JPH119279A - グリセロールキナーゼをコードする遺伝子 - Google Patents

グリセロールキナーゼをコードする遺伝子

Info

Publication number
JPH119279A
JPH119279A JP9167265A JP16726597A JPH119279A JP H119279 A JPH119279 A JP H119279A JP 9167265 A JP9167265 A JP 9167265A JP 16726597 A JP16726597 A JP 16726597A JP H119279 A JPH119279 A JP H119279A
Authority
JP
Japan
Prior art keywords
glycerol kinase
ala
glycerol
gly
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9167265A
Other languages
English (en)
Inventor
Yoshiaki Nishiya
西矢  芳昭
Yoshihisa Kawamura
川村  良久
Tadashi Yoshimoto
忠 芳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP9167265A priority Critical patent/JPH119279A/ja
Publication of JPH119279A publication Critical patent/JPH119279A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

(57)【要約】 【課題】高い安定性を有する新規なグルセロールキナー
ゼを遺伝子工学的に生産する方法を提供する。 【解決手段】配列番号1に記載されたアミノ酸配列から
なるサーマス・フラバスに由来するグリセロールキナー
ゼおよび該配列において、1もしくは複数のアミノ酸が
欠失、置換もしくは付加されたアミノ酸配列からなり、
かつグルセロールキナーゼ活性を有するタンパク質をコ
ードする遺伝子、該遺伝子を含有する組換ベクター、該
ベクターで形質転換した形質転換体および該形質転換体
を培養し、グリセロールキナーゼを生成させ、該グルセ
ロールキナーゼを採取することを特徴とするグリセロー
ルキナーゼの製造法。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、新規なグリセロー
ルキナーゼをコードする遺伝子ならびに遺伝子組換え技
術による該酵素の製造法に関する。
【0002】
【従来の技術】グリセロールキナーゼ(EC 2.7.1.30 )
は、グリセロールをマグネシウムとATPに依存したリ
ン酸化反応によって、グリセロール−3−リン酸に変え
る反応を触媒する酵素である。このグリセロールキナー
ゼは、最初、1937年に、Kalckarによって、肝臓内に見
つけられた(H.Kalckar, Enzymologia, 2,47(1937))。
その後、ラット肝、ハト肝、キャンディダ・ミコデルマ
(Candida mycoderma )などから精製され(C.Bublitz
ら、J.Biol.Chem.,211,951(1954);E.P.Kennedy,Methods
Enzymol., 5,476(1962); H.U.Bergmeyerら、Biochem.,
333,471(1961))、また、ヒト、バチルス・ズブチルス
(Bacillus subtilis )、サッカロマイセル・セレビシ
エ(Saccharomyces cerevisiae)などから、その遺伝子
のクローニングもなされている(C.A.Sargent ら、Hum.
Mol.Genet.,3,1317(1994); C.Holmberg ら、J.Gen.Micr
obiol.,136,2367(1990); P.Pavlik ら、Curr.Genet.,2
4,21(1993) )。特に、エシェリヒア・コリ(Escherich
ia coli)において、該酵素は詳しく研究がなされてお
り、1967年に、Hayashi らによって精製され(S.Hayash
i ら、 J.Biol.Chem.,242,1030(1967))、1988年にその
クローニングの報告がなされている(D.W.Pettigrew
ら、J.Biol.Chem.,263,135(1988))。また、遺伝子調節
の研究、アロステリック阻害剤による阻害の研究など、
広い範囲においても既に研究されている。
【0003】これらの生理学的及び酵素化学的な研究の
他に、該酵素は臨床検査薬として、利用されている。す
なわち、試料中の脂肪をリパーゼで加水分解し、生じた
グリセロールを該酵素によってグリセロール−3−リン
酸にし、さらに、グリセロール−3−リン酸酸化酵素と
ペルオキシダーゼをカップリングさせ、血中の脂質及び
グリセロールの測定に利用されている。
【0004】このように、臨床検査に利用されている酵
素に求められる特性の1つに、高い安定性を持つことが
あげられる。この高い安定性をもつ酵素を得るために、
最近、好熱性細菌が注目されている。好熱性細菌は、18
80年に温泉で発見されて以来、その耐熱化機構が研究さ
れてきたが、現在もはっきりとは、その機構が解明され
てはいない。しかし、その菌の酵素は耐熱性であること
が知られている。また、この酵素は高い熱安定性を持つ
だけではなく、他の化学変性剤に対しても抵抗性が高い
ことも知られている。
【0005】
【発明が解決しようとする課題】高い安定性をもつ新規
なグリセロールキナーゼをコードする遺伝子の単離、な
らびに遺伝子組換え技術による該酵素の製造法を確立
し、該酵素の脂質及びグリセロールの定量への利用を可
能とする。
【0006】
【課題を解決するための手段】本発明者らは、上記問題
を解決するため、グリセロールキナーゼ生産菌として、
サーマス・フラバス(Thermus flavus)TE4320
(DSM674)を選び、該菌体より抽出した染色体D
NAよりグリセロールキナーゼ遺伝子の単離に成功し、
そのDNAの全塩基配列を決定した。さらに、グリセロ
ールキナーゼを遺伝子組換え技術によって形質転換体に
高生産させることに成功し、高純度なグリセロールキナ
