JPH1140867A - 超電導電界効果型素子およびその作製方法 - Google Patents

超電導電界効果型素子およびその作製方法

Info

Publication number
JPH1140867A
JPH1140867A JP9211300A JP21130097A JPH1140867A JP H1140867 A JPH1140867 A JP H1140867A JP 9211300 A JP9211300 A JP 9211300A JP 21130097 A JP21130097 A JP 21130097A JP H1140867 A JPH1140867 A JP H1140867A
Authority
JP
Japan
Prior art keywords
superconducting
oxide
thin film
electrode
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9211300A
Other languages
English (en)
Inventor
Takao Nakamura
孝夫 中村
Hiroshi Inada
博史 稲田
Michitomo Iiyama
道朝 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP9211300A priority Critical patent/JPH1140867A/ja
Priority to EP98401808A priority patent/EP0893835A3/en
Priority to CA002243654A priority patent/CA2243654A1/en
Publication of JPH1140867A publication Critical patent/JPH1140867A/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • H10N60/205Permanent superconducting devices having three or more electrodes, e.g. transistor-like structures 
    • H10N60/207Field effect devices

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

(57)【要約】 【解決手段】 ゲート絶縁層を構成する絶縁膜17が超電
導チャネル10を構成する酸化物超電導薄膜1全体を被覆
し、絶縁膜の上側に酸化物超電導体の超電導ソース電極
22、超電導ドレイン電極23および超電導ゲート電極24が
配置されている。本発明の超電導電界効果型素子では、
絶縁膜の上下の電気的に機能を有する部分に酸化物超電
導体が使用されている。特に、素子の機能部分であるゲ
ートは、実質的に酸化物超電導体/絶縁体/酸化物超電
導体という構造になっている。 【効果】 ゲートの電流−電圧特性や絶縁膜の誘電率の
電界依存性の対称性が改善され、ゲート電圧の印加範囲
の制約および変調特性にゲート電圧の極性依存性がなく
なる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、超電導電界効果型
素子およびその作製方法に関する。より詳細には、酸化
物超電導薄膜で構成された超電導チャネル、超電導ソー
ス領域、超電導ソース電極、超電導ドレイン領域および
超電導ドレイン電極と、超電導チャネル上にゲート絶縁
層を介して配置された超電導ゲート電極とを備え、超電
導チャネルに流れる電流を超電導ゲート電極に印加した
信号電圧で制御する超電導電界効果型素子の新規な構成
およびその作製方法に関する。
【0002】
【従来の技術】超電導現象を利用した素子は、従来の半
導体素子に比較して高速であり、消費電力も小さく、飛
躍的に高性能化することができると考えられている。特
に近年研究が進んでいる酸化物超電導体を使用すること
