング法を用いる限り避けられない問題である。そし
て上記第2の多結晶シリコン残留層4は第2の多結晶シ
リコン電極3aと3b間を短絡せしめ、素子の性能をそ
こなうので、従来は該第2の多結晶シリコン電極3a,
3bをパターニングする際のエツチング条件を大幅なオ
ーバ・エツチング条件として前記第2の多結晶シリコン
残留層4の除去を行つていた。(第1図a及びbに於て
6はフイールドSiO2膜、8はチヤネル・カツト領域
、9はシリコン基板を示す。)然しこのようなオーバ・
エツチングを行つても第1の多結晶シリコン電極1の下
部に形成されているアンダ・カツト部5に満たされてい
る第2の多結晶シリコン残留層4は残り勝ちで、半導体
集積回路装置の製造歩留まりが低下するという問題があ
り、又上記のように大幅なオーバ・エツチングを行うと
フオト・レジストからなるマスク・パターンもエツチン
グされて細くなるので、所望の幅を有する第2の多結晶
シリコン電極3a,3bを形成するには、予め更に広い
幅のマスク・パターンを形成しておく必要があり、その
ために素子の集積度が低下するという問題があつた。
In the state where the film is exposed, the second polycrystalline silicon layer formed on the end face of the first polycrystalline silicon electrode 1 between the second polycrystalline silicon electrodes 3a and 3b is not removed as it is. This becomes a second polycrystalline silicon residual layer 4. This is due to the thick vertical thickness of the second polycrystalline silicon layer at the end surface of the first polycrystalline silicon electrode 1, which causes reactive sputtering that has a direction perpendicular to the surface of the substrate to be processed. - This is an unavoidable problem as long as the etching method is used. The second polycrystalline silicon residual layer 4 causes a short circuit between the second polycrystalline silicon electrodes 3a and 3b, impairing the performance of the device.
The second residual polycrystalline silicon layer 4 was removed under conditions of large overetching when patterning 3b. (In Figures 1a and 1b, 6 indicates the field SiO2 film, 8 indicates the channel cut region, and 9 indicates the silicon substrate.)
Even if etching is performed, the second polycrystalline silicon residual layer 4 filled in the undercut portion 5 formed under the first polycrystalline silicon electrode 1 remains, and is used for manufacturing semiconductor integrated circuit devices. There is a problem that the yield decreases, and if the above-mentioned large over-etching is performed, the mask pattern made of photoresist will also be etched and become thinner. In order to form 3a and 3b, it is necessary to form a wider mask pattern in advance, which poses a problem of lowering the degree of integration of the device.

本発明は上記問題点に鑑み、第2の多結晶シリコン電極
間の第1の多結晶シリコン電極の端面に被着している第
2の多結晶シリコン層の一部を切断除去するエツチング
工程を設け、第2の多結晶シリコン電極間の短絡を防止
する半導体装置の製造方法を提供する。
In view of the above problems, the present invention includes an etching process for cutting and removing a part of the second polycrystalline silicon layer adhering to the end face of the first polycrystalline silicon electrode between the second polycrystalline silicon electrodes. Provided is a method for manufacturing a semiconductor device that prevents short circuits between second polycrystalline silicon electrodes.

即ち本発明は半導体装置の製造方法に於て、半導体基板
面に設けられた絶縁膜上に、上面及び端面に絶縁膜を有
する第1の多結晶シリコン電極が形成されてなる被処理
基板上に第2の多結晶シリコン層を形成し、次いで該第
2の多結晶シリコン層を選択的にエツチング除去して、
前記第1の多結晶シリコン電極と絶縁膜をへだてて交差
する複数条の第2の多結晶シリコン電極を形成し、次い
で該被処理基板上にフオト・レジスト膜を形成し、次い
で該フオト・レジスト膜の前記第2の多結晶シリコン電
極間に、絶縁膜を有する第1の多結晶シリコン電極端面
の一部を含む領域を表出する窓を形成し、次いで該フオ
ト・レジスト膜をマスクとしてエツチングを行い、前記
窓内に表出する第1の多結晶シリコン電極端面の絶縁膜
に被着している第2の多結晶シリコン層を選択的に除去
令フ する工程を有することを特徴とする。
That is, the present invention provides a method for manufacturing a semiconductor device, in which a first polycrystalline silicon electrode is formed on an insulating film provided on a surface of a semiconductor substrate, and a first polycrystalline silicon electrode having an insulating film on an upper surface and an end surface is formed. forming a second polycrystalline silicon layer and then selectively etching away the second polycrystalline silicon layer;
forming a plurality of second polycrystalline silicon electrodes that intersect with the first polycrystalline silicon electrode across an insulating film, then forming a photoresist film on the substrate to be processed; A window is formed between the second polycrystalline silicon electrodes of the film to expose a region including a part of the end face of the first polycrystalline silicon electrode having an insulating film, and then etching is performed using the photoresist film as a mask. and selectively removing the second polycrystalline silicon layer adhering to the insulating film on the end surface of the first polycrystalline silicon electrode exposed within the window. .

