JPH11333473A - スルホキシド類含有廃水の処理方法 - Google Patents

スルホキシド類含有廃水の処理方法

Info

Publication number
JPH11333473A
JPH11333473A JP14566698A JP14566698A JPH11333473A JP H11333473 A JPH11333473 A JP H11333473A JP 14566698 A JP14566698 A JP 14566698A JP 14566698 A JP14566698 A JP 14566698A JP H11333473 A JPH11333473 A JP H11333473A
Authority
JP
Japan
Prior art keywords
sulfoxide
treatment
wastewater
treating
containing wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14566698A
Other languages
English (en)
Other versions
JP3000996B2 (ja
Inventor
Tatsuya Koito
達也 小糸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14566698A priority Critical patent/JP3000996B2/ja
Publication of JPH11333473A publication Critical patent/JPH11333473A/ja
Application granted granted Critical
Publication of JP3000996B2 publication Critical patent/JP3000996B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

(57)【要約】 【課題】 スルホキシド類有機硫黄化合物を汚染物とし
て含有するスルホキシド類含有廃水の処理において、高
濃度スルホキシド類スルホキシド類含有廃水を効率的に
処理し、且つ硫黄系悪臭物質の発生を防止する。 【解決手段】 スルホキシド類含有廃水に酸化剤とCu
を含む化合物を共存させて紫外線照射することにより、
スルホキシド類有機硫黄化合物をスルホン類の形態にす
る。スルホン類は一般的な好気条件下での生物処理を施
すことにより、完全に無機化される。 【効果】 本法は、高濃度のスルホキシド含有廃水でも
効率的にスルホン類を生成することができるため、短時
間、低コストで廃水を処理することができる。また、p
H調整を行う必要がなく、しかも硫黄系悪臭物質の発生
を抑制することができる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、スルホキシド類有
機硫黄化合物を汚染物として含有する廃水の処理方法に
関し、特に高濃度の廃水に対しても十分低コストで処理
可能なスルホキシド類含有廃水の処理方法に関する。
【0002】
【従来の技術】ジメチルスルホキシドをはじめとするス
ルホキシド類有機硫黄化合物は、電子機器の製造におけ
る剥離工程や洗浄工程の溶剤として極めて有用であり、
多量に使用されている。またそれに伴い、多量のスルホ
キシド類含有廃水が発生している。
【0003】一般に、有機物を含有する廃水の処理は、
低コストで処理可能な生物学的処理が利用されている。
ジメチルスルホキシドに生物学的処理を施した場合、好
気条件下では生分解性が非常に低いが、嫌気条件下では
徐々に分解が進んで最終的に硫酸にまで分解可能であ
る。しかしながら反応式1に示すように、嫌気条件下で
生物学的処理を施すと、中間代謝物としてジメチルスル
フィド、メチルメルカプタン、硫化水素といった硫黄系
悪臭物質が生成し、環境を著しく悪化させることがあ
る。
【0004】
【化1】 スルホキシド類有機硫黄化合物を使用する工場は膨大な
処分コストを負担する必要があり、また焼却によって新
たな環境汚染が生じる可能性もある。そこで、廃水を処