により、比較的高い温度で動作する超電導素子を作製す
ることが可能である。実用上極めて重要だと考えられて
いる3端子の超電導素子の1つに、超電導体で形成され
た超電導チャネルに流れる超電導電流をゲート電極で制
御する超電導電界効果型素子がある。超電導電界効果型
素子は、電圧制御型の素子であって信号の増幅作用があ
り、電流密度が大きい。
【0003】図8に超電導電界効果型素子の一例の概略
図を示す。図8に示した超電導電界効果型素子は、SrTi
3 等の基板5上に形成されたPr1Ba2Cu37-yバッファ
層20上に配置されたY1Ba2Cu37-X酸化物超電導体によ
る超電導チャネル10と、超電導チャネル10の両端付近に
それぞれ配置されたやはりY1Ba2Cu37-X酸化物超電導
体の超電導ソース領域2および超電導ドレイン領域3
と、超電導チャネル10上にSrTiO3のゲート絶縁層7を
介して配置されたゲート電極4とを具備する。また、超
電導ソース領域2および超電導ドレイン領域3上にはそ
れぞれソース電極12およびドレイン電極13が形成されて
いる。ゲート電極、ソース電極12およびドレイン電極13
には、Ag、Au等の貴金属が使用されている。この超電導
電界効果型素子は、ソース電極12およびドレイン電極13
から供給され、超電導ソース領域2および超電導ドレイ
ン電極3間の超電導チャネル10を流れる超電導電流をゲ
ート電極4に印加する電圧で制御する。
【0004】上記の超電導電界効果型素子では、超電導
チャネル10を流れる電流をゲート電極4に印加する電圧
で制御する。そのため、超電導チャネル10のゲート部分
の厚さは5nm程度にしなければならず、また、ゲート絶
縁層7の厚さも10〜15nmにしなければならない。一方、
この極薄の超電導チャネルは、結晶性がよく、特性が優
れた酸化物超電導薄膜で構成されていなければならな
い。これを実現するために、上記超電導電界効果型素子
では、Y1Ba2Cu37-X酸化物超電導体と、結晶構造が等
しく、格子定数が極めて近いPr1Ba2Cu37-yの層を基板
上に形成し、その上にY1Ba2Cu37-X酸化物超電導体で
超電導チャネルを形成している。このPr1Ba2Cu37-y
バッファ層により、基板と超電導チャネルとの間の相互
拡散が防止され、結晶の格子定数の不一致も解消され
る。よって、Pr1Ba2Cu37-yバッファ層上には、Y1Ba2
Cu37-X酸化物超電導薄膜が良好に二次元成長する。
【0005】
【発明が解決しようとする課題】しかしながら、上記従
来の超電導電界効果型素子では、ゲートが金属/絶縁膜
/超電導膜の構造となっている。この構造により、例え
ば、Applied Physics Letter No. 60 (1991) pp.1744、
Applied Physics No. 75 (1994) pp.5295 、Japanese J
ournal of Applied Physics No. 34 (1995) pp.1906 な
どに記載されているようゲートの電流−電圧特性や絶縁
膜の誘電率の電界依存性に非対象性、金属元素依存性な
どが発生する。これらは、例えば、Z. Physics B 83 (1
991) pp.83、Applied Physics Letter No. 67 (1991) p
p.2099、Japanese Journal of Applied Physics No. 34
(1995) l1906 に記載されているようゲート電圧の印加
範囲が制約を受けたり、変調特性にゲート電圧の極性依
存性が存在するなど素子の特性を損なったり、素子の性
能の安定性を欠く原因となる。
【0006】そこで本発明の目的は、上記従来技術の問
題点を解決した新規な構成の超電導電界効果型素子およ
びその作製方法を提供することにある。
【0007】
【課題を解決するための手段】本発明に従うと、基板
と、この基板上に配置された酸化物超電導体で構成され
た超電導チャネルと、超電導チャネルの両端に配置され
た酸化物超電導体で構成された超電導ソース領域および