以下本発明を実施例により詳細に説明する。The present invention will be explained in detail below using examples.

第2図a乃至fは本発明の一実施例の工程断面図、第3
図a乃至Cは同実施例の工程上面図、第4図a乃至Cは
他の一実施例の工程断面図、第5図a及びbは同実施例
の工程上面図である。本発明の方法を適用して多結晶シ
リコン電極の多層構造を形成する一実施例に於ては、上
層の多結晶シリコン電極のパターニングまでの工程は従
来の方法が用いられる。即ち例えば第2図aに示すよう
にフイールドSiO2膜11及びチヤネル・カツト領域
12により素子形成領域13が分離形成されたSi基板
14からなる被処理基板の素子形成領域13上に熱酸化
法により500〜1000〔人〕程度の薄いSiO2膜
15を形成し、次いで該被処理基板上に化学気相成長(
CVD)法により3000〜4000〔人〕程度の厚さ
の第1の多結晶シリコン層16を形成し、次いで熱酸化
法により該第1の多結晶シリコン層16上に2000〜
2500〔人〕程度の厚さの層間絶縁用SiO2膜17
を形成する。次いで第2図bに示すように該層間絶縁用
SiO2膜17上に所望の領域を覆うフオト・レジスト
・パターン18を形成し、該フオト・レジスト・パター
ン18をマスクとして先ず弗酸(HF)系のエツチング
液により表出している層間絶縁用SiO2膜17を溶解
除去し、続いて四弗化炭素(CF4)等からなるエツチ
ング・ガスを用いてプラズマ・エツチングを行い、前記
工程に於て表出せしめられた第1の多結晶シリコン層1
4をエツチング除去し、次いでHF系のエツチング液に
より素子形成領域13上の薄いSiO2膜15を除去す
る。なお上記工程により形成された第1の多結晶シリコ
ン層16からなる下層多結晶シリコン電極(ドレイン電
極)16″の端面は、プラズマ・エツチングの際のサイ
ド・エツチングにより図に示すように層間絶縁膜17の
端面より多少後退して形成され、又素子領域の薄いSi
O2膜15を除去する際に下層多結晶シリコン電極16
″の端面下部に浅いアンダカツト部19が形成される。
次いで第2図Cに示すように、熱酸化により該被処理基
板面の素子形成領域]3上にゲートSiO2膜20を形
成すると同時に、前記下層多結晶シリコン電極16″の
端部表出面に1000〔人〕程度の薄いSiO2膜21
を形成し、次いでCVD法を用いて該被処理基板上に4
000〜5000〔人〕程度の第2の多結晶シリコン層
22を堆積形成し、次いで該第2の多結晶シリコン層2
2上に前記下層多結晶シリコン電極16″の端面と直交
する2〔本〕の平行した帯状のポジ・レジスト・パター
ン23を形成し、該ポジ・レジスト・パターン23をマ
スクとして前記第2の多結晶シリコン層22を、四塩化
炭素(CCl4)等の塩素(Cl)系のエツチング・ガ
スを用いる反応性スパッタ・エツチング法によりエツチ
ングして、第2図d及び第3図aに示すように第1の多
結晶シリコン層16からなる下層多結晶シリコン電極1
6″の端面と直交する2〔本〕の平行した帯状の第2の
多結晶シリコン層22からなる上層多結晶シリコン電極
(ゲート電極)22″を形成する。なお此の際前述した
ように上層多結晶シリコン電極22″間に表出する層間
SiO2膜17及び下層多結晶シリコン電極16″端面
の薄いSlO2膜21上には4000〜5000〔人〕
程度の厚さの第2の多結晶シリコン残留層22″″が残
る。本発明の方法に於ては上記のような従来方法により
上層多結晶シリコン電極22″を形成した後、第2図e
及び第3図bに示すように、該被処理基板上にフオト・
レジスト膜23を塗布形成し、通常のフオト・プロセス
により該フオト・レジスト膜23に於ける上層多結晶シ
リコン電極22″の間隙部を覆う領域に、層間絶縁用S
iO2膜17の端面を所望の幅で横切り、該端面に被着
している第2の多結晶シリコン残層22″″を表出する
所望の長さのエツチング用窓24を形成し、該フオト・
レジスト膜23をマスクとして、CF4を主成分とする
エツチング・ガスを用いてプラズマ・エツチングを行つ
てエツチング用窓24内に存在する第2の多結晶シリコ
ン残留層22″″を完全にエツチング除去する。
FIGS. 2a to 2f are process sectional views of an embodiment of the present invention;
4A to 4C are process sectional views of another embodiment, and FIGS. 5A and 5B are process top views of the same embodiment. In one embodiment in which a multilayer structure of polycrystalline silicon electrodes is formed by applying the method of the present invention, conventional methods are used for the steps up to patterning of the upper layer polycrystalline silicon electrode. That is, as shown in FIG. 2a, for example, 500 yen is deposited by a thermal oxidation method on the element forming area 13 of the substrate to be processed, which is a Si substrate 14 with an element forming area 13 separated by a field SiO2 film 11 and a channel cut region 12. A thin SiO2 film 15 of ~1000 [people] is formed, and then chemical vapor deposition (chemical vapor deposition) is performed on the substrate to be processed.
A first polycrystalline silicon layer 16 with a thickness of approximately 3,000 to 4,000 [layers] is formed by a CVD method, and then a layer of approximately 2,000 to 4,000 layers is formed on the first polycrystalline silicon layer 16 by a thermal oxidation method.
SiO2 film 17 for interlayer insulation with a thickness of about 2500 [people]
form. Next, as shown in FIG. 2b, a photoresist pattern 18 covering a desired area is formed on the interlayer insulating SiO2 film 17, and using the photoresist pattern 18 as a mask, first a hydrofluoric acid (HF)-based The exposed interlayer insulating SiO2 film 17 is dissolved and removed using an etching solution, and then plasma etching is performed using an etching gas made of carbon tetrafluoride (CF4), etc. first polycrystalline silicon layer 1