ーゼを安価に大量供給することを可能にした。
【0007】すなわち、本発明は以下の(a)または
(b)のタンパク質であるグリセロールキナーゼをコー
ドする遺伝子である。 (a)配列表・配列番号1に記載されたアミノ酸配列か
らなるタンパク質 (b)アミノ酸配列(a)において、1もしくは複数の
アミノ酸が欠失、置換もしくは付加されたアミノ酸配列
からなり、かつ、グリセロールキナーゼ活性を有するタ
ンパク質
【0008】また、本発明は以下の(c)、(d)又は
(e)のDNAからなるグリセロールキナーゼをコード
する遺伝子である。 (c)配列表・配列番号2に記載される塩基配列からな
るDNA (d)上記(c)の塩基配列において、1もしくは複数
の塩基が付加、欠失または置換されており、かつ、グリ
セロールキナーゼ活性を有するタンパク質をコードして
いるDNA (e)上記(c)の塩基配列からなるDNAとストリン
ジェントな条件下でハイブリダイズし、かつ、グリセロ
ールキナーゼ活性を有するタンパク質をコードする細菌
由来のDNA
【0009】さらに、本発明は上記グリセロールキナー
ゼをコードする遺伝子を含有する組換えベクターであ
る。
【0010】本発明は上記組換えベクターで宿主細胞を
形質転換した形質転換体である。
【0011】また、本発明は上記形質転換体を培養し、
グリセロールキナーゼを生成させ、該グリセロールキナ
ーゼを採取することを特徴とするグリセロールキナーゼ
の製造法である。
【0012】
【発明の実施態様】本発明のグリセロールキナーゼをコ
ードする遺伝子は、グリセロールキナーゼ生産微生物、
例えばサーマス・フラバス(Thermus flavus)TE3420
(DSM674)などから抽出しても良く、または化学的に合
成することもできる。
【0013】上記遺伝子としては、例えば(a)配列表
・配列番号1に記載されたアミノ酸配列からなるタンパ
ク質をコードするDNA、または(b)アミノ酸配列
(a)において、1もしくは複数のアミノ酸が欠失、置
換もしくは付加されたアミノ酸配列からなり、かつ、グ
リセロールキナーゼ活性を有するタンパク質をコードす
るDNAがある。DNAの欠失、置換、付加の程度につ
いては、基本的な特性を変化させることなく、あるいは
その特性を改善するようにしたものを含む。これらの変
異体を製造する方法は、従来から公知である方法に従
う。
【0014】または、(c)配列表・配列番号2に記載
される塩基配列からなるDNA、(d)上記(c)の塩
基配列において、1もしくは複数の塩基が付加、欠失ま
たは置換されており、かつ、グリセロールキナーゼ活性
を有するタンパク質をコードしているDNAまたは
(e)上記(c)の塩基配列からなるDNAとストリン
ジェントな条件下でハイブリダイズし、かつ、グリセロ
ールキナーゼ活性を有するタンパク質をコードする細菌
由来のDNAがある。ここで、ストリンジェントな条件
とは、×2SSC(300mM NaCl、30mM
クエン酸)、65℃、16時間である。
【0015】本発明のグリセロールキナーゼをコードす
る遺伝子を得る方法としては、例えばサーマス・フラバ
ス(Thermus flavus)TE3420(DSM674)の染色体DNA
を分離、精製した後、超音波破砕、制限酵素処理等を用
いて、DNAを断片化したものと、リニアーな発現ベク
ターとを両DNAの平滑末端または接着末端においてD
NAリガーゼなどにより結合閉鎖させて組換ベクターを
構築する。こうして得られた組換えベクターは複製可能
な宿主微生物に移入した後、グリセロールキナーゼ活性
の発現を指標としてスクリーニングして、組換えベクタ
ーを保持する微生物を得る。次いで該微生物を培養し、
該培養菌体から該組換えベクターを分離・精製し、該組
換えベクターからグリセロールキナーゼ遺伝子を採取す
れば良い。
【0016】遺伝子供与体であるサーマス・フラバス
(Thermus flavus)TE3420(DSM674)に由来するDNA
は、具体的には以下のように採取される。すなわち、供
与微生物を例えば、1〜3日間攪拌培養して得られた培
養物を遠心分離にて集菌し、次いでこれを溶菌させるこ
とによりグリセロールキナーゼ遺伝子の含有溶菌物を調
製することができる。溶菌方法としては、例えばリゾチ
ームやβ−グルカナーゼ等の溶菌酵素により処理が施さ
れ、必要に応じてプロテアーゼや他の酵素やラウリル硫
酸ナトリウム(SDS)等の界面活性剤が併用され、さ
らに凍結融解やフレンチプレス処理のような物理的破砕
方法と組み合わせても良い。
【0017】このようにして得られた溶菌物からDNA
を分離・精製するには常法、例えばフェノール処理やプ
ロテアーゼ処理による除蛋白処理や、リボヌクレアーゼ
処理、アルコール沈殿処理などの方法を適宜組み合わせ
ることにより行うことができる。
【0018】微生物から分離・精製されたDNAを切断
する方法は、例えば超音波処理、制限酵素処理などによ
り行うことができる。好ましくは特定のヌクレオチド配
列に作用するII型制限酵素が適している。
【0019】ベクターとしては、宿主微生物内で自律的
に増殖し得るファージまたはプラスミドから遺伝子組換
え用として構築されたものが適している。ファージとし
ては、例えばエシェリヒア・コリー(Escherichia coli)
を宿主微生物とする場合には、ラムダZAPII (ストラタ
ジーン製)、λgt・10、λgt・11などが使用で
きる。またプラスミドとしては、例えばエシェリヒア・
コリー(Escherichia coli)を宿主微生物とする場合に
は、pBR322、pUC19、pBluescrip
tなどが使用できる。
【0020】このようなベクターを、上述したグリセロ
ールキナーゼ遺伝子供与体である微生物DNAの切断に
使用した制限酵素で切断してベクター断片を得ることが
できるが、必ずしも該微生物DNAの切断に使用した制
限酵素と同一の制限酵素を用いる必要はない。微生物D
NA断片とベクターDNA断片とを結合させる方法は、
公知のDNAリガーゼを用いる方法であれば良く、例え
ば微生物DNA断片の接着末端とのアニーリングの後、
適当なDNAリガーゼの使用により微生物DNA断片と
ベクターDNA断片との組換えベクターを作成する。必
要なら、アニーリングの後、宿主微生物に移入して生体
内のDNAリガーゼを利用し組換えベクターを作成する