超電導ドレイン領域と、前記超電導チャネル上にゲート
絶縁層を介して配置され、超電導チャネルを流れる電流
を制御するためのゲート電圧が印加されるゲート電極と
を備える超電導電界効果型素子において、前記超電導チ
ャネルがc軸配向の酸化物超電導薄膜で構成され、前記
ゲート電極の少なくともゲート絶縁層に接する部分が酸
化物超電導体で構成されていることを特徴とする超電導
電界効果型素子が提供される。本発明の超電導電界効果
型素子は、前記c軸配向の酸化物超電導薄膜が前記ゲー
ト絶縁層を構成する絶縁膜に被覆され、前記超電導ソー
ス領域および超電導ドレイン領域が前記絶縁膜および前
記c軸配向の酸化物超電導薄膜を貫通して前記基板上に
直接形成され、前記超電導ソース領域および超電導ドレ
イン領域が前記超電導チャネルと、前記c軸配向の酸化
物超電導薄膜のc軸に平行な面と接続され、前記超電導
ソース領域および超電導ドレイン領域上に酸化物超電導
体で形成された超電導ソース電極および超電導ドレイン
電極が配置され、前記ゲート電極の少なくともゲート絶
縁層に接する部分が酸化物超電導体で構成されているこ
とが好ましい。本発明の超電導電界効果型素子におい
て、超電導ソース電極および超電導ドレイン電極上にさ
らに金属電極が配置されていることが好ましい。また、
本発明の超電導電界効果型素子では、ゲート電極の酸化
物超電導体で構成されている部分上に金属電極が配置さ
れていることが好ましい。
【0008】一方、本発明に従うと、基板上に超電導チ
ャネルに適した極薄の酸化物超電導薄膜を形成する工
程、前記酸化物超電導薄膜の上に酸化物超電導薄膜全体
を覆う絶縁膜を形成する工程、前記絶縁膜と酸化物超電
導薄膜とを貫通し、前記基板まで達する複数の貫通孔を
形成する工程、前記貫通孔に超電導ソース領域および超
電導ドレインとなる酸化物超電導薄膜を形成し、前記絶
縁膜上の超電導ソース領域および超電導ドレイン領域上
の部分に酸化物超電導薄膜で超電導ソース電極および超
電導ドレイン電極を形成し、超電導ソース電極および超
電導ドレイン電極の間に酸化物超電導薄膜で超電導ゲー
ト電極を形成する工程を含むことを特徴とする超電導電
界効果型素子の作製方法が提供される。本発明の方法で
は、前記極薄の酸化物超電導薄膜をc軸配向の酸化物超
電導薄膜で構成することが好ましい。また、前記超電導
ソース電極、超電導ドレイン電極および超電導ゲート電
極上に金属電極を形成する工程を含むことが好ましい。
【0009】
【発明の実施の形態】本発明の超電導電界効果型素子
は、素子の機能部分であるゲートが、実質的に酸化物超
電導体/絶縁体/酸化物超電導体という構造になってい
る。従って、ゲートの電流−電圧特性や絶縁膜の誘電率
の電界依存性の対称性が改善され、ゲート電圧の印加範
囲の制約および変調特性にゲート電圧の極性依存性がな
くなる。また、本発明の超電導電界効果型素子におい
て、ゲート絶縁層を構成する絶縁膜が超電導チャネルを
構成する酸化物超電導薄膜全体を被覆するように構成
し、絶縁膜を貫通させて超電導ソース領域および超電導
ドレイン領域を形成し、絶縁膜の上側に酸化物超電導体
の超電導ソース電極、超電導ドレイン電極および超電導
ゲート電極を配置することにより、後述するように、さ
らに性能を向上させることができる。
【0010】本発明の超電導電界効果型素子では、超電
導チャネルを構成する酸化物超電導薄膜には、膜面に対
して結晶のc軸が垂直であるc軸配向の酸化物超電導薄
膜が使用される。酸化物超電導体は、結晶のc軸に垂直
な方向の臨界電流密度が大きいので、c軸配向の酸化物
超電導薄膜を使用することにより、超電導チャネルの電
流容量が大きくなる。さらに、超電導チャネルは、超電
導ソース領域および超電導ドレイン領域と、超電導チャ
ネルを構成する酸化物超電導薄膜のc軸に平行な面で接
触している。酸化物超電導体の結晶のc軸に垂直な方向
は、c軸に垂直な方向と比べ比抵抗が3桁以上小さい。
本発明の超電導電界効果型素子では、超電導ソース領域
および超電導ドレイン領域と、超電導チャネルとの間の