4 is removed by etching, and then the thin SiO2 film 15 on the element forming region 13 is removed using an HF-based etching solution. Note that the end face of the lower polycrystalline silicon electrode (drain electrode) 16'' made of the first polycrystalline silicon layer 16 formed by the above process is etched by side etching during plasma etching to form an interlayer insulating film as shown in the figure. 17, and is formed slightly backward from the end face of the element region.
When removing the O2 film 15, the lower polycrystalline silicon electrode 16
A shallow undercut portion 19 is formed at the bottom of the end surface of ``.
Next, as shown in FIG. 2C, a gate SiO2 film 20 is formed by thermal oxidation on the element formation region 3 on the surface of the substrate to be processed, and at the same time, a 1000 nm film is formed on the exposed end surface of the lower polycrystalline silicon electrode 16''. SiO2 film 21 as thin as a [person]
4 is formed on the substrate to be processed using the CVD method.
A second polycrystalline silicon layer 22 of about 000 to 5000 [people] is deposited, and then the second polycrystalline silicon layer 2
2, two parallel band-shaped positive resist patterns 23 are formed perpendicularly to the end face of the lower polycrystalline silicon electrode 16'', and the second polycrystalline silicon electrode 23 is formed using the positive resist patterns 23 as a mask. The crystalline silicon layer 22 is etched by a reactive sputter etching method using a chlorine (Cl) based etching gas such as carbon tetrachloride (CCl4) to form a pattern as shown in FIGS. 2d and 3a. A lower polycrystalline silicon electrode 1 consisting of a polycrystalline silicon layer 16 of
An upper polycrystalline silicon electrode (gate electrode) 22'' is formed of two parallel band-shaped second polycrystalline silicon layers 22 that are perpendicular to the end face of the polycrystalline silicon layer 6''. In this case, as mentioned above, 4,000 to 5,000 people were deposited on the interlayer SiO2 film 17 exposed between the upper polycrystalline silicon electrodes 22'' and the thin SlO2 film 21 on the end face of the lower polycrystalline silicon electrode 16''.
A second polycrystalline silicon residual layer 22"" of a certain thickness remains. In the method of the present invention, after forming the upper layer polycrystalline silicon electrode 22'' by the conventional method as described above,
And as shown in FIG. 3b, a photo film is placed on the substrate to be processed.
A resist film 23 is coated and formed, and S for interlayer insulation is applied to a region of the photo resist film 23 covering the gap between the upper polycrystalline silicon electrodes 22'' using a normal photo process.
An etching window 24 of a desired length is formed across the end face of the iO2 film 17 with a desired width and exposes the second remaining polycrystalline silicon layer 22'' attached to the end face.・
Using the resist film 23 as a mask, plasma etching is performed using an etching gas mainly composed of CF4 to completely remove the second polycrystalline silicon residual layer 22'' existing within the etching window 24. .