こともできる。
【0021】宿主微生物としては、組換えベクターが安
定、かつ自律増殖可能で外来性遺伝子の形質発現できる
ものであれば良く、一般的にはエシェリヒア・コリーW
3110、エシェリヒア・コリーC600、エシェリヒ
ア・コリーHB101、エシェリヒア・コリーJM10
9などを用いることができる。宿主微生物に組換えベク
ターを移入する方法としては、例えば宿主微生物がエシ
ェリヒア・コリーの場合には、カルシウム処理によるコ
ンピテントセル法やエレクトロポレーション法などが用
いることができる。
【0022】このようにして得られた形質転換体である
微生物は、栄養培地で培養されることにより、多量のグ
リセロールキナーゼを安定に生産し得る。宿主微生物へ
の目的組換えベクターの移入の有無についての選択は、
目的とするDNAを保持するベクターの薬剤耐性マーカ
ーとグリセロールキナーゼ活性を同時に発現する微生物
を検索すれば良く、例えば薬剤耐性マーカーに基づく選
択培地で生育し、且つグリセロールキナーゼを生成する
微生物を選択すれば良い。
【0023】上記の方法により得られたグリセロールキ
ナーゼ遺伝子の塩基配列は、サイエンス(Science,214,1
205-1210,1981)に記載されたジデオキシ法により解読
し、またグリセロールキナーゼのアミノ酸配列は、決定
した塩基配列より推定した。このようにして一度選択さ
れたグリセロールキナーゼ遺伝子を保有する組換えベク
ターは、形質転換微生物から取り出され、他の微生物に
移入することも容易に実施することができる。また、グ
リセロールキナーゼ遺伝子を保有する組換えベクターか
ら制限酵素やPCR法によりグリセロールキナーゼ遺伝
子であるDNAを回収し、他のベクター断片と結合さ
せ、宿主微生物に移入することも容易に実施できる。
【0024】形質転換体である宿主微生物の培養形態
は、宿主の栄養生理学的性質を考慮して培養条件を選択
すれば良く、通常、多くの場合は液体培養で行うが、工
業的には通気攪拌培養を行うのが有利である。培地の炭
素源としては、微生物の培養に通常用いられるものが広
く使用される。宿主微生物が資化可能であれば良く、た
とえばグルコース、シュークロース、ラクトース、マル
トース、フラクトース、糖蜜、ピルビン酸などが使用で
きる。窒素源としては、宿主微生物が利用可能な窒素化
合物であれば良く、例えばペプトン、肉エキス、カゼイ
ン加水分解物、大豆粕アルカリ抽出物のような有機窒素
化合物や、硫安、塩安のよおおうな無機窒素化合物が使
用できる。その他、リン酸塩、炭酸塩、硫酸塩、マグネ
シウム、カルシウム、カリウム、鉄、マンガン、亜鉛な
どの塩類、特定のアミノ酸、特定のビタミンなどが必要
に応じて使用できる。
【0025】培養温度は宿主微生物が生育し、グリセロ
ールキナーゼを生産する範囲で適宜変更し得るが、エシ
ェリヒア・コリーの場合、好ましくは20〜42℃程度
である。培養時間は培養条件により多少変動するが、グ
リセロールキナーゼが最高収量に達する時期を見計らっ
て適当な時期に終了すれば良く、通常20〜48時間程
度である。培地pHは宿主微生物が生育し、グリセロー
ルキナーゼを生産する範囲で適宜変更し得るが、通常好
ましくはpH6.0〜9.0程度である。
【0026】培養液より菌体を回収する方法は、通常、
用いられる方法により行えば良く、例えば遠心分離、濾
過などにより回収することができる。培養液中のグリセ
ロールキナーゼが菌体外にに分泌される場合は、この菌
体分離液を用いれば良く、下記の菌体破砕後の方法に準
じてグリセロールキナーゼを分離・精製できる。グリセ
ロールキナーゼが菌体内に存在する場合は、前述したよ
うな酵素的または物理的破砕方法により破砕抽出するこ
とができる。このようにして得られた粗酵素抽出液から
例えば硫安沈殿によりグリセロールキナーゼ画分を回収
する。この粗酵素液を通常、用いる精製方法、例えば半
透膜を用いた透析やセファデックスG−25(ファルマ
シア バイオテク)ゲル濾過などにより脱塩を行うこと
ができる。
【0027】この操作の後、例えばトヨパールHW65C
(東ソー)カラムクロマトグラフィー、DEAE−トヨパー
ル(東ソー)カラムクロマトグラフィーにより分離・精
製し精製酵素標品を得ることができる。この精製酵素標
品は電気泳動(SDS-PAGE)的にほぼ単一なバンドを示す程
度に純化されている。
【0028】本発明の製法により得られたグリセロール
キナーゼ活性を有するタンパク質は、以下に示す理化学
的性質を有する。 作用:グリセロール + ATP ←→ グリセロール−3−リン酸 + ADP 至適pH:約10.0(Britton and Robinson buffer ) 至適温度:約65℃(pH7.9) pH安定性:約6.5〜11.0(37℃で6時間後も90%以上の残存活性を 示す範囲) 熱安定性:約65℃以下(pH7.5で30分間後も90%以上の残存活性を 示す範囲) 等電点:約4.3 分子量:約58,000(SDS−PAGE) 約220,000(ゲル濾過) Km値:約0.038mM(グリセロール) 約0.16mM(ATP) 約0.36mM(ジヒドロキシアセトン) 比活性:50U/mg以上
【0029】本発明のグリセロールキナーゼと公知のグ
リセロールキナーゼとの性質の比較を表1に示す。本発
明のグリセロールキナーゼは、同一反応を触媒する公知
の酵素とは性質の異なる新規な酵素であり、特に公知の
酵素よりも高い安定性を有する。
【0030】
【実施例】以下、本発明を実施例により具体的に説明す
る。実施例中、グリセロールキナーゼの活性は、以下の
ようにして測定した。グリセロール、ジヒドロキシアセ
トン、ピルビン酸キナーゼ、乳酸脱水素酵素、NAD
H、フォスフォエノールピルビン酸は和光純薬工業、4-
アミノアンチピリンはナカライテスク、ATPはベーリ
ンガーマンハイム社より購入した。その他の酵素は東洋
紡績製のものを使用した。
【0031】<測定法1:グリセロール−3−リン酸を
測定する方法>通常、この方法を用いて活性測定を行っ
た。グリセロールを基質とし、グリセロール−3−リン
酸の生成量によって酵素活性を測定した。0.5%4−
アミノアンチピリン水溶液0.2ml、1.5%フェノ
ール水溶液0.2ml、グリセロール−3−リン酸酸化
酵素200U、ペルオキシダーゼ80U、ATP48.
