JPH0313744B2 - - Google Patents

Info

Publication number
JPH0313744B2
JPH0313744B2 JP55082388A JP8238880A JPH0313744B2 JP H0313744 B2 JPH0313744 B2 JP H0313744B2 JP 55082388 A JP55082388 A JP 55082388A JP 8238880 A JP8238880 A JP 8238880A JP H0313744 B2 JPH0313744 B2 JP H0313744B2
Authority
JP
Japan
Prior art keywords
etching
etched
layer
mask
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55082388A
Other languages
Japanese (ja)
Other versions
JPS577936A (en
Inventor
Chuichi Takada
Ryoji Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP8238880A priority Critical patent/JPS577936A/en
Publication of JPS577936A publication Critical patent/JPS577936A/en
Publication of JPH0313744B2 publication Critical patent/JPH0313744B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • H01L21/32137Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法、特にドライエ
ツチング法による新規なパターンの形成方法に関
する。半導体装置を製造する際に、基板表面をパ
ターンニングするフオトプセスは基本技術で、日
進月歩により急速な伸長を遂げており、従前より
化学楽品を使用してエツチングしていたウエツト
エツチング法も、その精度に限界があらわれて最
近はドライエツチング法を用いた高精度なパター
ンを形成する様になつてきた。一方、集積回路で
は速い応答速度など特性向上をはかるために、高
集積化の方向に検討がなきれており、微細パター
ンの形成と共に基板上に例えば配線層などは多層
構造とする必要が生じてくる。しかし、多層構造
は三層・四層と積層数が増える程、段差が大きく
なり、段差部分で導電層や絶縁膜の被着膜厚が一
様とならず、導電層がその段差部分で極めて薄く
形成されると断線を生じ易く、又絶縁膜が段差部
分で極めて薄く形成されると短絡を起こす。第1
図に一例として、この様な二層導電層の断面図を
図示しとおり、1,3は絶縁膜、2,4は導電
層、5は断線を生じ易い部分、6は短絡を起こし
易い部分を示しているが、これは導電層2をパタ
ーンニングする際にドライエツチング法によりエ
ツチング側面が垂直となる一種の異方エツチング
により生じたものである。ところで、従前のウエ
ツトエツチング法は精度の悪い面がかえつて好都
合で、第2図に示す様に側面がオーバエツチング
されてサイドエツチングが生じ、エツチング側面
は傾斜をもつたテーパー形状となり易くなつてい
たが、ドライエツチング法では第3図に示す様に
サイドエツチが殆んど生じないので、上記の様な
問題が起り、これは解決すべき重要な課題となつ
ている。尚、第2図及び第3図中の7はエツチン
グ保護マスクを示す。本発明は上記の様な問題点
を除去し、微細パターンに適したドライエツチン
グ法によつてパターンニングして、且つ多層構造
としても断線や短絡事故が起らないエツチング方
法を提供するものである。この目的は本発明によ
れば、平行平板型プラズマエツチング装置又はリ
アクテイブスパツタ装置を用いて、同一装置内
で、途中までは等方性エツチングを、続いて異方
性エツチングを行ない、半導体基板あるいは基板
上のの被膜にテーパー形状の側面をもつたパター
ンを形成することにより、充分その目的を達成す
ることができる。以下、本発明を詳細に説明する
と第4図は平行平板型プラズマエツチング装置、
第5図はリアクテイブスパツタ装置の概要図で、
何れも電極A上に半導体基板10を保持し、対向
する電極Bとの間に周波数13.56MHzの高周波電
力を印加し、ガス流入口Cにより反応ガスを流入
し、これをプラズマ化して基板10上をエツチン
グする処理がなされるものである。この様な装置
を用いて、多結晶シリコンをエツチングする実施
例の工程順断面図を第6図〜第8図に示してい
る。図において、11は膜厚5000Åの多結晶シリ
コン膜で、その上面にポジテイブ・レジストを塗
布し、露光現像して、レジスト膜12のパターン
を形成し、第6図に示す断面形状とする。そして
レジスト膜12をマスクとして、上記の装置によ
り、多結晶シリコン膜11上側の膜厚2500Åに等
方性エツチング(isotropic ething)を施こす。
そのエツチング条件は例えば高周波出力1KW、
反応ガスは5%O2を混入したCF4ガスで、圧力
1Torrとして2.5分間処理する。そうすると、等
方性エツチングによりサイドエツチングがなされ
て第7図に示す様に多結晶シリコン最上部の形状
W2はレジスト膜12マスクの開口部形成W1に比
べて大きくなる。又、反応ガスは5%O2の代り
にC2F4Clを混入したCF4ガスを用いて、圧圧
2Torrとすれば高周波出力は同一で、僅か20秒間
処理して同じ2500Åの膜厚を等方性エツチングす
ることができる。次に同一装置内において、多結
晶シリコン膜11の下側部分の膜厚2500Åに異方
性エツチング(anisotropic etching)を施こす。
そのエツチング条件は例えば高周波出力1KW、
反応ガスはCCl4ガスを用い、圧力0.2Torrとして
30秒間処理する。そうすると、異方性エツチング
によりレジスト膜マスクの形状W1と同形の垂直
なエツチング側面がえられる。この様な異方性エ
ツチングの条件は、上記の他にCF4とC2FClとの
混合ガスで圧力1Torrとすれば20秒間で膜厚2500
Åをエツチングすることができるし、又圧力
0.1TorrのCF4ガスであれば5分間でエツチング
されるし、圧力0.2TorrのPCl3ガスであると40秒
で何れも高周波出力1KWを印加して膜厚2500Å
をエツチング除去することができる。この様にし
て同一の装置内で、等方性エツチングし、続いて
異方性エツチングすれば、第8図に示す様な側面
がテーパー形状を有し、しかも微細化されたパタ
ーンが形成される。そして、レジスト膜12のマ
スクを有機溶剤で除去した後、例えばSiO2より
なる絶縁膜13をその上面に被着形成すれば、第
9図に示す様に絶縁膜13の膜厚が薄く被着形成
されることはなくなる。以上は被エツチンング材
料が多結晶シリコンの実施例によつて説明した
が、反応ガスなどの同様のエツチング条件で熱酸
化シリコンン膜、気相成長した酸化シリコン膜、
燐けい酸ガラス(PSG)膜、単結晶シリコンに
も処理時間を変えるだけで同様にテーパー形状を
形成することができる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a novel pattern using a dry etching method. Photoprocessing, which patterns the surface of a substrate when manufacturing semiconductor devices, is a basic technology that is rapidly expanding with each passing day.Wet etching, which previously used chemical tools for etching, is also becoming more and more advanced. As accuracy has reached its limit, recently, dry etching has been used to form highly accurate patterns. On the other hand, in order to improve the characteristics of integrated circuits such as faster response speeds, studies have not been completed in the direction of higher integration, and along with the formation of fine patterns, it has become necessary to form multilayer structures such as wiring layers on the substrate. come. However, in a multilayer structure, as the number of layers increases (three or four layers), the difference in level becomes larger, and the thickness of the conductive layer or insulating film is not uniform at the step part, and the conductive layer becomes extremely thin at the step part. If the insulating film is formed thinly, disconnection is likely to occur, and if the insulating film is formed extremely thin at the step portion, short circuits may occur. 1st
