JPH03125469A - Structure for mim capacitor - Google Patents

Structure for mim capacitor

Info

Publication number
JPH03125469A
JPH03125469A JP1263277A JP26327789A JPH03125469A JP H03125469 A JPH03125469 A JP H03125469A JP 1263277 A JP1263277 A JP 1263277A JP 26327789 A JP26327789 A JP 26327789A JP H03125469 A JPH03125469 A JP H03125469A
Authority
JP
Japan
Prior art keywords
layer electrode
electrode
upper layer
mim
mim capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1263277A
Other languages
Japanese (ja)
Inventor
Hiroshi Noguchi
博司 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP1263277A priority Critical patent/JPH03125469A/en
Publication of JPH03125469A publication Critical patent/JPH03125469A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To minimize the level difference in a part of an upper layer electrode and a low layer electrode as compared with the thickness of an MIM capacitor and reduce the rate of generation of failure by laying out an MIM capacitor, where an insulation layer is interposed between the upper layer electrode and the lower layer electrode, so that the capacitor may be partly embedded into a recessed part. CONSTITUTION:As for the structure of an MIM capacitoralpha, a recessed part 3 is cut in the surface 2 of a substrate 1 made of a III-V compound, such as GaAs. The MIM capacitoralpha, which comprises a lower layer electrode 4, an insulation layer 5, and an upper layer electrode 6, is laid out so that the capacitoralpha may be partly embedded into the recessed part 3. The thickness of the MIM capacitor is almost half embedded into the recessed part 3. The different level part of the upper layer electrode 6 and the different level part of the lower layer electrode are about one half of the thickness of the MIM capacitoralpha, which prevents the generation of disconnection at the level different parts during the formation of the upper layer electrode 6 and the lower layer electrode 4, and hence reduced half the rate of generation of disconnection.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、絶縁層を介して一対の電極をオーバレイさせ
たMIM (金属−絶縁体−金属)キャパシタの構造に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to the structure of an MIM (metal-insulator-metal) capacitor in which a pair of electrodes are overlaid via an insulating layer.

[背景技術] 第3図(a) (b) (c) (d)には、従来のM
IMキャパシタの構造を製造順序に沿って示しである。
[Background Art] FIGS. 3(a), (b), (c), and (d) show the conventional M
The structure of an IM capacitor is shown along the manufacturing order.

すなわち、表面52が平坦な第3図(a)のような半導
体基板51の上に、下層電極53を形成しく第3図(b
) ) 、さらに、その下層電極53の上に絶縁層54
を積層しく第3図(c) ) 、ついで第3図(d)に
示すように下層電極53と接触しないようにして絶縁層
54の上面から前記基板表面52にかけて上層電極55
を形成し、絶縁層54を介して上層電極55と下層電極
53を対向させてMIMキャパシタβを作成していた。
That is, the lower electrode 53 is formed on the semiconductor substrate 51 as shown in FIG. 3(a) with a flat surface 52.
)), further, an insulating layer 54 is formed on the lower electrode 53.
3(c)), and then, as shown in FIG. 3(d), the upper layer electrode 55 is layered from the upper surface of the insulating layer 54 to the substrate surface 52 without contacting the lower layer electrode 53.
was formed, and the upper layer electrode 55 and the lower layer electrode 53 were made to face each other with the insulating layer 54 interposed therebetween to create the MIM capacitor β.

[発明が解決しようとする課題] 従来のMIMキャパシタβは、第3図(d)に示すよう
な構造をしていたので、上層電極55には下層電極53
プラス絶縁層54の厚み尤の大きな段差が生じ、この段
差部分子で上層電極55に断線が発生し、上層電極55
の形成不良により歩留りを低下させていた。
[Problems to be Solved by the Invention] Since the conventional MIM capacitor β had a structure as shown in FIG.
A large step in the thickness of the positive insulating layer 54 occurs, and a disconnection occurs in the upper layer electrode 55 at the molecule of this step, and the upper layer electrode 55
The yield was reduced due to poor formation.