4mgに0.1M HEPES緩衝液(pH7.9)を
加え、総量21mlとし、これを以下の測定のための原
液とした。各反応は、この測定原液を1.5ml取り、
0.3Mグリセロール水溶液25μl、試料溶液50μ
lを添加し、混和後、37℃に制御された分光光度計で
500nmの吸光度を3分間記録し、その初期直線部分
から1分間当たりの吸光度変化を求めた(ΔOD/mi
n)。
【0032】<測定法2:ADPを測定する方法>酵素
の基質特異性を見るために、この方法を用いた。グリセ
ロールを基質とし、ADPの生成量によって酵素活性を
測定した。フォスフォエノールピルビン酸4.33m
g、NADH2.98mg、MgCl2 6H2 O42.
7mg、ATP48.4mg、ピルビン酸キナーゼ80
U、乳酸脱水素酵素80Uに、20mMリン酸カリウム
緩衝液(pH7.5)を加え、総量21mlとし、これ
を以下の測定のための原液とした。各反応は、この測定
原液を1.5ml取り、0.3Mグリセロール水溶液2
5μl、試料溶液50μlを添加し、混和後、25℃、
340nmの吸光度を3分間記録し、その初期直線部分
から1分間当たりの吸光度変化を求めた(ΔOD/mi
n)。酵素活性の定義は、上記各条件で1分間に1マイ
クロモルのグリセロールを分解する酵素量を1単位
(U)とする。
【0033】実施例1 サーマス・フラバス(Thermus
flavus)TE3420(DSM674)からの染色体DNAの分離 サーマス・フラバス(Thermus flavus)TE3420(DSM67
4)の染色体DNAを次の方法で分離した。該菌株を4
00mlのポリペプトン−イーストエクストラクト培地
で50℃一晩振とう培養した。6000rpm、10分
間の遠心分離による集菌、洗浄後、10mlのNaCl
−EDTA緩衝液に懸濁した。2.5mlのリゾチーム
溶液(8mg/ml)を加え、37℃、20分間静置
し、溶菌し始めたら、ドライアイス−アセトンにて急冷
した。その後、85mlのTris−SDS緩衝液と7
5mlのRNaseA(10mg/ml)を加え攪拌し
た。懸濁液を60℃の水浴で加温し、完全に溶解した。
ライセイトをガラス遠心管中で等量のTris−HCl
緩衝液(pH8.0)飽和フェノールと共に混和し、2
0分間ゆっくりと振りつづけた。1500rpm、15
分間の遠心分離によって2層に分離させ、上層を取り、
27000rpm、30分間の遠心分離によって沈殿を
除去し、染色体DNAを2倍量の冷エタノールと共にゆ
っくりと混和させることによって界面に沈殿させた。こ
の糸状の沈殿をガラス棒で巻き取って集め、70、80
または90%エタノールによって洗浄した。そのDNA
を5mlの0.1×NaCl−クエン酸緩衝液(SS
C)に溶解し、0.5mlの10×SSCを加えた。そ
の溶液をTE緩衝液で4℃、3日間透析した。DNA濃
度は、260nmの吸光度より計算した。
【0034】実施例2 ポリメラーゼチェーンリアクシ
ョン(PCR) PCR用プライマーは、現在クローニングの報告がされ
ているヒト、エシェリヒア・コリ(Escherichia col
i)、バチルス・ズブリルス(、Bacillus subtilis)の
グリセロールキナーゼの塩基配列を基にして作製した。
配列表の配列番号3、配列表の配列番号4に記載される
塩基配列はPCR用プライマーを示す。実施例1で得た
DNA100ng、各プライマー200pmol、dN
TP混合物10μl、反応緩衝液10μl、Ampli
TaqDNAポリメラーゼ(パーキンエルマー製)2.
5Uを混和し100μlとした。これを94℃、1分間
の変性反応、45℃、1分間のアニーリング反応、およ
び72℃、3分間の伸長反応を30サイクル繰り返して
PCRを行った。その結果、目的の大きさである約30
0bpのフラグメントが増幅された。このPCR産物の
塩基配列を決定し、エシェリヒア・コリ(Escherichia
coli)、バチルス・ズブリルス(Bacillus subtilis )
のグリセロールキナーゼの塩基配列と比較したところ、
高い相同性を示したので、目的のグリセロールキナーゼ
遺伝子の一部が増幅されたことが明らかとなった。
【0035】実施例3 サザンハイブリダイゼーション 約2μgの実施例1で得たDNAを種々の制限酵素で消
化後、1%アガロースゲル電気泳動によって分離し、ニ
トロセルロースフィルターにトランスファーした。この
フィルターを、実施例2で得たPCR産物を32Pでラベ
ル化したプローブと、68℃、20時間ハイブリダイズ
させた。その後、フィルターを65℃、1時間6×SS
C+0.1%SDSで洗浄し、X線フィルムでオートラ
ジオグラフィーを行った。その結果、プローブは約3.