接点で電流が流れる方向は超電導チャネルを構成する酸
化物超電導薄膜のc軸に垂直な方向である。従って、超
電導ソース領域および超電導ドレイン領域と、超電導チ
ャネルとの間のコンタクトの比抵抗が小さく、電流が効
率よく流れる。さらに、コンタクトの比抵抗が小さいの
で、コンタクト部分の面積を小さくすることが可能で、
素子全体を小型化することができる。
【0011】また、酸化物超電導体は、結晶のc軸に垂
直な方向の酸素の拡散係数が、c軸に平行な方向と比較
して、3桁以上も大きい。従って、本発明の超電導電界
効果型素子を本発明の方法で作製する場合には、貫通孔
を形成し、超電導ソース領域および超電導ドレイン領域
を形成する際に、超電導チャネルを構成するc軸配向の
酸化物超電導薄膜中に酸素が拡散し、超電導特性が向上
する。
【0012】上記の貫通孔は、超電導ソース領域および
超電導ドレイン領域にそれぞれ複数形成することが好ま
しい。貫通孔を複数形成することにより、超電導ソース
領域および超電導ドレイン領域と、超電導チャネルとの
間のコンタクトの面積を大きくすることが可能である。
また、この貫通孔を利用したプロセスは、従来の方法と
比較して、上記の効率のよいコンタクトを超電導チャネ
ルとの間に有する超電導ソース領域および超電導ドレイ
ン領域を作製するのを容易にしている。
【0013】本発明の超電導電界効果型素子には、任意
の酸化物超電導体が使用できるが、一般にY1Ba2Cu3
7-X系酸化物超電導体と称される酸化物超電導体は、安
定的に高品質の結晶性のよい薄膜が得られるので好まし
い。また、Bi2Sr2Ca2Cu3x 系酸化物超電導体、Tl2Ba2
Ca2Cu3x 系酸化物超電導体は、特にその超電導臨界温
度Tc が高いので好ましい。また、本発明の超電導電界
効果型素子に使用する絶縁体は、SrTiO3、BaTiO3、Ba
xSr1-xTiO3、CeO2などが好ましい。さらに、本発明の
超電導電界効果型素子に使用する基板としては、MgO、
SrTiO3等の絶縁体基板の他、適当なバッファ層を成膜
面上に有するSi等の半導体基板および酸化物超電導体基
板が使用できる。
【0014】以下、本発明を実施例によりさらに詳しく
説明するが、以下の開示は本発明の単なる実施例に過ぎ
ず、本発明の技術的範囲をなんら制限するものではな
い。
【0015】
【実施例】
【0016】本発明の方法で本発明の超電導電界効果型
素子を作製した。図1(a)〜(e)およを参照して、その工
程を説明する。最初に、図1(a)に示すよう、SrTiO
3(100)基板5上にc軸配向のY1Ba2Cu37-X酸化
物超電導薄膜1を反応性共蒸着法で成膜した。主な成膜
条件を以下に示す。
【0017】基板としては、MgO(100)基板、YS
Z基板、MgAl24上にBaTiO3を積層した二層のコーテ
ィング層を表面に有するSi半導体基板、CeO2バッファ
層を表面に有するSi半導体基板、YSZバッファ層を表
面に有するSi半導体基板が使用可能である。また、SrTi
3(100)基板を使用する場合には、その表面をH
Fのバッファー溶液で処理して表面を清浄化することが
好ましい。
【0018】次に、図1(b)に示すよう、Y1Ba2Cu3
7-X酸化物超電導薄膜1上に絶縁膜17をSrTiO3で形成す
る。本実施例では、パルスレーザ蒸着法で絶縁膜17を形
成した。絶縁膜17は、ゲート絶縁層を構成するものであ
り、その厚さは、トンネル電流が流れないよう10nm以上
の厚さにする必要があるが、厚すぎる場合には、ゲート
電極に高い信号電圧を印加しなければ超電導チャネル中
を流れる超電導電流の変調、制御を行うことができなく
なる。従って、絶縁膜17の厚さは、4000nm以下とする。
主な成膜条件を以下に示す。 絶縁膜17は、Bi4Ti312、BaxSr1-xTiO3 (0≦x≦
1)、PZT[Pb(Zr,Ti)O3]、CeO2でも形成すること
ができる。また、基板温度600℃で成膜を行うことによ
り、酸化物超電導薄膜1と基板5、絶縁膜17と酸化物超