そして、本発明は叙上の従来例の欠点に鑑みてなされた
ものであり、上層電極と下層電極で絶縁層を挟んだ構造
を持つMIMキャパシタにおいて、上層電極の断線を防
止することを目的としてなされたものである。
The present invention has been made in view of the drawbacks of the conventional examples described above, and has an object of preventing disconnection of the upper layer electrode in an MIM capacitor having a structure in which an insulating layer is sandwiched between an upper layer electrode and a lower layer electrode. It has been done.

[課題を解決するための手段] このため、本発明のMIMキャパシタの構造は、半導体
基板の表面を掘り込んでリセス部を形成し、このリセス
部の底面から前記基板表面にかけて下層電極を形成し、
リセス部内において下層電極の上に絶縁層を積層して絶
縁層の表面を基板表面よりも突出させ、この絶縁層表面
から前記基板表面にかけて上層電極を形成したことを特
徴としている。
[Means for Solving the Problems] Therefore, in the structure of the MIM capacitor of the present invention, a recess is formed by digging into the surface of a semiconductor substrate, and a lower electrode is formed from the bottom of the recess to the surface of the substrate. ,
The present invention is characterized in that an insulating layer is laminated on the lower electrode in the recessed portion so that the surface of the insulating layer protrudes beyond the substrate surface, and the upper electrode is formed from the surface of the insulating layer to the surface of the substrate.

[作用] 本発明にあっては、基板の表面にリセス部を掘り込み、
このリセス部内に一部を埋め込むようにしてキャパシタ
構造を形成したので、リセス部の深さ分だけ絶縁層の表
面と基板表面との間の段差を小さくすることができ、こ
のため絶縁層表面と基板表面との間に形成された上層電
極の屈曲部分が緩やかな形状となり、この部分における
上層電極の断線を防止することができる。
[Function] In the present invention, a recessed portion is dug into the surface of the substrate,
Since the capacitor structure is formed so as to be partially buried within this recess, the step between the surface of the insulating layer and the substrate surface can be reduced by the depth of the recess. The bent portion of the upper layer electrode formed between the upper layer electrode and the substrate surface has a gentle shape, and disconnection of the upper layer electrode at this portion can be prevented.

一方、リセス部を掘り込んだことによって下層電極には
リセス部の深さ分に相当する段差部が生じるが、この下
層電極の段差は従来の上層電極の段差の大きさに比べて
小さなものであり、従来の上層電極に比較すると、その
断線の発生率は極めて小さなものである。
On the other hand, by digging the recess, a step corresponding to the depth of the recess is created in the lower electrode, but this step in the lower electrode is smaller than the step in the conventional upper electrode. Compared to conventional upper layer electrodes, the incidence of disconnection is extremely small.

このため、上層電極と下層電極の断線の発生を合わせて
も、従来の上層電極の断線の発生率よりも断線発生率を
低下させることができる。
Therefore, even if the occurrence of wire breaks in the upper layer electrode and the lower layer electrode are combined, the wire breakage occurrence rate can be lowered than the incidence of wire breaks in the conventional upper layer electrode.

[実施例] 以下、本発明を添付図に基づいて詳述する。[Example] Hereinafter, the present invention will be explained in detail based on the accompanying drawings.

第1図(a) (b) (c) (d) (e)には、
本発明のMIMキャパシタαの構造をその製造順序に沿
って概略的に示しである。本発明のMIMキャパシタα
の構造は、第1図(e)に示すように、GaAsのよう
な■−■族系化合物半導体の基板1の表面2にリセス部
3を掘り込み、下層電極4と絶縁層5と上層電極6とか
らなるMIMキャパシタαの一部をリセス部3内に埋め
込むように配置したものであり、図示例ではMIMキャ
パシタαの厚みのほぼ半分をリセス部3内に埋め込んで
ある。
In Figure 1 (a) (b) (c) (d) (e),
1 is a schematic diagram illustrating the structure of an MIM capacitor α according to the present invention in accordance with its manufacturing order. MIM capacitor α of the present invention
As shown in FIG. 1(e), a recess 3 is dug into the surface 2 of a substrate 1 of a ■-■ group compound semiconductor such as GaAs, and a lower electrode 4, an insulating layer 5, and an upper electrode are formed. A part of the MIM capacitor α consisting of .