6KbpのHindIII 断片、約1.0KbpのNotI断片、
約0.6KbpのSalI断片とそれぞれ強くハイブリダイ
ズした。
【0036】実施例4 グリセロールキナーゼをコード
する遺伝子を含有するDNAの単離及び塩基配列の決定 実施例1で得たDNA5μgを制限酵素TspEI(東洋紡
製)で部分分解(2U使用、65℃、3分間処理)し
た。一方、制限酵素EcoRI (東洋紡製)で切断したラム
ダZAPII (ストラタジーン製)0.5μgをバクテリア
ルアルカリフォスファターゼ(東洋紡製)により脱リン
酸化処理した後、両DNAをT4DNAリガーゼ(東洋
紡製)1ユニットで16℃、16時間反応させてDNA
を連結した。連結したDNAはGigapackII-GOLD (スト
ラタジーン製)を用いてパッケージングし、エシェリヒ
ア・コリーXL1−BlueMRF’をトランスダクション
後、NZY寒天培地[1.0%NZアミン、0.5%酵
母エキス、0.5%NaCl、0.2%硫酸マグネシウ
ム7水和物、1.5%寒天(pH7.5)]に塗布した。
生じたファージプラークをアルカリ変性、中和後、ニト
ロセルロースフィルターにトランスファーし、このフィ
ルターを、実施例2で得たPCR産物を32Pでラベル化
したプローブと、68℃、20時間ハイブリダイズさせ
た。その後、フィルターを65℃、1時間0.1×SS
C+0.1%SDSで洗浄し、X線フィルムでオートラ
ジオグラフィーを行った。その結果、約4Kbpの挿入
DNAを有するポジティブクローンを見いだすことがで
きた。挿入DNA断片について、種々の制限酵素にてサ
ブクローンを調製した。種々のサブクローンは常法に従
い、Radioactive Sequencing Kit(東洋紡製)を用いて
グリセロールキナーゼ遺伝子の塩基配列を決定した。決
定した塩基配列及びアミノ酸配列を配列表に示した。ア
ミノ酸配列から求められるグリセロールキナーゼの分子
量は54805.53であった。
【0037】実施例5 グリセロールキナーゼをコード
する遺伝子を含有する組換えベクターの作成 実施例4で決定されたグリセロールキナーゼの塩基配列
を基にして、グリセロールキナーゼ遺伝子の両末端配列
に相当するPCR用プライマーを作製した。配列表の配
列番号5、配列表の配列番号6に記載される塩基配列は
PCR用プライマーを示す。実施例1で得たDNA10
0ng、各プライマー100pmol、dNTP混合物
10μl、反応緩衝液10μl、KOD−DNAポリメ
ラーゼ(東洋紡製)2.5Uを混和し、100μlとし
た。これを98℃、15秒間の変性反応、65℃、2秒
間のアニーリング反応、74℃、30秒間の伸長反応を
30サイクル繰り返してPCRを行った。その結果、目
的の大きさである約1.5Kbpのフラグメントが増幅
された。このPCR産物の塩基配列を決定し、目的のグ
リセロールキナーゼ遺伝子であることを確認した。この
PCR産物を、制限酵素SmaIで消化したベクタープラス
ミドpUC18(東洋紡製)と、実施例4と同様の条件
にて連結し、組換えベクターpGYK12を作製した。
pGYK12のサイズは4.2Kbpで、その制限酵素
地図は図1に示す通りである。
【0038】実施例6 形質転換体の作成 大腸菌の形質転換体の作成はエシェリヒア・コリーJM
109のコンピテントセル(東洋紡製)をpGYK12
で形質転換し、形質転換体エシェリヒア・コリーJM1
09(pGYK12)を得た。
【0039】実施例7 エシェリヒア・コリーJM10
9(pGYK12)からのグリセロールキナーゼの製造 エシェリヒア・コリーJM109(pGYK12)をL
B液体培地[1.0%ポリペプトン、0.5%酵母エキ
ス、0.5%NaCl、50μg/mlアンピシリン]
で37℃、16時間培養し、その培養液を8000rm
p、20分間の遠心分離によって集菌した。菌体を20
mMリン酸カリウム緩衝液(pH7.5)で洗浄後、同
じ緩衝液に懸濁した。ダイノミルで破砕後、40〜80
%の硫安分画処理を行い、その沈殿を40%飽和硫安を
含む20mMリン酸カリウム緩衝液に溶かした。この試
料を40%飽和硫安を含む同じ緩衝液で平衡化したトヨ
パール−HW65Cカラム(6×15cm)にかけ、4
0〜0%の硫安濃度勾配によって溶出を行った。活性画
分をセファデックスG−25によるゲルろ過により脱塩
し、20mMリン酸カリウム緩衝液で平衡化したDEA
E−トヨパールカラム(5×25cm)にアプライし、
0〜0.5M NaClの濃度勾配によって溶出を行う
ことにより分離・精製し、精製酵素表品を得た。本方法
により得られたグリセロールキナーゼ標品は、SDS−
PAGE的にほぼ単一なバンドを示した。
【0040】上記方法により得られたグリセロールキナ
ーゼは下記特性を有していた。 (1) 作用:下記の反応を触媒した。 グリセロール + ATP ←→ グリセロール−3−リン酸 + ADP (2) 作用pH:反応pHと相対活性との関係を図2に示した。 至適pHは約10.0(Britton and Robinson buffer )であった。 (3) 作用温度:反応温度と相対活性との関係を図3に示した。 至適温度は約65℃(pH7.9)であった。 (4) pH安定性:pH安定性を図2に示した。 約6.5〜11.0(37℃で6時間後も90%以上の残存活性を示す範囲 )で安定であった。 (5) 熱安定性:熱安定性を図3に示した。約65℃以下(pH7.5で30分間 後も90%以上の残存活性を示す範囲)で安定であった。 (6) 等電点:約4.3 (7) 分子量:約58,000(SDS−PAGE) 約220,000(ゲル濾過) (8)Km値:約0.038mM(グリセロール) 約0.16mM(ATP) 約0.36mM(ジヒドロキシアセトン) (9) 比活性:50U/mg以上 (10)既知酵素との比較:本発明酵素との性質を比較し、表1に示す。
【0041】
【表1】
【0042】
【発明の効果】本発明により、公知のグリセロールキナ
ーゼよりも高い安定性を有する新規なグリセロールキナ
ーゼをコードする遺伝子が単離され、遺伝子組換え技術
による該酵素の製造法が確立され、グリセロールの定量
への利用が可能となった。
【0043】配列番号:1 配列の長さ:496 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:蛋白質 起源 生物名:サーマス・フラバス 株名:TE3420(DSM674) 配列 Met Asn Gln Tyr Met Leu Ala Ile Asp Gln Gly Thr Thr Ser Ser Arg 1 5 10 15 Ala Ile Leu Phe Asn Gln Lys Gly Glu Ile Val His Met Ala Gln Lys 20 25 30 Glu Phe Thr Gln Tyr Phe Pro Gln Pro Gly Trp Val Glu His Asn Ala 35 40 45 Asn Glu Ile Trp Gly Ser Val Leu Ala Val Ile Ala Ser Val Leu Ser 50 55 60 Glu Ala Gln Val Lys Pro Glu Gln Val Ala Gly Ile Gly Ile Thr Asn 65 70 75 80 Gln Arg Glu Thr Thr Val Val Trp Glu Lys Asp Thr Gly Asn Pro Ile 85 90 95 Tyr Asn Ala Ile Val Trp Gln Ser Arg Gln Thr Ala Gly Ile Cys Asp 100 105 110 Glu Leu Lys Ala Lys Gly Tyr Asp Pro Leu Phe Arg Lys Lys Thr Gly 115 120 125 