JPS59141232A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59141232A
JPS59141232A JP1585183A JP1585183A JPS59141232A JP S59141232 A JPS59141232 A JP S59141232A JP 1585183 A JP1585183 A JP 1585183A JP 1585183 A JP1585183 A JP 1585183A JP S59141232 A JPS59141232 A JP S59141232A
Authority
JP
Japan
Prior art keywords
polycrystalline
layer
doped
layers
etched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1585183A
Other languages
Japanese (ja)
Inventor
Takashi Hosaka
俊 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP1585183A priority Critical patent/JPS59141232A/en
Publication of JPS59141232A publication Critical patent/JPS59141232A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • H01L21/32137Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To improve the covering property of an interlayer insulating film, an electrode and a wiring material to cover the upside of multilayer polycrystalline silicon layers by a method wherein the multilayer polycrystalline silicon layer is formed by laminating in order with polycrystalline silicon layers having higher impurity concentration than the lower layer thereof, the layer thereof is etched to the desired pattern, and wall parts on the level different sides are etched to obtain a construction having gentler slopes in order from the lower layer. CONSTITUTION:Polycrystalline Si layers are formed on a silicon oxide film 2 on an Si substrate 1 according to the chemical vapor phase growth method, for example, and the first layer is formed of the non-doped polycrystalline Si layer 10 doped with no impurity, then the phosphorus doped polycrystalline Si layer 11 doped with phosphorus of impurities is formed successively to laminate the polycrystalline Si layers having the desired thickness. Then, a mask for etching of the polycrystalline Si layers of two kinds having different impurity concentrations in the desired pattern is formed according to a photo resist 12, for example. When the semiconductor element thereof is etched by dry etching gas containing CF4 gas, for example, the multilayer having the two- stage inclinations, in which the inclination theta2 of the P doped polycrystalline Si layer 11 is smaller than the inclination theta1 of the non-doped polycrystalline Si layer 10, is obtained.

Description

【発明の詳細な説明】 本発明は、半導体装置の製造方法、特に多結晶シIJコ
ン膜のエツチングされた側壁部の形状を改良し、その上
を被う層間絶縁膜と電極・配線材料の被覆性を良好にす
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a method for manufacturing a semiconductor device, in particular, to improve the shape of the etched sidewall of a polycrystalline silicon IJ film, and to improve the shape of the interlayer insulating film and electrode/wiring material covering it. This improves coverage.

第1図は、従来の半導体累子の一部を断面模式図で示し
たものである。3はゲート電極または配線材料として用
いられている多結晶シリコy (s t)である。この
上に、上部配線と絶縁を持たせるために眉間絶縁膜4(
たとえば、OVD、SiO。
FIG. 1 is a schematic cross-sectional view of a part of a conventional semiconductor transponder. 3 is polycrystalline silicon y (st) used as a gate electrode or wiring material. On top of this, a glabella insulating film 4 (
For example, OVD, SiO.

で形成する)を被着させる。さらに、その上に、電極・
配線材料であるアルミニウム(An)5を形成する。こ
の時、多結晶81の側壁部6の傾斜θが45’以上あり
、しかも側壁肩部7も同様に険しい為、層間絶縁膜4の
被覆性が悪くなり、その上を横切るa[配線5が、第1
図に示すように段差部8で薄くなり、時には断線する事
もある。
(formed with). Furthermore, on top of that, electrodes
Aluminum (An) 5, which is a wiring material, is formed. At this time, since the slope θ of the side wall portion 6 of the polycrystal 81 is 45' or more, and the side wall shoulder portion 7 is also steep, the coverage of the interlayer insulating film 4 is poor, and the , 1st
As shown in the figure, the wire becomes thinner at the stepped portion 8, and sometimes breaks.

本発明は、多結晶s1のエツチング速度が多結晶臼i中
の不純物濃度によって異なるという性質を応用して、多
結晶S1のエツチング形状を改良し、上記の問題点を解
決する方法を提供するものである。
The present invention provides a method for solving the above problems by improving the etching shape of polycrystalline S1 by applying the property that the etching rate of polycrystalline s1 varies depending on the impurity concentration in polycrystalline die i. It is.

以下、図面に基づいて本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below based on the drawings.

第2図は、本発明で製造される多結晶臼i中のP濃度と
多結晶S1のエツチング速度の関係を示したものである
。エツチング方法として、OF4ガスによるドライエツ
チングの場合を示している。
FIG. 2 shows the relationship between the P concentration in the polycrystalline die i produced according to the present invention and the etching rate of the polycrystalline S1. As the etching method, dry etching using OF4 gas is shown.