そして該プラズマ・エツチングに於ては多結晶シリコン
のエツチング・レートがSiO2に比べて大幅に大きい
ので、エツチング用窓24内に表出する層間絶縁用Si
O2膜17及びフイールドSiO2膜11は殆んどエツ
チングされない。なお第2図fおよび第3図Cは上記本
発明の工程を行つて下層多結晶シリコン電極(ドレイン
電極)16″上に上層多結晶シリコン電極(ゲート電極
) 22″を形成した状態を示し、該状態に於て上層多
結晶シリコン電極22″間に被着している第2の多結晶
シリコン残留層22″″は前記フオト・レジスト膜のエ
ツチング窓に相当する幅で切除されているので、2〔本
〕の第2の多結晶シリコン電極(ゲート電極)22″の
短絡が防止される。本発明の方法の他の一実施例は上記
第2の多結晶シリコン残留層を除去する際に反応性スパ
ツタエツチングを用いる方法で、該実施例の方法は第4
図aに示すように薄いSiO2膜21で覆われた下層多
結晶シリコン電極(ドレイン電極)16″の端部が、層
間絶縁用SiO2膜17端面より突出した階段状を有し
、下層多結晶シリコン電極16″下部のアンダ・カツト
部19が深く形成されており、前記実施例の方法では該
アンダ・カツト部19内の第2の多結晶シリコン残留層
22″″が除去しきれない際に適用される。
In the plasma etching, since the etching rate of polycrystalline silicon is much higher than that of SiO2, the interlayer insulation Si exposed in the etching window 24 is
The O2 film 17 and the field SiO2 film 11 are hardly etched. Note that FIG. 2F and FIG. 3C show a state in which an upper layer polycrystalline silicon electrode (gate electrode) 22'' is formed on a lower layer polycrystalline silicon electrode (drain electrode) 16'' by performing the above-described process of the present invention, In this state, the second polycrystalline silicon residual layer 22'' that is deposited between the upper polycrystalline silicon electrodes 22'' is removed to a width corresponding to the etching window of the photoresist film. Short-circuiting of the two second polycrystalline silicon electrodes (gate electrodes) 22'' is prevented. Another embodiment of the method of the present invention is a method of using reactive sputter etching in removing the second polycrystalline silicon residual layer;
As shown in FIG. This method is applied when the undercut portion 19 at the bottom of the electrode 16'' is formed deeply and the second polycrystalline silicon residual layer 22'' in the undercut portion 19 cannot be removed by the method of the embodiment described above. be done.