As an example, the figure shows a cross-sectional view of such a two-layer conductive layer, in which 1 and 3 are insulating films, 2 and 4 are conductive layers, 5 is a part that is likely to cause disconnection, and 6 is a part that is likely to cause a short circuit. As shown, this is caused by a type of anisotropic etching in which the etching side surface is vertical due to the dry etching method when patterning the conductive layer 2. By the way, the conventional wet etching method is disadvantageous in that it has poor accuracy, and as shown in Figure 2, the side surface is over-etched, resulting in side etching, and the etched side surface tends to have a tapered shape with an inclination. However, in the dry etching method, as shown in FIG. 3, side etching hardly occurs, so the above-mentioned problem occurs, and this is an important problem to be solved. Note that 7 in FIGS. 2 and 3 indicates an etching protection mask. The present invention eliminates the above-mentioned problems and provides an etching method that performs patterning using a dry etching method suitable for fine patterns and that does not cause disconnection or short-circuit accidents even in a multilayer structure. . According to the present invention, this purpose is achieved by performing isotropic etching halfway through and then anisotropic etching in the same apparatus using a parallel plate plasma etching apparatus or a reactive sputtering apparatus, thereby etching a semiconductor substrate. Alternatively, the purpose can be sufficiently achieved by forming a pattern with tapered side surfaces on the film on the substrate. The present invention will be explained in detail below. FIG. 4 shows a parallel plate type plasma etching apparatus,
Figure 5 is a schematic diagram of the reactive sputtering device.
In both cases, the semiconductor substrate 10 is held on the electrode A, and high frequency power with a frequency of 13.56 MHz is applied between the opposing electrode B, and a reaction gas is flowed in through the gas inlet C, which is turned into plasma and placed on the substrate 10. A process of etching is performed. FIGS. 6 to 8 show cross-sectional views of steps in an embodiment in which polycrystalline silicon is etched using such an apparatus. In the figure, reference numeral 11 denotes a polycrystalline silicon film with a thickness of 5000 Å. A positive resist is coated on the upper surface of the film and exposed and developed to form a pattern of a resist film 12, which has the cross-sectional shape shown in FIG. Then, using the resist film 12 as a mask, isotropic etching is performed to a thickness of 2500 Å on the upper side of the polycrystalline silicon film 11 using the above-mentioned apparatus.
The etching conditions are, for example, high frequency output 1KW,
The reaction gas was CF4 gas mixed with 5% O2 , and the pressure
Process at 1Torr for 2.5 minutes. Then, side etching is performed by isotropic etching, and the shape of the topmost polycrystalline silicon is changed as shown in Figure 7.
W 2 is larger than the opening W 1 of the resist film 12 mask. In addition, CF 4 gas mixed with C 2 F 4 Cl was used instead of 5% O 2 as the reaction gas, and the pressure was increased.
At 2 Torr, the same high frequency output can be used to isotropically etch the same 2500 Å film thickness in just 20 seconds. Next, in the same apparatus, anisotropic etching is performed on the lower portion of the polycrystalline silicon film 11 to a thickness of 2500 Å.
The etching conditions are, for example, high frequency output 1KW,
CCl 4 gas was used as the reaction gas, and the pressure was 0.2 Torr.
Process for 30 seconds. Then, by anisotropic etching, a vertical etched side surface having the same shape as the shape W1 of the resist film mask is obtained. The conditions for such anisotropic etching are as follows: In addition to the above, if a mixed gas of CF 4 and C 2 FCl is used at a pressure of 1 Torr, a film thickness of 2500 mm can be obtained in 20 seconds.
Å can be etched and also pressure
CF 4 gas at a pressure of 0.1 Torr can be etched in 5 minutes, and PCl 3 gas at a pressure of 0.2 Torr can be etched in 40 seconds by applying a high frequency output of 1 KW to a film thickness of 2500 Å.
can be removed by etching. In this way, by performing isotropic etching and then anisotropic etching in the same device, a fine pattern with tapered side surfaces as shown in FIG. 8 is formed. . After removing the mask of the resist film 12 with an organic solvent, if an insulating film 13 made of, for example, SiO 2 is deposited on its upper surface, the thickness of the insulating film 13 becomes thinner as shown in FIG. It will no longer be formed. The above description has been made using an example in which the material to be etched is polycrystalline silicon, but thermally oxidized silicon films, vapor phase grown silicon oxide films, etc.
Tapered shapes can be similarly formed on phosphosilicate glass (PSG) films and single-crystal silicon by simply changing the processing time.