理する技術として、化学的処理や生物学的処理、および
それらの組合せによる処理技術が提案されている。たと
えば、特開平8−238497号第1図に記載されてい
る技術は、酸化剤の添加や電気化学的な処理により、反
応式2に従ってスルホキシド類をスルホン類に酸化した
後、スルホン類を生物学的に処理することにより、硫黄
系悪臭物質を発生させずに処理する方法が提案されてい
る。
【0005】
【化2】 過酸化水素やオゾンを利用した場合、スルホキシド類有
機硫黄化合物濃度が高いと処理時間が長くなり処理コス
トも大きくなる。処理速度を上げるために酸化剤として
次亜塩素酸ナトリウムを利用した場合、スルホンの生成
反応は迅速に進行するが、次亜塩素酸ナトリウムと有機
物との反応で有機塩素化合物が発生するおそれがある。
【0006】また、特開平6−91289号第二図で
は、ジメチルスルホキシドを嫌気条件で生物処理した
後、好気条件で生物処理する技術が記載されている。こ
の方法では高濃度のスルホキシド類含有廃水に対応する
ことが難しく、また曝気処理に大がかりな臭気対策が必
要となる。
【0007】一方、低コストで環境負荷の低い処理を目
的として、酸化剤と光化学反応を利用した技術が報告さ
れている。特開平8−238497号公報第三図には、
スルホキシド類含有廃水中にオゾンやHといった
酸化剤を共存させ、紫外線を照射してスルホキシド類な
どを酸化分解する技術が記載されている。通常、紫外線
照射を利用した有機物の分解技術は処理コストが高いた
め、微量の有機物が処理の対象となることが多いが、ス
ルホキシド類は酸化剤と紫外線により特有の分解反応が
進行し、極めて低コストで処理することが可能である。
【0008】酸化剤と紫外線を利用した従来技術に関
し、図7の処理フローを用いて詳述する。上記公報に示
された従来技術は、下記反応式に示すように二種類の反
応が提案されている。まず一つには反応式3に示すよう
に、スルホキシド類含有廃水中に酸化剤を共存させ、紫
外線を照射してスルホン酸類に酸化分解し、そのまま処
理を継続することによって最終的にHSO、C
、HOにまで分解する方法である。
【0009】
【化3】 もう一つは、反応式4に示すように、酸化剤の添加と紫
外線照射によってスルホン酸類を生成させた後、好気条
件下の生物学的処理によりHSO、CO、H
にまで分解する方法である。
【0010】
【化4】 後者の反応を利用した場合、紫外線照射は極短時間で済
み、また生成したスルホン酸類は一般的な好気条件下で
の生物学的処理によって容易に処理できるので、比較的
高濃度の廃水に対しても全体の処理コストを極めて低く
抑えることが出来る。
【0011】
【発明が解決しようとする課題】上述した従来の紫外線
照射による処理方法の第一の問題点は、処理に必要な紫
外線照射量が有機物濃度にほぼ単純に比例するため、非
常に高濃度の廃水に対しては多大な処理時間、処理コス
トを必要とすることである。
【0012】第二の問題点は、スルホキシド類濃度の高
い廃水を従来法で処理する場合、酸化剤添加と紫外線照
射で生成するスルホン酸類の濃度が高まり、処理水のpH
が著しく低くなることである。対策として多量のアルカ
リ薬品を添加して中和するか、もしくは耐酸性に優れた
高価な設備を設置する必要がある。
【0013】第三の問題点は、高濃度の廃水を従来法で
処理する場合、分解過程でスルホキシド類が一部還元さ
れて硫黄系臭気物質が発生する可能性があることであ
る。
【0014】本発明の目的は、高濃度のスルホキシド含
有廃水であっても十分低コストであり、制御が容易であ
り、しかも硫黄系悪臭物質の発生を防止することができ
るスルホキシド類含有廃水の処理技術を提供することに
ある。
【0015】
【課題を解決するための手段】前記課題を解決する本発
明は、スルホキシド類含有廃水に酸化剤と銅供給源を共
存させ、紫外線を照射して処理することを特徴とする。
共存させる酸化剤としては過酸化水素が好適に用いられ
る。
【0016】銅供給源としては二価の銅化合物、金属銅
のいずれもが好適に用いられる。廃水中のCu濃度は好
ましくは10〜3500mg/L、さらに好ましくは8
0〜200mg/Lになるように銅イオン供給源を共存
させる。