上記MIMキャパシタαの一実施例の製造方法 − を簡単に説明すると、まず第1図(a)に示すような平
滑に仕上げられた基板1の表面2に、エツチングを施す
ことによってリセス部3を形成しく第1図(b) ) 
、このリセス部3の底面から基板表面2にかけて下層電
極4を形成しく第1図(C))、リセス部3内の下層電
極4を基板表面2に引き出す。ついで、リセス部S内に
おいて、下層電極4の上に薄い絶縁層5を形成しく第1
図(d) ) 、さらに絶縁層5の上面から基板表面2
にかけて上層電極6を形成し、絶縁層5の上面の上層電
極を基板表面2に引き出す(第1図(e))。ここで、
第1図(b)の工程において形成されたリセス部3の深
さは、上層及び下層電極4,6と絶縁層5とからなるM
IMキャパシタαの厚みのほぼ172程度としてあり、
このためMIMキャパシタαはその172程度がリセス
部3内に埋め込まれている。したがって、上層電極8の
段差部及び下層電極4の段差部は、いずれもMIMキャ
パシタαの厚みのほぼ172程度の段差となっており、
上層電極6及び下層電極4の形成時に段差部で断線が生
じにく − く、断線発生率を半減させることができた。
To briefly explain the manufacturing method of one embodiment of the above-mentioned MIM capacitor α, first, the recessed portion 3 is formed by etching the surface 2 of the substrate 1, which has a smooth finish as shown in FIG. 1(a). Figure 1 (b))
A lower electrode 4 is formed from the bottom of the recess 3 to the substrate surface 2 (FIG. 1C), and the lower electrode 4 inside the recess 3 is drawn out to the substrate surface 2. Next, a thin insulating layer 5 is formed on the lower electrode 4 in the recess S.
(d)), and further from the top surface of the insulating layer 5 to the substrate surface 2.
Then, the upper layer electrode 6 is formed, and the upper layer electrode on the upper surface of the insulating layer 5 is drawn out onto the substrate surface 2 (FIG. 1(e)). here,
The depth of the recessed part 3 formed in the step of FIG.
The thickness of the IM capacitor α is approximately 172 mm,
For this reason, about 172 of the MIM capacitor α is embedded in the recess portion 3. Therefore, the step portion of the upper layer electrode 8 and the step portion of the lower layer electrode 4 are both approximately 172 times the thickness of the MIM capacitor α.
When forming the upper layer electrode 6 and the lower layer electrode 4, wire breakage was less likely to occur at the step portion, and the occurrence rate of wire breakage could be halved.

第2図(a)〜(h)は、上記MIMキャパシタαの製
造工程を詳細に示したものである。すなわち、基板1の
表面2をリセス部形成領域と対応する窓7を開口された
レジストマスク8で覆い(第2図(a) ) 、このレ
ジストマスク8の窓7を通して基板表面2をエツチング
し、リセス部3を形成する(第2図(b))。この後、
上記レジストマスク8を剥離させ、下層電極4の形成領
域に対応する窓9を開口されたレジストマスク10を再
び基板表面2に形成し、このレジストマスク10の上か
ら電極金属11を蒸着させ、レジストマスク1oの窓9
を通してリセス部3の底面から基板表面2にかけて下層
電極4を形成する(第2図(C))。この後、レジスト
マスク10の上に蒸着した電極金属11は、レジストマ
スク10と共に剥離除去される。次に、この基板1の全
体にP−CVD法によりSiNxの絶縁被膜12を形成
する(第2図(d))。
FIGS. 2(a) to 2(h) show details of the manufacturing process of the MIM capacitor α. That is, the surface 2 of the substrate 1 is covered with a resist mask 8 in which a window 7 corresponding to the recess formation region is opened (FIG. 2(a)), and the substrate surface 2 is etched through the window 7 of this resist mask 8. A recessed portion 3 is formed (FIG. 2(b)). After this,
The resist mask 8 is peeled off, a resist mask 10 with a window 9 corresponding to the region where the lower electrode 4 is formed is again formed on the substrate surface 2, an electrode metal 11 is deposited on the resist mask 10, and the resist window 9 of mask 1o
A lower electrode 4 is formed through the substrate from the bottom surface of the recess 3 to the substrate surface 2 (FIG. 2(C)). Thereafter, the electrode metal 11 deposited on the resist mask 10 is peeled off together with the resist mask 10. Next, an insulating film 12 of SiNx is formed over the entire substrate 1 by the P-CVD method (FIG. 2(d)).