第2図におけるように、多結晶S1のP濃度を増加させ
るとともにエツチング速度も増加する。このエツチング
%性を応用して、多結晶S1のエツチング形状をなめら
かにする方法を、以下に説明する。
As shown in FIG. 2, as the P concentration of polycrystalline S1 increases, the etching rate also increases. A method of smoothing the etched shape of polycrystalline S1 by applying this etching percentage will be described below.

第5図は、本発明の製造方法の第1の工程で、81基板
上のシリコン酸化膜上に多結晶日1を積層した構造を示
す。多結晶S1は、たとえば化学的気相成長法で形成し
、第1層目を不純物全ドープしない、いわゆるノンドー
プ多結晶5110で形成し、ついで連続的に、不純物元
素であるリンCP:lドープした、いわゆるリンドープ
多結晶5111を形成し、所望の厚みを有した多結晶8
1を積層する。
FIG. 5 shows a structure in which polycrystalline silicon 1 is laminated on a silicon oxide film on a substrate 81 in the first step of the manufacturing method of the present invention. The polycrystal S1 is formed by, for example, a chemical vapor deposition method, and the first layer is formed of so-called non-doped polycrystal 5110, which is not completely doped with impurities, and then continuously doped with phosphorus CP:l, which is an impurity element. , a so-called phosphorus-doped polycrystal 5111 is formed, and a polycrystalline 8 having a desired thickness is formed.
Layer 1.

次に、不純物濃度の異なった2種類の多結晶Si勿所望
のパターンにエツチングするためのマスクを、たとえば
フォトレジスト12で形成する。
Next, a mask for etching two types of polycrystalline Si having different impurity concentrations into a desired pattern is formed using, for example, a photoresist 12.

第4図(本4発明の製造方法の第2の工程)に示すよう
に、この半導体素子をたとえば、OF4 ガスを含むド
ライエツチングガスでエツチングすると、不純物である
Pを含むPドープ多結晶S1層11は、ノンドープ多結
晶S1よりもエツチング速度が速いため、Pドープ多結
晶S1の横方向エツチングが進む。多結晶S1のエツチ
ングが終了した後の形状は、Pドープ多結晶5111の
傾斜θ2がノンドープ多結晶S1の傾斜θ1よりも小さ
い2段傾斜のものとなる。第1図の多結晶S16と比較
すると、θ2θ1〉θ3であり、多結晶S1の上部がゆ
るやかな段差となっている。
As shown in FIG. 4 (second step of the manufacturing method of the fourth invention), when this semiconductor element is etched with a dry etching gas containing OF4 gas, a P-doped polycrystalline S1 layer containing P as an impurity is etched. Since the etching rate of No. 11 is faster than that of the non-doped polycrystalline S1, the lateral etching of the P-doped polycrystalline S1 progresses. After the etching of the polycrystal S1 is completed, the shape becomes a two-step slope in which the slope θ2 of the P-doped polycrystal 5111 is smaller than the slope θ1 of the non-doped polycrystal S1. When compared with polycrystalline S16 in FIG. 1, θ2θ1>θ3, and the upper part of polycrystalline S1 has a gentle step.

第5図(本発明の製造方法の第3の工程)は、第4図の
2段傾斜を有する多結晶S1の上に、層間絶縁膜13を
被着させるとθl〉θ2であるため、層間絶縁膜がなだ
らかに被覆する様子を示している。従って、配線材料で
あるAI!、14(i7被着しても段差部15で断線す
る事もなくなり、信頼性の高い半導体素子を得る事がで
きる。
FIG. 5 (third step of the manufacturing method of the present invention) shows that when the interlayer insulating film 13 is deposited on the polycrystalline S1 having the two-step slope shown in FIG. This shows how the insulating film is gently covered. Therefore, the wiring material AI! , 14 (i7), there is no disconnection at the stepped portion 15, and a highly reliable semiconductor element can be obtained.