【0017】紫外線の累積照射量はスルホキシド類濃度
1mg/Lあたり5〜50W・hr・/m3、好ましくは
6〜20W・hr/m3、含まれる波長成分は150〜
400nmが可能で、より好ましくは185〜365n
mである。照射する紫外線の発生源は低圧水銀ランプ、
高圧水銀ランプ、中圧水銀ランプ、キセノンランプ、重
水素ランプおよびメタルハライドランプの中のいずれか
1つであることが好ましい。
【0018】処理されるスルホキシド類の濃度は1〜1
5000mg/Lが可能で、より好適には100〜11
000mg/Lである。また、処理中の廃水のpHは2〜9
が可能で、より好ましくは2.5〜5である。
【0019】従来技術との違いは、単に酸化剤を共存さ
せて紫外線を照射するのではなく、Cu供給源と酸化剤
とを共存させ、紫外線を照射することによって処理する
ことにある。スルホキシド類含有廃水にCu供給源と過
酸化水素を共存させて紫外線照射を行うと、反応式5に
従ってスルホキシド類は酸化され、スルホン類有機硫黄
化合物が生成する。
【0020】
【化5】 紫外線処理によるスルホン類有機硫黄化合物の生成反応
(反応式5)は、従来法におけるスルホン酸類有機硫黄
化合物の生成反応(反応式4)と比較して小さいエネル
ギーで進行するため、スルホキシド類有機硫黄化合物の
処理速度を高めることが可能である。また、スルホン類
有機硫黄化合物は水溶液中で酸としての性質を示さない
ので、大きなpH変動が起こらない。
【0021】
【発明の実施の形態】図1は、本発明の処理フロー図を
示す。スルホキシド類含有廃水中に過酸化水素(H
)および銅供給源を共存させた後、紫外線を照射して
酸化処理し、スルホン類有機硫黄化合物を生成させる。
その後、生成したスルホン類有機硫黄化合物は好気条件
下での一般的な生物学的処理によりHSO、C
、HOにまで分解する(反応式5参照)。
【0022】以下、本発明について詳述する。
【0023】処理の対象となるスルホキシド類は、通常
のものであればいずれに対しても適用することができる
が、特に好ましいものとしては、例えば、ジメチルスル
ホキシド(DMSO)、ジエチルスルホキシド、ジフェ
ニルスルホキシドなどが挙げられる。
【0024】利用する酸化剤としては、過酸化水素、オ
ゾン(O)等を挙げることができ、これらを組み合わ
せて共存させることも可能である。ただし、スルホキシ
ド類有機硫黄化合物濃度が高い場合には、酸化剤濃度も
高める必要があるので、オゾン等の常温で気体の酸化剤
よりも過酸化水素といった常温で液体の酸化剤の方が適
している。
【0025】共存させる銅供給源としては、廃水中で溶
解する物質が望ましい。その理由は、本発明の反応がC
u金属表面で進行しているのではなく、イオン化したC
uがスルホキシド類有機硫黄化合物の酸素付加反応に寄
与するためと考えられるからである。実際、本発明者ら
は、廃水300mL中に少なくとも1.0gのCu粉末
が、反応実験終了後完全に溶解したことを確認してい
る。ただし、過剰に添加した銅粉末がたとえ溶解せずに
残っても、後処理前に除去できれば、本発明の効果には
なんら悪影響を及ぼさず、良好な結果が得られる。
【0026】一方、廃水中に銅供給源が共存しない場合
には、紫外線で励起されたスルホキシド類有機硫黄化合
物のC−S結合にヒドロキシルラジカルが作用し、反応
式3もしくは4に示したようにスルホン酸類が生成す
る。スルホン酸類の生成とスルホン類の生成の割合は、
共存するCu2+の濃度に依存し、その濃度の上昇にと
もなってスルホン類が生成する割合は高くなる。図2
は、紫外線照射量50kW・hr/mにおける、Cu
2+濃度とジメチルスルホキシド濃度の関係を示す。ジ
メチルスルホキシド濃度10,000mg/L、過酸化水素濃度1
3,000mg/Lとして、Cu2+濃度が0から500mg/Lにな
るように調整し、50kW・hr/mの紫外線を照射した場
合、ジメチルスルホキシド残留濃度はCu 2+濃度の上
昇とともに低下する。ただし、Cu2+濃度を500m
g/Lに調整して紫外線照射しても、100mg/Lに
調整した場合と大きな差異が認められない。これは同図
中に示すように、ジメチルスルホキシド濃度2,500
mg/L、過酸化水素濃度3,250mg/Lとして評