Leu Leu Ile Asp Ala Tyr Phe Ser Gly Thr Lys Val Lys Trp Ile Leu 130 135 140 Asp His Val Asp Gly Ala Arg Glu Arg Ala Glu Arg Gly Glu Leu Leu 145 150 155 160 Phe Gly Thr Ile Asp Thr Trp Leu Ile Trp Lys Leu Ser Gly Gly Arg 165 170 175 Val His Val Thr Asp Tyr Ser Asn Ala Ser Arg Thr Leu Met Phe Asn 180 185 190 Ile His Thr Leu Glu Trp Asp Asp Glu Leu Leu Asp Ile Leu Gly Val 195 200 205 Pro Lys Ala Met Leu Pro Glu Val Arg Pro Ser Ser Glu Val Tyr Ala 210 215 220 Lys Thr Ala Pro Tyr His Phe Phe Gly Val Glu Val Pro Ile Ala Gly 225 230 235 240 Ala Ala Gly Asp Gln Gln Ala Ala Leu Phe Gly Gln Ala Cys Phe Thr 245 250 255 Glu Gly Met Ala Lys Asn Thr Tyr Gly Thr Gly Cys Phe Met Leu Met 260 265 270 Asn Thr Gly Glu Lys Ala Val Ala Ser Lys His Gly Leu Leu Thr Thr 275 280 285 Ile Ala Trp Gly Ile Asp Gly Lys Val Glu Tyr Ala Leu Glu Gly Ser 290 295 300 Ile Phe Val Ala Gly Ser Ala Ile Gln Trp Leu Arg Asp Gly Leu Arg 305 310 315 320 Met Ile Lys Thr Ala Ala Asp Ser Glu Ala Tyr Ala Glu Lys Val Glu 325 330 335 Ser Thr Asp Gly Val Tyr Val Val Pro Ala Phe Ile Gly Leu Gly Thr 340 345 350 Pro Tyr Trp Asp Ser Glu Val Arg Gly Ala Val Phe Gly Leu Thr Arg 355 360 365 Gly Thr Thr Lys Glu His Phe Ile Arg Ala Thr Leu Glu Ser Leu Ala 370 375 380 Tyr Gln Thr Lys Asp Val Leu Ala Val Met Glu Ala Asp Ser Gly Ile 385 390 395 400 Ser Leu Thr Thr Leu Arg Val Asp Gly Gly Ala Val Lys Asn Asn Phe 405 410 415 Leu Met Gln Phe Gln Ser Asp Leu Leu Ala Val Pro Val Glu Arg Pro 420 425 430 Val Val Asn Glu Thr Thr Ala Leu Gly Ala Ala Tyr Leu Ala Gly Leu 435 440 445 Ala Val Gly Tyr Trp Asn Ser Arg Asp Asp Ile Ala Ala Gln Trp Gln 450 455 460 Leu Glu Arg Arg Phe Glu Pro Lys Met Asp Asp Asp Lys Arg Thr Met 465 470 475 480 Leu Tyr Asp Gly Trp Lys Lys Ala Val Arg Ala Ala Met Ala Phe Lys 485 490 495 496
【0044】配列番号:2 配列の長さ:1488 配列の型:核酸 トポロジー:直鎖状 配列の種類:ゲノムDNA 起源 生物名:サーマス・フラバス 株名:TE3420 (DSM674) 配列 ATG AAT CAA TAC ATG TTA GCC ATC GAC CAA GGC ACA ACG AGC TCG CGC 48 Met Asn Gln Tyr Met Leu Ala Ile Asp Gln Gly Thr Thr Ser Ser Arg 1 5 10 15 GCG ATT TTG TTC AAT CAA AAG GGC GAA ATC GTC CAT ATG GCG CAA AAA 96 Ala Ile Leu Phe Asn Gln Lys Gly Glu Ile Val His Met Ala Gln Lys 20 25 30 GAG TTT ACG CAA TAT TTT CCG CAG CCC GGC TGG GTT GAG CAC AAC GCC 144 Glu Phe Thr Gln Tyr Phe Pro Gln Pro Gly Trp Val Glu His Asn Ala 35 40 45 AAT GAA ATT TGG GGA TCG GTG CTT GCG GTC ATT GCC AGC GTC TTG TCC 192 Asn Glu Ile Trp Gly Ser Val Leu Ala Val Ile Ala Ser Val Leu Ser 50 55 60 GAA GCG CAA GTG AAG CCG GAA CAA GTG GCA GGG ATC GGG ATT ACG AAC 240 Glu Ala Gln Val Lys Pro Glu Gln Val Ala Gly Ile Gly Ile Thr Asn 65 70 75 80 CAG CGG GAG ACG ACG GTG GTG TGG GAG AAA GAC ACC GGC AAC CCG ATT 288 Gln Arg Glu Thr Thr Val Val Trp Glu Lys Asp Thr Gly Asn Pro Ile 85 90 95 TAC AAC GCC ATC GTC TGG CAG TCG CGG CAG ACG GCC GGC ATT TGC GAT 336 Tyr Asn Ala Ile Val Trp Gln Ser Arg Gln Thr Ala Gly Ile Cys Asp 100 105 110 GAA CTG AAA GCG AAA GGG TAT GAC CCG CTA TTC CGC AAA AAA ACC GGC 384 Glu Leu Lys Ala Lys Gly Tyr Asp Pro Leu Phe Arg Lys Lys Thr Gly 115 120 125 TTG CTT ATT GAC GCC TAT TTT TCC GGG ACA AAA GTG AAA TGG ATT TTG 432 Leu Leu Ile Asp Ala Tyr Phe Ser Gly Thr Lys Val Lys Trp Ile Leu 130 135 140 GAT CAT GTC GAC GGA GCG CGC GAA CGG GCG GAG CGC GGC GAA TTG CTT 480 Asp His Val Asp Gly Ala Arg Glu Arg Ala Glu Arg Gly Glu Leu Leu 145 150 155 160 TTC GGC ACG ATC GAT ACG TGG CTC ATT TGG AAG CTG TCT GGC GGC CGC 528 Phe Gly Thr Ile Asp Thr Trp Leu Ile Trp Lys Leu Ser Gly