電導薄膜1それぞれの間の構成元素の拡散はほとんど起
こらず、界面はきれいに保たれる。
【0019】次に、フォトレジストによりマスクを形成
し、絶縁膜17および酸化物超電導薄膜1をArイオンミリ
ングでエッチングし、図1(c)に示すよう、基板5にま
で達するコンタクトホール32および33を形成した。コン
タクトホール32および33は、それぞれソースおよびドレ
インに対応する位置にそれぞれ複数形成した。コンタク
トホール32および33の大きさは、例えば10×10μm
2 で、互いに約10μm離れている。
【0020】図1(d)に示すよう、パルスレーザ蒸着法
でY1Ba2Cu37-X酸化物超電導薄膜を成長させ、コンタ
クトホール32および33中にそれぞれ超電導ソース領域2
および超電導ドレイン領域3を、超電導ソース領域2お
よび超電導ドレイン領域3上に超電導ソース電極22およ
び超電導ドレイン電極23を、超電導ソース電極22および
超電導ドレイン電極23の中間の絶縁膜17上に超電導ゲー
ト電極24を形成した。超電導ソース電極22および超電導
ドレイン電極23の大きさは、例えば 1.4×1.4mm2 であ
る。成膜条件は、絶縁膜17のそれと同様である。従っ
て、各層の間の相互拡散はほとんど起こらなかった。ま
た、酸化物超電導薄膜1の超電導ゲート電極24の下側の
部分が超電導チャネル10となる。
【0021】次に、図1(e)に示すよう、絶縁膜17の素
子の両端部を除去し、基板温度を室温にして基板5上に
CeO2層50をパルスレーザ蒸着法で成膜し、リフトオフ
法により、基板5上に直接成膜された部分のみ残して、
素子上の部分を除去する。CeO2層50は、素子の電気的
な分離の機能を有する絶縁分離層である。そのため、リ
ーク電流が小さく、積層体の各層の間の相互拡散を防止
するために低温で成膜可能であることが好ましい。絶縁
分離層には、CeO2以外にCaF2、SiO2等が使用可能で
あるが、先に述べた条件からCeO2が最も好ましい。
【0022】最後に、図1(f)に示すよう、ソース電極1
2、ドレイン電極13およびゲート電極4をAgを使用して
真空蒸着法により、それぞれ超電導ソース電極22、超電
導ドレイン電極23および超電導ゲート電極24上に作製し
て本発明の超電導電界効果型素子が完成する。
【0023】上記本発明の方法で作製した本発明の超電
導電界効果型素子の特性を測定した。測定した超電導電
界効果型素子は、共通のSrTiO3(100)基板(8×9
mm2)上に4個形成されたものであり、厚さ5nmのY1Ba
2Cu37-X酸化物超電導薄膜1で構成された超電導チャ
ネル10と、厚さ200 nmのSrTiO3絶縁膜17と、厚さ100nm
のY1Ba2Cu37-X酸化物超電導薄膜で構成された超電導
ソース電極22、超電導ドレイン電極23および超電導ゲー
ト電極24を備える。ゲート長は40μmで、ゲート幅は10
0 μmである。本発明の方法で作製した本発明の超電導
電界効果型素子は、超電導ソース領域2および超電導ド
レイン領域3と超電導チャネル10とのコンタクトが良好
なので、8×9mm2の大きさの基板上に4個形成するこ
とが可能であった。
【0024】図2(a)に上記本発明の超電導電界効果型
素子の超電導チャネルの抵抗−温度特性、図2(b)にゲ
ートの電流−電圧特性を示す。本発明の超電導電界効果
型素子の超電導チャネルの臨界温度は最高で54.8Kであ
り、これは基板と超電導チャネルとの間にバッファ層を
有さない素子形状のものでは、発表されている中で最高
の温度である。また、本発明の超電導電界効果型素子
は、SrTiO3絶縁膜に対し、等価なキャパシタとなるの
でゲートの電流−電圧特性は対称となる。特に、マイナ
ス方向で従来の金属電極を用いた場合に比較して2倍以
上耐圧が高くなる。
【0025】図3に上記本発明の超電導電界効果型素子
の変調特性の温度依存性を示す。図3のグラフより、本
発明の超電導電界効果型素子は、従来の金属電極のもの
と比べ特にデプレッション方向で高い変調度が得られる
ことがわかる。これは、実際の電子回路へ応用する際に