又、その他の被エツチング材料も反応ガスなど
エツチング条件選択することにより、同一装置内
で等方性エツチングと異方性エツチングを行なう
ことが可能である。この様に本発明は微細パター
ンに加工することができるドライエツチング方法
において、テーパー形状のパターンを形成できる
方法であつて、高集積化された半導体装置の断線
や短絡を防止する巧妙な形成方法で、集積回路な
どの半導体装置の信頼度向上にすぐれた効果のる
ものである。
Furthermore, by selecting etching conditions such as reactive gases for other materials to be etched, it is possible to perform isotropic etching and anisotropic etching in the same apparatus. As described above, the present invention is a dry etching method that can form a tapered pattern in a fine pattern, and is a clever forming method that prevents disconnections and short circuits in highly integrated semiconductor devices. This is highly effective in improving the reliability of semiconductor devices such as integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は従来の問題点を説明する
ための断面図、第4図は平行平板型プラズマエツ
チング装置、第5図はリアクテイブスパツタ装置
の何れも一例の概要図、第6図ないし第8図は本
発明の工程順断面図、第9図は本発明の効果を説
明するための断面図である。 図中、11は多結晶シリコン膜、12はレジス
ト膜、13は絶縁膜を示している。
Figures 1 to 3 are sectional views for explaining conventional problems, Figure 4 is a schematic diagram of a parallel plate type plasma etching apparatus, Figure 5 is a schematic diagram of an example of a reactive sputtering apparatus, and Figure 6 is a schematic diagram of an example of a reactive sputtering apparatus. 8 through 8 are cross-sectional views in the order of steps of the present invention, and FIG. 9 is a cross-sectional view for explaining the effects of the present invention. In the figure, 11 is a polycrystalline silicon film, 12 is a resist film, and 13 is an insulating film.