Gly Arg 165 170 175 GTC CAT GTA ACC GAT TAC TCG AAC GCG TCG CGC ACA TTA ATG TTT AAC 576 Val His Val Thr Asp Tyr Ser Asn Ala Ser Arg Thr Leu Met Phe Asn 180 185 190 ATT CAT ACG CTC GAG TGG GAT GAC GAG CTG CTT GAT ATC CTA GGC GTA 624 Ile His Thr Leu Glu Trp Asp Asp Glu Leu Leu Asp Ile Leu Gly Val 195 200 205 CCG AAG GCG ATG CTT CCT GAG GTT CGG CCG TCG TCG GAA GTG TAC GCG 672 Pro Lys Ala Met Leu Pro Glu Val Arg Pro Ser Ser Glu Val Tyr Ala 210 215 220 AAA ACC GCC CCT TAT CAC TTC TTT GGC GTC GAG GTG CCG ATC GCG GGA 720 Lys Thr Ala Pro Tyr His Phe Phe Gly Val Glu Val Pro Ile Ala Gly 225 230 235 240 GCC GCA GGC GAC CAG CAG GCG GCC TTG TTC GGG CAG GCG TGC TTT ACG 768 Ala Ala Gly Asp Gln Gln Ala Ala Leu Phe Gly Gln Ala Cys Phe Thr 245 250 255 GAA GGG ATG GCG AAA AAT ACG TAC GGC ACC GGC TGC TTT ATG CTC ATG 816 Glu Gly Met Ala Lys Asn Thr Tyr Gly Thr Gly Cys Phe Met Leu Met 260 265 270 AAC ACC GGG GAA AAG GCG GTC GCG TCA AAA CAC GGG CTG CTC ACG ACG 864 Asn Thr Gly Glu Lys Ala Val Ala Ser Lys His Gly Leu Leu Thr Thr 275 280 285 ATC GCT TGG GGA ATA GAC GGC AAG GTC GAA TAC GCC CTT GAA GGC AGC 912 Ile Ala Trp Gly Ile Asp Gly Lys Val Glu Tyr Ala Leu Glu Gly Ser 290 295 300 ATC TTC GTC GCC GGT TCG GCC ATT CAA TGG CTG CGC GAC GGC TTG CGG 960 Ile Phe Val Ala Gly Ser Ala Ile Gln Trp Leu Arg Asp Gly Leu Arg 305 310 315 320 ATG ATC AAA ACG GCG GCG GAC AGC GAA GCG TAT GCC GAA AAA GTC GAG 1008 Met Ile Lys Thr Ala Ala Asp Ser Glu Ala Tyr Ala Glu Lys Val Glu 325 330 335 TCG ACC GAC GGG GTG TAT GTC GTA CCG GCG TTC ATC GGG CTT GGC ACG 1056 Ser Thr Asp Gly Val Tyr Val Val Pro Ala Phe Ile Gly Leu Gly Thr 340 345 350 CCG TAT TGG GAC AGC GAG GTG CGC GGG GCG GTG TTT GGC CTC ACG CGC 1104 Pro Tyr Trp Asp Ser Glu Val Arg Gly Ala Val Phe Gly Leu Thr Arg 355 360 365 GGC ACA ACG AAA GAG CAT TTC ATC CGG GCC ACC TTG GAA TCG CTT GCT 1152 Gly Thr Thr Lys Glu His Phe Ile Arg Ala Thr Leu Glu Ser Leu Ala 370 375 380 TAC CAG ACA AAA GAT GTG CTC GCC GTC ATG GAA GCC GAT TCC GGC ATC 1200 Tyr Gln Thr Lys Asp Val Leu Ala Val Met Glu Ala Asp Ser Gly Ile 385 390 395 400 TCG CTG ACC ACG TTG CGC GTT GAC GGC GGG GCG GTG AAA AAC AAT TTC 1248 Ser Leu Thr Thr Leu Arg Val Asp Gly Gly Ala Val Lys Asn Asn Phe 405 410 415 CTT ATG CAA TTC CAG AGC GAT TTG CTT GCC GTT CCG GTC GAA CGT CCG 1296 Leu Met Gln Phe Gln Ser Asp Leu Leu Ala Val Pro Val Glu Arg Pro 420 425 430 GTT GTG AAT GAA ACG ACG GCC TTG GGT GCG GCG TAT TTG GCC GGG CTG 1344 Val Val Asn Glu Thr Thr Ala Leu Gly Ala Ala Tyr Leu Ala Gly Leu 435 440 445 GCG GTC GGC TAC TGG AAC AGC CGA GAT GAC ATC GCC GCC CAA TGG CAA 1392 Ala Val Gly Tyr Trp Asn Ser Arg Asp Asp Ile Ala Ala Gln Trp Gln 450 455 460 CTC GAG CGC CGG TTT GAG CCG AAG ATG GAT GAC GAC AAG CGA ACG ATG 1440 Leu Glu Arg Arg Phe Glu Pro Lys Met Asp Asp Asp Lys Arg Thr Met 465 470 475 480 CTC TAC GAT GGC TGG AAA AAA GCG GTG CGG GCG GCG ATG GCG TTT AAA 1488 Leu Tyr Asp Gly Trp Lys Lys Ala Val Arg Ala Ala Met Ala Phe Lys 485 490 495 496
【0045】配列番号:3 配列の長さ:21 配列の型:核酸 鎖の数:一本鎖 配列の種類:合成DNA トポロジー:直鎖状 配列の特徴 特徴を表す記号:modified base 存在位置: 6,9,12,15,18 他の情報:N=i 配配列 TTTGCNACNG TNGANACNTG G 21
【0046】配列番号:4 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 配列の種類:合成DNA トポロジー:直鎖状 配列の特徴 特徴を表す記号:modified base 存在位置: 3,6,9,12,15 他の情報:N=i 配列 TGNATNCCNT GNCCNACGAA 20
【0047】配列番号:5 配列の長さ:33 配列の型:核酸 鎖の数:一本鎖 配列の種類:合成DNA トポロジー:直鎖状 配列 GGGGGAAGAA GGTTATGAAT CAATACATGT TAG 33
【0048】配列番号:6 配列の長さ:29 配列の型:核酸 鎖の数:一本鎖 配列の種類:合成DNA トポロジー:直鎖状 配列 TTATTTAAAC GCCATCGCCG CCCGCACCG 29