有利である。また、これらのデータをもとに計算したト
ランスコンダクタンスを図4に示す。従来のものに比較
して、高いトランスコンダクタンスが得られている。
【0026】次に、やはり本発明の方法で作製した、厚
さ4nmの超電導チャネルを有する本発明の超電導電界効
果型素子の特性を測定した。超電導チャネルの厚さ以外
の寸法は、前記本発明の超電導電界効果型素子と等し
い。図5に超電導チャネルの抵抗−温度特性を示す。図
5からわかるよう、厚さ4nmの超電導チャネルの臨界温
度は最高で23.8Kである。また、図6にこの超電導電界
効果型素子の変調特性を示す。図6からわかるよう、こ
の本発明の超電導電界効果型素子は、デプレッション方
向で12.5%の変調度が得られている。
【0027】最後に、本発明の方法で作製した本発明の
超電導電界効果型素子の超電導チャネルの臨界温度−厚
さ(酸化物超電導体単位胞数で示した)の関係を図7に
示す。本発明の方法で作製した本発明の超電導電界効果
型素子の超電導チャネルは、2単位胞の厚さのものでも
超電導性を示す。また、この2単位胞の厚さの超電導チ
ャネルを有する超電導電界効果型素子は、20%の変調度
を示した。上記本発明の超電導電界効果型素子は、基板
にSrTiO3(100)を使用しているので、超電導チャ
ネルはヘテロエピタキシャル成長していると考えられ
る。従って、超電導チャネルを構成する酸化物超電導薄
膜の基板と接している単位胞は、結晶格子が歪み超電導
性を示さない。2単位胞の厚さの超電導チャネルが超電
導性を示すということは、実質的に1単位胞の酸化物超
電導体が超電導性を示すということであり、本発明の方
法のプロセスの有効性が示されている。
【0028】尚、上記実施例中で説明した共通の基板上
に複数個の本発明の超電導電界効果型素子を形成した場
合には、素子同士を適当に接続し、同時に動作させるこ
とにより大電流を流すことが可能な超電導素子として利
用することができる。
【0029】
【発明の効果】以上説明したように、本発明に従えば、
新規な構成の超電導電界効果型素子その作製方法が提供
される。本発明の超電導電界効果型素子は、各電極が酸
化物超電導体で形成されている。従って、特にゲート電
極−ゲート絶縁層−超電導チャネルの積層構造が、ゲー
ト絶縁層に対して等価なキャパシタとなるのでゲートの
電流−電圧特性は対称となる。また、ゲート電圧の印加
範囲の制約および変調特性にゲート電圧の極性依存性が
なくなり、従来の超電導電界効果型素子よりも優れた特
性を示す。
【0030】さらに、本発明の超電導電界効果型素子
は、超電導ソース領域および超電導ドレイン領域と超電
導チャネルとのコンタクトが良好なので、共通の基板上
に複数個のものを集積化して形成することが可能で、素
子同士を適当に接続して同時に動作させることにより、
大電流化も図れる。
【図面の簡単な説明】
【図1】本発明の超電導電界効果型素子を本発明の方法
で作製する工程を説明する図である。
【図2】図2(a)は、本発明の超電導電界効果型素子の
超電導チャネルの抵抗−温度特性、図2(b)にゲートの
電流−電圧特性を示すグラフである。
【図3】本発明の超電導電界効果型素子の変調特性の温
度依存性を示すグラフである。
【図4】本発明の超電導電界効果型素子と従来の超電導
電界効果型素子のトランスコンダクタンスを示すグラフ
である。
【図5】本発明の他の超電導電界効果型素子の超電導チ
ャネルの抵抗−温度特性を示すグラフである。
【図6】図5の超電導電界効果型素子の超電導電界効果
型素子の変調特性を示すグラフである。
【図7】本発明の超電導電界効果型素子の超電導チャネ
ルの臨界温度−厚さの関係を示すグラフである。
【図8】従来の超電導電界効果型素子の構成を説明する
図である。
【符号の説明】
1 酸化物超電導薄膜 2 超電導ソース領域 3 超電導ドレイン領域 4 超電導ゲート電極 5 基板 7 ゲート絶縁層 10 超電導チャネル 12 ソース電極 13 ドレイン電極 22 超電導ソース電極 23 超電導ドレイン電極