この後、絶縁層5の形成領域に対応させて前記絶縁被膜
12の上にレジストマスク13を形成し(第2図(e)
 ) 、このレジストマスク13から露出した絶縁被膜
12の不要部分をエツチングにより除去し、その後レジ
ストマスク13を剥離する(第2図(f))。さらに、
上層電極6の形成領域に窓14を開けられたレジストマ
スク15により基板表面2を覆い、その上から電極金属
16を蒸着させ、レジストマスク15の窓14を通して
絶縁層5の表面から基板表面2にかけて上層電極6を形
成する(第2図(g))。この後、レジストマスク15
の上に蒸着した電極金属16は、レジストマスク15と
共に剥離除去される。こうして、第2図(h)に示すよ
うな構造のMIMキャパシタαが制作される。
Thereafter, a resist mask 13 is formed on the insulating film 12 corresponding to the formation area of the insulating layer 5 (FIG. 2(e)).
), the unnecessary portions of the insulating film 12 exposed from the resist mask 13 are removed by etching, and then the resist mask 13 is peeled off (FIG. 2(f)). moreover,
The substrate surface 2 is covered with a resist mask 15 in which a window 14 is opened in the formation area of the upper layer electrode 6, and the electrode metal 16 is vapor-deposited from above, from the surface of the insulating layer 5 to the substrate surface 2 through the window 14 of the resist mask 15. An upper layer electrode 6 is formed (FIG. 2(g)). After this, resist mask 15
The electrode metal 16 deposited on the resist mask 15 is peeled off and removed together with the resist mask 15. In this way, an MIM capacitor α having a structure as shown in FIG. 2(h) is manufactured.

[発明の効果] 本発明によれば、上層及び下層電極で絶縁層を挟んだM
IMキャパシタの一部をリセス部内に埋め込むように配
置したので、上層電極及び下層電極に生じる段差部の段
差の大きさをMIMキャパシタの厚みに較べて小さくす
ることができる。このため、上層及び下層電極の屈曲形
状が緩やかとなり、各々の段差部における電極の断線を
従来に比較して半減させることができた。このため不良
品の発生率を低下させ、製品の歩留りを向上させること
ができた。
[Effects of the Invention] According to the present invention, the M
Since a part of the IM capacitor is disposed so as to be buried in the recessed portion, the size of the step difference between the upper layer electrode and the lower layer electrode can be made smaller than the thickness of the MIM capacitor. Therefore, the bending shapes of the upper and lower layer electrodes become gentler, and the number of electrode breaks at each stepped portion can be reduced by half compared to the conventional method. This made it possible to reduce the incidence of defective products and improve product yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) (b) (c) (d) (e)は本発
明の一実施例を製造順序に沿って示す断面図、第2図(
a) (b) (c)(d) (e) (f) (g)
 (h)は同上の製造方法を詳細に示した断面図、第3
図(a) (b) (c) (d)は従来例を製造順序
に沿って示した断面図である。 1・・・半導体基板 2・・・半導体基板の表面 3・・・リセス部 4・・・下層電極 5・・・絶縁層 6・・・上層電極 H囚CI′)寸旧0
Figures 1 (a), (b), (c), (d) and (e) are cross-sectional views showing one embodiment of the present invention along the manufacturing order, and Figure 2 (
a) (b) (c) (d) (e) (f) (g)
(h) is a sectional view showing the same manufacturing method in detail;
Figures (a), (b), (c), and (d) are cross-sectional views showing a conventional example along the manufacturing order. 1...Semiconductor substrate 2...Semiconductor substrate surface 3...Recess portion 4...Lower layer electrode 5...Insulating layer 6...Upper layer electrode H CI') Dimensions 0