以上の具体例は、不純物濃度の異なる2種類の多結晶S
1の場合であるが、多層多結晶構造すなわち、第11i
から順次不純物濃度の濃くなるような層を多層に積層し
た構造にしても、良好な段差を有スるエツチング形状と
なる。また、不純物元素はリン(P)だけでなく、ヒ素
(As)t アンチモン(sb)および臭素(B)e含
む多結晶s1でも、同様な効果が得られる。第2図には
、OF4プラズマによる多結晶S1のエツチング速度を
示したが、同様な特性は、弗酸・硝酸系エツチング液(
HF@HNOs系)の場合にも得られる為、このHF・
HNO,系ウェットエツチング液で多層多結晶s1をエ
ツチングすることにより、良好な段差形状を形成する事
が可能である。
The above specific example shows two types of polycrystalline S with different impurity concentrations.
1, the multilayer polycrystalline structure, i.e., the 11i-th
Even if a multi-layered structure is formed in which layers with progressively higher impurity concentrations are formed, an etched shape with good steps can be obtained. Further, the same effect can be obtained by using not only phosphorus (P) as the impurity element but also polycrystalline s1 containing arsenic (As), antimony (sb), and bromine (B)e. Figure 2 shows the etching rate of polycrystalline S1 using OF4 plasma, but similar characteristics were obtained using a hydrofluoric acid/nitric acid based etching solution (
HF@HNOs system), so this HF・
By etching the multilayer polycrystalline s1 with an HNO-based wet etching solution, it is possible to form a good step shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来技術による方法で多結晶S1を形成した
場合の半導体素子の断面構造図。 第2図は、本発明で製造される多結晶5itl−エツチ
ングした場合の多結晶Si中のリン(P)濃度とエツチ
ング速度との関係を示した図。  5− 第3図は、本発明の製造方法の第1工程を示し、P@度
の異なる多結晶S1を二層積層した断面図。 第4図は、本発明の製造方法の第2工程を示し、レジス
トをマスクにして多結晶Sif:OF4 プラズマでド
ライエツチングした時の模式断面図。 第5図は、本発明の製造方法の第6の工程を示し、パタ
ーンングされた多結晶81上に眉間絶縁膜とhnを積層
した場合の断面図である。 1・・・81基板     2・・・シリコン酸化膜5
・・・多結晶Si     4・・・層間絶縁膜5・・
・hn 6・・・多結晶S1の側壁部 7・・・多結晶日1の側壁肩部 8・・・Aλ段差部 9・・・エツチング速度曲線 10・・・リンドープ多結晶51 12・・・フォトレジスト 13・・・層間絶縁膜14
・・・Aλ配線    15・・・hit配線段差部 
6− 第1図 第2図 物鯖晶Si中のpH裏度(ct、都/滅す第3図 第4図 第5図 、−7−%\ 15−)J                ”y  
ノAテ/    〜 l  ら 7/  \\ −″゛)
FIG. 1 is a cross-sectional structural diagram of a semiconductor device in which polycrystalline S1 is formed by a method according to the prior art. FIG. 2 is a diagram showing the relationship between the phosphorus (P) concentration in polycrystalline Si and the etching rate when polycrystalline Si produced by the present invention is etched at 5 itl. 5- FIG. 3 is a sectional view showing the first step of the manufacturing method of the present invention, in which two layers of polycrystalline S1 having different P@ degrees are laminated. FIG. 4 is a schematic cross-sectional view showing the second step of the manufacturing method of the present invention, when dry etching is performed using polycrystalline Sif:OF4 plasma using a resist as a mask. FIG. 5 shows the sixth step of the manufacturing method of the present invention, and is a cross-sectional view when a glabella insulating film and hn are laminated on a patterned polycrystalline 81. 1...81 substrate 2...Silicon oxide film 5
...Polycrystalline Si 4...Interlayer insulating film 5...
・hn 6... Side wall portion of polycrystalline S1 7... Sidewall shoulder portion of polycrystalline day 1 8... Aλ step portion 9... Etching rate curve 10... Phosphorus-doped polycrystalline 51 12... Photoresist 13...Interlayer insulating film 14
...Aλ wiring 15...hit wiring step part
6- Fig. 1 Fig. 2 pH value in crystalline Si (ct, capital/extinction Fig. 3 Fig. 4 Fig. 5, -7-%\15-)J ”y
ノ A te / ~ l et al 7 / \\ -″゛)

Claims (1)