Claims (1)

【特許請求の範囲】 1 被エツチング材料層上にマスク層を形成した
のち該マスク層の所定領域を開口し前記被エツチ
ング材料層を表出する工程と、 平行平板型プラズマエツチング装置又はリアク
テイブスパツタ装置を用いて、前記被エツチング
材料層を途中まで等方性エツチングする工程と、 引き続き、同一装置内で、前記等方性エツチン
グにおいて使用したのと同一のマスク層をマスク
として前記被エツチング材料層の残りの部分を異
方性エツチングすることにより、側面の上部がテ
ーパー形状で、下部がほぼ垂直形状をもつた前記
被エツチング材料層のパターンを形成する工程
と、 前記マスク層を除去したのち、前記被エツチン
グ材料層上に所定膜を形成する工程、 を有することを特徴とする半導体装置の製造方
法。
[Scope of Claims] 1. A step of forming a mask layer on a layer of material to be etched and then opening a predetermined region of the mask layer to expose the layer of material to be etched; and a step of using a parallel plate plasma etching apparatus or a reactive spa. isotropically etching the layer of the material to be etched halfway using a vine device, and subsequently etching the material to be etched using the same mask layer used in the isotropic etching as a mask in the same device; forming a pattern of the material layer to be etched with a tapered upper side and a substantially vertical lower side by anisotropically etching the remaining portion of the layer; and after removing the mask layer; A method for manufacturing a semiconductor device, comprising the steps of: forming a predetermined film on the layer of material to be etched.
JP8238880A 1980-06-18 1980-06-18 Manufacture of semiconductor device Granted JPS577936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8238880A JPS577936A (en) 1980-06-18 1980-06-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8238880A JPS577936A (en) 1980-06-18 1980-06-18 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS577936A JPS577936A (en) 1982-01-16
JPH0313744B2 true JPH0313744B2 (en) 1991-02-25

Family

ID=13773189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8238880A Granted JPS577936A (en) 1980-06-18 1980-06-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS577936A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124440A (en) * 1981-01-27 1982-08-03 Nec Corp Compound etching method
JPS5972138A (en) * 1982-10-19 1984-04-24 Toshiba Corp Manufacture of semiconductor device
US4460435A (en) * 1983-12-19 1984-07-17 Rca Corporation Patterning of submicrometer metal silicide structures
US4502915B1 (en) * 1984-01-23 1998-11-03 Texas Instruments Inc Two-step plasma process for selective anisotropic etching of polycrystalline silicon without leaving residue
US4639288A (en) * 1984-11-05 1987-01-27 Advanced Micro Devices, Inc. Process for formation of trench in integrated circuit structure using isotropic and anisotropic etching
FR2598256B1 (en) * 1986-04-30 1988-07-08 Thomson Csf METHOD OF SELECTIVE DRY ETCHING OF III-V SEMICONDUCTOR MATERIALS, AND TRANSISTOR OBTAINED BY THIS PROCESS.
JPS6432633A (en) * 1987-07-29 1989-02-02 Hitachi Ltd Taper etching method
US5316616A (en) * 1988-02-09 1994-05-31 Fujitsu Limited Dry etching with hydrogen bromide or bromine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141443A (en) * 1976-05-21 1977-11-25 Nippon Electric Co Method of etching films
JPS5461475A (en) * 1977-10-26 1979-05-17 Hitachi Ltd Poly-film etching method
JPS5487172A (en) * 1977-12-23 1979-07-11 Hitachi Ltd Manufacture for simiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52141443A (en) * 1976-05-21 1977-11-25 Nippon Electric Co Method of etching films
JPS5461475A (en) * 1977-10-26 1979-05-17 Hitachi Ltd Poly-film etching method
JPS5487172A (en) * 1977-12-23 1979-07-11 Hitachi Ltd Manufacture for simiconductor device

Also Published As

Publication number Publication date
JPS577936A (en) 1982-01-16

Similar Documents

Publication Publication Date Title
EP0030116B1 (en) Method of manufacturing a semiconductor device having a patterned multi-layer structure
US4824521A (en) Planarization of metal pillars on uneven substrates
US4624740A (en) Tailoring of via-hole sidewall slope
JPH0563940B2 (en)
JPH0313744B2 (en)
JPS5916334A (en) Dry etching method
JP2574045B2 (en) Etching method using plasma scattering phenomenon
JP2650313B2 (en) Dry etching method
JPH04259241A (en) Manufacture of semiconductor device
JPS59167021A (en) Manufacture of semiconductor device
JP2695919B2 (en) Wiring pattern forming method
JPH09293727A (en) Manufacture of semiconductor device
JPH02134818A (en) Formation of wiring structure body
JPH0766178A (en) Fabrication of semiconductor device
JP3260397B2 (en) Etchback method for polycrystalline Si having irregularities
JP2783898B2 (en) Method for manufacturing semiconductor device
JPH01209727A (en) Manufacture of semiconductor device
JPH0587973B2 (en)
JPH07135198A (en) Etching
JPS61154148A (en) Manufacture of semiconductor device
JPH0220141B2 (en)
JPH05343347A (en) Manufacture of semiconductor device
JPH01296642A (en) Formation of contact hole
JPS59175124A (en) Manufacture of semiconductor device
JPS59115542A (en) Manufacture of semiconductor device