(図に於て11はフイーノレドSiO2膜、12はチ
ヤネノレ・カツト領域、14はシリコン基板、20はゲ
ートSiO2膜、22は上層多結晶シリコン電極を示す
。)即本実施例に於ては第4図b及び第5図aに示すよ
うに、上記のような被処理基板上にフオト・レジスト膜
23を塗布形成し、該フオト・レジスト膜23をマスク
として、CCl4等のCl系のエツチング・ガスを用い
る反応性スパツタ・エツチング法により前記エツチング
窓24内に存在する薄いSiO2膜21.下層多結晶シ
リコン電極22″を前記アンダ・カツト部の第2の多結
晶シリコン残留層22″″と共にエツチング除去する。
従つて上記工程を完了した状態に於ては、第4図C及び
第5図bに示すように前記エツチングを行つた領域の層
間絶縁用SiO2膜17と下層多結晶シリコン電極16
″の端面25は段差のない平面状に形成される。以上説
明したように本発明の方法によれば、多結晶シリコン電
極の多層構造を形成する際に、下層多結晶シリコン電極
及び層間絶縁用SiO2膜により生ずる段差部及び下層
多結晶シリコン電極下部に生ずるアンダ・カツト部に残
留する上層多結晶シリコンの残留層を、所要の幅に切除
することができるので、上層多結晶シリコン電極の短絡
が完全に防止される。
(In the figure, 11 is a final SiO2 film, 12 is a channel cut region, 14 is a silicon substrate, 20 is a gate SiO2 film, and 22 is an upper layer polycrystalline silicon electrode.) As shown in FIG. 5B and FIG. The thin SiO2 film 21. present in the etching window 24 is etched by a reactive sputter etching method using . The lower polycrystalline silicon electrode 22'' is etched away together with the second remaining polycrystalline silicon layer 22'' in the undercut.
Therefore, in the state where the above process is completed, as shown in FIGS. 4C and 5B, the interlayer insulation SiO2 film 17 and the lower polycrystalline silicon electrode 16 in the etched region
The end face 25 of `` is formed in a planar shape with no steps.As explained above, according to the method of the present invention, when forming a multilayer structure of polycrystalline silicon electrodes, the lower polycrystalline silicon electrode and the interlayer insulation The residual layer of the upper polycrystalline silicon remaining in the step part caused by the SiO2 film and the undercut part created under the lower polycrystalline silicon electrode can be removed to the required width, thereby preventing short circuits in the upper polycrystalline silicon electrode. Completely prevented.

従つて等速呼び出し記憶装置(RAM)等の多結晶シリ
コン電極の多層構造を用いる半導体集積回路の製造歩留
まりを向上せしめることができる。
Therefore, it is possible to improve the manufacturing yield of semiconductor integrated circuits using a multilayer structure of polycrystalline silicon electrodes, such as constant-speed access memory devices (RAM).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来方法で形成した多結晶シリコン電極多層構
造を有する半導体装置の断面図a及びA一A″矢視断面
図b、第2図a乃至fは本発明の一実施例の工程断面図
、第3図a乃至Cは同実施例の工程上面図、第4図a乃
至Cは本発明の他の一実施例の工程断面図で第5図a及
びbは同実施例の工程上面図である。 図に於て、11はフイールドSiO2膜、12はチヤネ
ル・カツト領域、13は素子形成領域、14はシリコン
基板、]5及び2]は薄いSiO2膜、16は第1の多
結晶シリコン層、16″は多結晶シリコン下層電極(ド
レイン電極)、17は層間絶縁用SiO2膜、18及び
23はフオト・レジスト・パターン、]9はアンダ・カ
ツト音1S.20はゲートSiO2膜、22は第2の多
結晶シリコン層、22″は上層多結晶シリコン電極(ゲ
ート電極)、22″は第2の多結晶シリコン残留層、2
4はエツチング用窓、25は端面を示ず。
FIG. 1 is a cross-sectional view a of a semiconductor device having a multilayer structure of polycrystalline silicon electrodes formed by a conventional method, and a cross-sectional view b taken along arrows A-A'', and FIGS. 2 a to f are process cross-sections of an embodiment of the present invention. 3A to 3C are process top views of the same embodiment, FIGS. 4A to C are process sectional views of another embodiment of the present invention, and FIGS. 5A and 5B are process top views of the same embodiment. In the figure, 11 is a field SiO2 film, 12 is a channel cut region, 13 is an element formation region, 14 is a silicon substrate, ]5 and 2] are thin SiO2 films, and 16 is a first polycrystalline film. silicon layer, 16'' is a polycrystalline silicon lower layer electrode (drain electrode), 17 is an SiO2 film for interlayer insulation, 18 and 23 are photoresist patterns,] 9 is an undercut sound 1S. 20 is a gate SiO2 film, 22 is a second polycrystalline silicon layer, 22'' is an upper layer polycrystalline silicon electrode (gate electrode), 22'' is a second polycrystalline silicon residual layer, 2
4 is an etching window, and 25 does not show an end surface.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板面に設けられた絶縁膜上に、上面及び端
面に絶縁膜を有する第1の多結晶シリコン電極が形成さ
れてなる被処理基板上に第2の多結晶シリコン層を形成
し、次いで該第2の多結晶シリコン層を選択的にエッチ
ング除去して前記第1の多結晶シリコン電極と絶縁膜を
へだてて交差する複数条の第2の多結晶シリコン電極を
形成し、次いで該被処理基板上にフォト・レジスト膜を
形成し、次いで該フォトレジスト膜の前記第2の多結晶
シリコン電極間に、絶縁膜を有する第1の多結晶シリコ
ン電極端面の一部を含む領域を表出する窓を形成し、次
いで該フォト・レジスト膜をマスクとしてエッチングを
行い、前記窓内に表出する第1の多結晶シリコン電極端
面の絶縁膜に被着している第2の多結晶シリコン層を選
択的に除去する工程を有することを特徴とする半導体装
置の製造方法。
1. A second polycrystalline silicon layer is formed on a substrate to be processed, in which a first polycrystalline silicon electrode having an insulating film on the top surface and end surfaces is formed on an insulating film provided on the semiconductor substrate surface, and then selectively etching and removing the second polycrystalline silicon layer to form a plurality of second polycrystalline silicon electrodes crossing the first polycrystalline silicon electrode and the insulating film; forming a photoresist film on the substrate, and then exposing a region including a part of the end surface of the first polycrystalline silicon electrode having an insulating film between the second polycrystalline silicon electrodes of the photoresist film; A window is formed, and then etching is performed using the photoresist film as a mask to remove the second polycrystalline silicon layer adhering to the insulating film on the end surface of the first polycrystalline silicon electrode exposed within the window. A method for manufacturing a semiconductor device, comprising a step of selectively removing.
JP55173600A 1980-12-09 1980-12-09 Manufacturing method of semiconductor device Expired JPS5953709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55173600A JPS5953709B2 (en) 1980-12-09 1980-12-09 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55173600A JPS5953709B2 (en) 1980-12-09 1980-12-09 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5796564A JPS5796564A (en) 1982-06-15
JPS5953709B2 true JPS5953709B2 (en) 1984-12-26