【図面の簡単な説明】
【図1】組換ベクターpGYK12の制限酵素地図を示
す。
【図2】本発明のグリセロールキナーゼの種々のpHに
おける相対性(作用pH)および残存活性(安定pH)
を示す図である。
【図3】本発明のグリセロールキナーゼの種々の温度に
おける相対活性(作用温度)および残存活性(30分
間、pH7.5、熱安定性)を示す図である。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI (C12N 1/21 C12R 1:19) (C12N 9/12 C12R 1:19)

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 以下の(a)または(b)のタンパク質
    であるグリセロールキナーゼをコードする遺伝子。 (a)配列表・配列番号1に記載されたアミノ酸配列か
    らなるタンパク質 (b)アミノ酸配列(a)において、1もしくは複数の
    アミノ酸が欠失、置換もしくは付加されたアミノ酸配列
    からなり、かつ、グリセロールキナーゼ活性を有するタ
    ンパク質
  2. 【請求項2】 配列表・配列番号1に記載されるアミノ
    酸配列からなるタンパク質であるグリセロールキナーゼ
    をコードする遺伝子。
  3. 【請求項3】 以下の(c)、(d)又は(e)のDN
    Aからなるグリセロールキナーゼをコードする遺伝子。 (c)配列表・配列番号2に記載される塩基配列からな
    るDNA (d)上記(c)の塩基配列において、1もしくは複数
    の塩基が付加、欠失または置換されており、かつ、グリ
    セロールキナーゼ活性を有するタンパク質をコードして
    いるDNA (e)上記(c)の塩基配列からなるDNAとストリン
    ジェントな条件下でハイブリダイズし、かつ、グリセロ
    ールキナーゼ活性を有するタンパク質をコードする細菌
    由来のDNA
  4. 【請求項4】 請求項1、2または3記載のグリセロー
    ルキナーゼをコードする遺伝子を含有する組換えベクタ
    ー。
  5. 【請求項5】 請求項4記載の組換えベクターで宿主細
    胞を形質転換した形質転換体。
  6. 【請求項6】 請求項5記載の形質転換体を培養し、グ
    リセロールキナーゼを生成させ、該グリセロールキナー
    ゼを採取することを特徴とするグリセロールキナーゼの
    製造法。
JP9167265A 1997-06-24 1997-06-24 グリセロールキナーゼをコードする遺伝子 Pending JPH119279A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9167265A JPH119279A (ja) 1997-06-24 1997-06-24 グリセロールキナーゼをコードする遺伝子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9167265A JPH119279A (ja) 1997-06-24 1997-06-24 グリセロールキナーゼをコードする遺伝子

Publications (1)

Publication Number Publication Date
JPH119279A true JPH119279A (ja) 1999-01-19

Family

ID=15846539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9167265A Pending JPH119279A (ja) 1997-06-24 1997-06-24 グリセロールキナーゼをコードする遺伝子

Country Status (1)

Country Link
JP (1) JPH119279A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007195453A (ja) * 2006-01-26 2007-08-09 Toyobo Co Ltd グリセロールキナーゼ改変体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007195453A (ja) * 2006-01-26 2007-08-09 Toyobo Co Ltd グリセロールキナーゼ改変体

Similar Documents

Publication Publication Date Title
JPH11243949A (ja) Pqqを補欠分子族とするグルコースデヒドロゲナーゼおよびその製造方法
JP6455430B2 (ja) キサンチンオキシダーゼ遺伝子とそれをコードするアミノ酸配列
JP4146095B2 (ja) 耐熱性グルコキナーゼ遺伝子、それを含有する組換えベクター、その組換えベクターを含有する形質転換体及びその形質転換体を用いた耐熱性グルコキナーゼの製造方法
US5250415A (en) Process for the preparation of glucose dehydrogenase from Bacillus megaterium
JP4022784B2 (ja) 新規なヘキソキナーゼ
JP4036667B2 (ja) 新規グルコース脱水素酵素及びそれをコードする遺伝子
JPH119279A (ja) グリセロールキナーゼをコードする遺伝子
JP2942564B2 (ja) 乳酸オキシダーゼの遺伝情報を有するdnaおよびその用途
JP3498808B2 (ja) Dnaポリメラーゼ遺伝子
US5686294A (en) Protein having heat-resistant malate dehydrogenase activity
JP4352286B2 (ja) 変異型グルコース−6−リン酸デヒドロゲナーゼおよびその製造法
JP4415247B2 (ja) 新規なグリセロールキナーゼ、該遺伝子及び該遺伝子を用いたグリセロールキナーゼの製造法
JP2001275669A (ja) 新規カタラーゼ遺伝子及び該遺伝子を用いた新規カタラーゼの製造方法
JPH10248574A (ja) 新規な乳酸酸化酵素
KR101153400B1 (ko) 신규 리포산 합성효소와 리포산 단백질 리가제를 이용한 알파-리포산의 생산방법
JPH10262674A (ja) アルカリホスファターゼをコードする遺伝子
US7618800B2 (en) Glycerol kinase, which has high resistance against preservative
JP3829950B2 (ja) 新規なクレアチニンアミドヒドロラーゼ
JPH08238087A (ja) サルコシンオキシダーゼおよびその製造法
JP3335287B2 (ja) ヘキソキナーゼ遺伝子
JP3358686B2 (ja) 新規なグルタミン酸デヒドロゲナーゼをコードする遺伝子及び該遺伝子を用いたグルタミン酸デヒドロゲナーゼの製造法
JP3112146B2 (ja) 耐熱性マレートデヒドロゲナーゼ活性を有する蛋白質
JP4161232B2 (ja) サルコシンオキシダーゼ活性を有する新規なタンパク質およびその製造方法
JP2000125856A (ja) 新規なL−α−グリセロホスフェートオキシダーゼおよびその製造方法
JP2003339385A (ja) 新規3−ヒドロキシ酪酸脱水素酵素遺伝子、新規3−ヒドロキシ酪酸脱水素酵素の製造法、ならびに、新規3−ヒドロキシ酪酸脱水素酵素を用いたケトン体の測定方法および測定用組成物

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051020