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板の表面を掘り込んでリセス部を形成し
、このリセス部の底面から前記基板表面にかけて下層電
極を形成し、リセス部内において下層電極の上に絶縁層
を積層して絶縁層の表面を基板表面よりも突出させ、こ
の絶縁層表面から前記基板表面にかけて上層電極を形成
したことを特徴とするMIMキャパシタの構造。
(1) A recess is formed by digging into the surface of the semiconductor substrate, a lower electrode is formed from the bottom of the recess to the surface of the substrate, and an insulating layer is laminated on the lower electrode in the recess. A structure of an MIM capacitor, characterized in that a surface thereof is made to protrude from a surface of a substrate, and an upper layer electrode is formed from the surface of this insulating layer to the surface of the substrate.
JP1263277A 1989-10-09 1989-10-09 Structure for mim capacitor Pending JPH03125469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1263277A JPH03125469A (en) 1989-10-09 1989-10-09 Structure for mim capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1263277A JPH03125469A (en) 1989-10-09 1989-10-09 Structure for mim capacitor

Publications (1)

Publication Number Publication Date
JPH03125469A true JPH03125469A (en) 1991-05-28

Family

ID=17387229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1263277A Pending JPH03125469A (en) 1989-10-09 1989-10-09 Structure for mim capacitor

Country Status (1)

Country Link
JP (1) JPH03125469A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120732A (en) * 2012-12-19 2014-06-30 Fujitsu Ltd Electronic apparatus and method of manufacturing the same
JP2015122362A (en) * 2013-12-20 2015-07-02 独立行政法人国立高等専門学校機構 Apparatus and method for manufacturing electronic circuit element
US9627478B1 (en) 2015-12-10 2017-04-18 International Business Machines Corporation Integrated vertical nanowire memory

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014120732A (en) * 2012-12-19 2014-06-30 Fujitsu Ltd Electronic apparatus and method of manufacturing the same
JP2015122362A (en) * 2013-12-20 2015-07-02 独立行政法人国立高等専門学校機構 Apparatus and method for manufacturing electronic circuit element
US9627478B1 (en) 2015-12-10 2017-04-18 International Business Machines Corporation Integrated vertical nanowire memory
US10050123B2 (en) 2015-12-10 2018-08-14 International Business Machines Corporation Integrated vertical nanowire memory
US10224415B2 (en) 2015-12-10 2019-03-05 International Business Machines Corporation Integrated vertical nanowire memory

Similar Documents

Publication Publication Date Title
KR100355239B1 (en) Semiconductor memory device having cylinder type capacitor and fabrication method thereof
JPH03125469A (en) Structure for mim capacitor
JP2501541B2 (en) Method for manufacturing charge storage electrode
JPS6281075A (en) Manufacture of josephson integrated circuit
JPH0237747A (en) Manufacture of semiconductor device
JPS613431A (en) Semiconductor device with multilayer interconnection and manufacture thereof
JPS62155537A (en) Manufacture of semiconductor device
JPS622654A (en) Semiconductor device and manufacture thereof
JP3047422B2 (en) Gate electrode formation method
JPS63161645A (en) Manufacture of semiconductor device
JPS62118539A (en) Formation of multilayer interconnection
JPS61120469A (en) Manufacture of electrode wiring
JPS63293948A (en) Forming method for interlayer insulating film
JPS6171664A (en) Manufacture of semiconductor device
JPH02105529A (en) Manufacture of semiconductor device
JPS6185841A (en) Manufacture of semiconductor device
JPH01273333A (en) Manufacture of semiconductor device
JPS62172773A (en) Manufacture of tunnel type josephson element
JPH0453130A (en) Semiconductor device and manufacture thereof
JPH0273651A (en) Semiconductor device
JPS58127345A (en) Preparation of semiconductor device
JPS6249735B2 (en)
JPS62244136A (en) Manufacture of semiconductor integrated circuit
JPS6380550A (en) Pretreating wiring of semiconductor device
JPS62113466A (en) Manufacture of semiconductor memory device