Family

ID=15963601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55173600A Expired JPS5953709B2 (en) 1980-12-09 1980-12-09 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5953709B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106014U (en) * 1988-01-08 1989-07-17

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760855A (en) * 1980-09-30 1982-04-13 Nec Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760855A (en) * 1980-09-30 1982-04-13 Nec Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106014U (en) * 1988-01-08 1989-07-17

Also Published As

Publication number Publication date
JPS5796564A (en) 1982-06-15

Similar Documents

Publication Publication Date Title
JP2655336B2 (en) Method for selectively etching polysilicon
JP3252780B2 (en) Silicon layer etching method
JPH11330245A (en) Method for contact formation of semiconductor device
JP2741175B2 (en) Method for forming fine pattern of semiconductor device
JPH0313744B2 (en)
JP2708729B2 (en) Method for forming contact hole in semiconductor device
JPS5953709B2 (en) Manufacturing method of semiconductor device
JP3097338B2 (en) Method of forming contact hole
JP2888213B2 (en) Method for manufacturing semiconductor device
JPH03200330A (en) Manufacture of semiconductor device
JPS5953710B2 (en) Manufacturing method of semiconductor device
US6558999B2 (en) Method for forming a storage electrode on a semiconductor device
JPH07235594A (en) Manufacture of semiconductor device
JPH0483336A (en) Manufacture of semiconductor device
JPH0766178A (en) Fabrication of semiconductor device
JPS6254427A (en) Manufacture of semiconductor device
JP2699454B2 (en) Manufacturing method of memory device
JPH04123458A (en) Manufacture of semiconductor device
JPH07221110A (en) Interconnection structure of semiconductor device and manufacture thereof
JPS63107141A (en) Manufacture of semiconductor device
JPH028451B2 (en)
JPS6215822A (en) Pattern forming method
JPS6358373B2 (en)
JPH04213860A (en) Semiconductor device
JPS6057940A (en) Manufacture of semiconductor device