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】 基板と、この基板上に配置された酸化物
    超電導体で構成された超電導チャネルと、超電導チャネ
    ルの両端に配置された酸化物超電導体で構成された超電
    導ソース領域および超電導ドレイン領域と、前記超電導
    チャネル上にゲート絶縁層を介して配置され、超電導チ
    ャネルを流れる電流を制御するためのゲート電圧が印加
    されるゲート電極とを備える超電導電界効果型素子にお
    いて、前記超電導チャネルがc軸配向の酸化物超電導薄
    膜で構成され、前記ゲート電極の少なくともゲート絶縁
    層に接する部分が酸化物超電導体で構成されていること
    を特徴とする超電導電界効果型素子。
  2. 【請求項2】 前記c軸配向の酸化物超電導薄膜が前記
    ゲート絶縁層を構成する絶縁膜に被覆され、前記超電導
    ソース領域および超電導ドレイン領域が前記絶縁膜およ
    び前記c軸配向の酸化物超電導薄膜を貫通して前記基板
    上に直接形成され、前記超電導ソース領域および超電導
    ドレイン領域が前記超電導チャネルと、前記c軸配向の
    酸化物超電導薄膜のc軸に平行な面と接続され、前記超
    電導ソース領域および超電導ドレイン領域上に酸化物超
    電導体で形成された超電導ソース電極および超電導ドレ
    イン電極が配置され、前記ゲート電極の少なくともゲー
    ト絶縁層に接する部分が酸化物超電導体で構成されてい
    ることを特徴とする請求項1に記載の超電導電界効果型
    素子。
  3. 【請求項3】 前記超電導ソース電極および超電導ドレ
    イン電極上にさらに金属電極が配置されていることを特
    徴とする請求項1または2に記載の超電導電界効果型素
    子。
  4. 【請求項4】 前記ゲート電極の酸化物超電導体で構成
    されている部分上に金属電極が配置されていることを特
    徴とする請求項1〜3のいずれか1項に記載の超電導電
    界効果型素子。
  5. 【請求項5】 請求項1〜4のいずれか1項に記載の超
    電導電界効果型素子が、同一の基板上に複数配置されて
    構成されていることを特徴とする超電導集積回路。
  6. 【請求項6】 基板上に超電導チャネルに適した極薄の
    酸化物超電導薄膜を形成する工程、 前記酸化物超電導薄膜の上に酸化物超電導薄膜全体を覆
    う絶縁膜を形成する工程、 前記絶縁膜と酸化物超電導薄膜とを貫通し、前記基板ま
    で達する複数の貫通孔を形成する工程、 前記貫通孔に超電導ソース領域および超電導ドレインと
    なる酸化物超電導薄膜を形成し、前記絶縁膜上の超電導
    ソース領域および超電導ドレイン領域上の部分に酸化物
    超電導薄膜で超電導ソース電極および超電導ドレイン電
    極を形成し、超電導ソース電極および超電導ドレイン電
    極の間に酸化物超電導薄膜で超電導ゲート電極を形成す
    る工程を含むことを特徴とする超電導電界効果型素子の
    作製方法。
  7. 【請求項7】 前記極薄の酸化物超電導薄膜をc軸配向
    の酸化物超電導薄膜で構成することを特徴とする請求項
    6に記載の方法。
  8. 【請求項8】 前記超電導ソース電極、超電導ドレイン
    電極および超電導ゲート電極上に金属電極を形成する工
    程を含むことを特徴とする請求項6または7に記載の方
    法。
JP9211300A 1997-07-22 1997-07-22 超電導電界効果型素子およびその作製方法 Pending JPH1140867A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9211300A JPH1140867A (ja) 1997-07-22 1997-07-22 超電導電界効果型素子およびその作製方法
EP98401808A EP0893835A3 (en) 1997-07-22 1998-07-17 Superconducting field effect device having a superconducting channel and method for manufacturing the same
CA002243654A CA2243654A1 (en) 1997-07-22 1998-07-21 Superconducting field effect device having a superconducting channel and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9211300A JPH1140867A (ja) 1997-07-22 1997-07-22 超電導電界効果型素子およびその作製方法