【特許請求の範囲】[Claims] 半導体基1tiは絶縁体薄膜の上に不純物濃度の低い多
結晶シリコンから、順次その下層よりも高い不純物濃度
をもつ多結晶シリコンを積層した少なくとも2層以上か
ら成る多層多結晶シリコンを形成する工程と、それらの
多層多結晶シリコン膜ヲ所望のパターンにエツチングす
る事により段差側壁部を下層より順次なだらかな傾斜を
有する構造にエツチングする工程とからなる半導体装置
の製造方法。
The semiconductor substrate 1ti is formed by forming multilayer polycrystalline silicon consisting of at least two layers of polycrystalline silicon with a low impurity concentration and then polycrystalline silicon with a higher impurity concentration than the layer below it on an insulating thin film. A method for manufacturing a semiconductor device comprising the steps of: etching the multilayer polycrystalline silicon film into a desired pattern, thereby etching the stepped sidewall portions into a structure having a gradual slope from the bottom layer.
JP1585183A 1983-02-02 1983-02-02 Manufacture of semiconductor device Pending JPS59141232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1585183A JPS59141232A (en) 1983-02-02 1983-02-02 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1585183A JPS59141232A (en) 1983-02-02 1983-02-02 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59141232A true JPS59141232A (en) 1984-08-13

Family

ID=11900315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1585183A Pending JPS59141232A (en) 1983-02-02 1983-02-02 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59141232A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4718973A (en) * 1986-01-28 1988-01-12 Northern Telecom Limited Process for plasma etching polysilicon to produce rounded profile islands
US5068707A (en) * 1990-05-02 1991-11-26 Nec Electronics Inc. DRAM memory cell with tapered capacitor electrodes
US5225376A (en) * 1990-05-02 1993-07-06 Nec Electronics, Inc. Polysilicon taper process using spin-on glass
US5258332A (en) * 1987-08-28 1993-11-02 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor devices including rounding of corner portions by etching

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118673A (en) * 1974-03-01 1975-09-17
JPS5421289A (en) * 1977-07-19 1979-02-17 Mitsubishi Electric Corp Manufacture for semiconductor device
JPS5923522A (en) * 1982-07-29 1984-02-07 Matsushita Electronics Corp Dry etching method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118673A (en) * 1974-03-01 1975-09-17
JPS5421289A (en) * 1977-07-19 1979-02-17 Mitsubishi Electric Corp Manufacture for semiconductor device
JPS5923522A (en) * 1982-07-29 1984-02-07 Matsushita Electronics Corp Dry etching method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4718973A (en) * 1986-01-28 1988-01-12 Northern Telecom Limited Process for plasma etching polysilicon to produce rounded profile islands
US5258332A (en) * 1987-08-28 1993-11-02 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor devices including rounding of corner portions by etching
US5068707A (en) * 1990-05-02 1991-11-26 Nec Electronics Inc. DRAM memory cell with tapered capacitor electrodes
US5225376A (en) * 1990-05-02 1993-07-06 Nec Electronics, Inc. Polysilicon taper process using spin-on glass
US5354716A (en) * 1990-05-02 1994-10-11 Nec Electronics, Inc. Method for forming a DRAM memory cell with tapered capacitor electrodes

Similar Documents

Publication Publication Date Title
JPS59141232A (en) Manufacture of semiconductor device
US6429072B1 (en) Method of forming a floating gate memory cell structure
JPH06216318A (en) Capacitor electrode preparation of semiconductor memory cell
JPH0198243A (en) Manufacture of semiconductor device
JPS63142832A (en) Manufacture of semiconductor device
JPH0228923A (en) Manufacture of semiconductor device
WO2023092811A1 (en) Double patterning method and semiconductor structure
JPH0369162A (en) Manufacture of semiconductor device
JP2699454B2 (en) Manufacturing method of memory device
JPH03125469A (en) Structure for mim capacitor
JPH01239941A (en) Semiconductor device
JPS5953709B2 (en) Manufacturing method of semiconductor device
JPH01272121A (en) Through-hole structure and manufacture thereof
JP2527244B2 (en) Method for manufacturing semiconductor device
JPS5953710B2 (en) Manufacturing method of semiconductor device
JPH04267370A (en) Fabrication of semiconductor device
JPH09260608A (en) Manufacture of semiconductor device
JPS5864032A (en) Manufacture of semiconductor device
JPS61245551A (en) Semiconductor integrated circuit
JPH0364970A (en) Manufacture of semiconductor device
JPS5910226A (en) Fabrication of semiconductor device
JPS62257761A (en) Manufacture of semiconductor integrated circuit
JPS5892240A (en) Manufacture of semiconductor device
JPS61188948A (en) Manufacture of semiconductor device
JPS61113258A (en) Manufacture of semiconductor device