Publications (1)

Publication Number Publication Date
JPH1140867A true JPH1140867A (ja) 1999-02-12

Family

ID=16603668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9211300A Pending JPH1140867A (ja) 1997-07-22 1997-07-22 超電導電界効果型素子およびその作製方法

Country Status (3)

Country Link
EP (1) EP0893835A3 (ja)
JP (1) JPH1140867A (ja)
CA (1) CA2243654A1 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2054644C (en) * 1990-10-31 1998-03-31 Takao Nakamura Superconducting device having an extremely short superconducting channel formed of extremely thin oxide superconductor film and method for manufacturing same
CA2054795C (en) * 1990-11-01 1996-08-06 Hiroshi Inada Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material and method for manufacturing the same
JPH08288563A (ja) * 1995-04-17 1996-11-01 Sumitomo Electric Ind Ltd 超電導電界効果型素子およびその作製方法

Also Published As

Publication number Publication date
EP0893835A2 (en) 1999-01-27
EP0893835A3 (en) 1999-05-19
CA2243654A1 (en) 1999-01-22

Similar Documents

Publication Publication Date Title
JPH1140867A (ja) 超電導電界効果型素子およびその作製方法
JP2831967B2 (ja) 超電導素子
JPH08167693A (ja) 半導体装置及びその製造方法
JP2730368B2 (ja) 超電導電界効果型素子およびその作製方法
JPH08288563A (ja) 超電導電界効果型素子およびその作製方法
JP2680949B2 (ja) 超電導電界効果型素子の作製方法
JP2680954B2 (ja) 超電導電界効果型素子
JP2691065B2 (ja) 超電導素子および作製方法
JP2680960B2 (ja) 超電導電界効果型素子およびその作製方法
JP2976904B2 (ja) 超電導電界効果型素子およびその作製方法
JP2597743B2 (ja) 超電導素子の作製方法
JP2647251B2 (ja) 超電導素子および作製方法
JP4027504B2 (ja) 積層構造を持つ単電子トンネル素子及びその製造方法
JP2614939B2 (ja) 超電導素子および作製方法
JP2614940B2 (ja) 超電導素子および作製方法
JP2825374B2 (ja) 超電導素子
JP2599500B2 (ja) 超電導素子および作製方法
JPH0555648A (ja) 超電導素子
JP2597745B2 (ja) 超電導素子および作製方法
JP2597747B2 (ja) 超電導素子および作製方法
JP2680961B2 (ja) 超電導電界効果型素子およびその作製方法
JP2667289B2 (ja) 超電導素子および作製方法
JPH0878743A (ja) 超電導電界効果型素子
JPH05251775A (ja) 超電導電界効果型素子およびその作製方法
JP2641966B2 (ja) 超電導素子および作製方法

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000125