価した場合も同じ傾向を示す。すなわち、共存させるC
2+の濃度は、ジメチルスルホキシド初期濃度に拘わ
らず、80から200mg/L程度で十分と言える。
【0027】光化学反応に用いる紫外線の波長範囲は、
150nm〜400nmが可能であり、より好ましくは
185nm〜365nmである。紫外線の有するエネル
ギーが波長に反比例するので、ランプから発する紫外線
に300nm以下の波長成分を含むと共存させた酸化剤
からフリーラジカルを生成させやすくなる。また、20
0nm以下の波長成分を含むと酸化剤の紫外線吸収に拘
わらず、水から直接フリーラジカルを生成させることも
可能である。この場合、共存させる酸化剤濃度を低減す
ることが可能である。これらの条件を備える紫外線照射
光源としては、例えば低圧水銀ランプ、高圧水銀ラン
プ、中圧水銀ランプ、キセノンランプ、重水素ランプ、
メタルハライドランプ等を挙げることができる。これら
列挙したランプの中で、紫外線照射効率の高い低圧水銀
ランプを好適に使用することができる。
【0028】反応中のpHとしては、2から9の範囲が
可能であり、より好ましくは2.5〜5である。その理
由は三つある。まず一つには、フリーラジカルの生成効
率である。酸化剤の紫外線吸収で生成するフリーラジカ
ルの生成量は溶液のpHなどに影響され、アルカリ性側
よりも酸性側の方が多く発生する。フリーラジカルを効
率的に生成させることは、本発明の反応を効率的に進行
させる上で重要である。もう一つの理由は、処理水中の
炭酸濃度である。スルホキシド類有機硫黄化合物の分解
において、最終生成物の一つに炭酸がある。炭酸イオン
はフリーラジカルスカベンジャーとして知られており、
これが処理を妨害する可能性がある。炭酸は中性からア
ルカリ性では解離して溶解し、酸性側では炭酸ガスとし
て系外に除外される。第3の理由は、アルカリ側では、
銅が沈殿を形成し、十分な効果が得られなくなるおそれ
があることである。上記理由により、溶液のpHは2か
ら9、好ましくは2.5から5程度とすることが望まし
い。
【0029】本発明では、紫外線処理後に生物学的処理
を施すことにより、生成したスルホン類有機硫黄化合物
を分解する。このとき、酸化処理が十分に行なわれてい
れば、未酸化のスルホキシド類などが容易に還元され悪
臭を発生するなどのことがないので、他の有機成分を含
んでいてもよい。ところがCuは生物活性を著しく阻害
するため、生物学的処理を施す前に個別除去、もしくは
分離回収して繰り返し利用する必要がある。Cuの除去
方法としては、一般的な処理方法で十分である。例え
ば、廃水をpH調整した後、陽イオン交換樹脂充填筒に
注入してCu2+を吸着除去する方法や、廃水のpHを
制御してCu化合物を沈殿除去する方法がある。この場
合、上澄水を回収し、Cu濃度が十分に低下したことを
確認した上で生物学的処理を行えば、十分な生物活性が
得られる。上澄水ではなく沈殿物を濾別分離することも
可能である。
【0030】また、紫外線処理後に過酸化水素が残留す
ると、生物活性を阻害する可能性がある。残留過酸化水
素の分解処理法としては、活性炭処理、過酸化水素分解
酵素の投入、熱白金触媒法等が利用されている。いずれ
の方法でも十分に残留過酸化水素を分解可能であるが、
過酸化水素濃度とスルホキシド類有機硫黄化合物濃度と
の比を最適に保つことができれば、紫外線照射後の過酸
化水素残留濃度は極微量と考えられるので、一般的な活
性炭による分解処理で十分である。
【0031】
【実施例】以下実施例を挙げて本発明を具体的に示す
が、本発明はこれらの実施例のみに限定されるものでは
ない。 (実施例1)図3は、スルホキシド類含有廃水処理装置
の概略図である。紫外線照射装置1は低圧水銀ランプ用
電源2を有する低圧水銀ランプ3および紫外線反応セル
4から成り、その他にジメチルスルホキシド含有廃水を
流入する槽5およびCu化合物を貯蔵する槽6、Cu化
合物添加ポンプ7、酸化剤を貯蔵する槽8、酸化剤添加
ポンプ9、スルホキシド類含有廃水を循環する送液ポン
プ10から構成される。10,000mg/Lのジメチ
ルスルホキシドを含有する廃水300mLを流入槽5に
入れ、過酸化水素濃度が13,000mg/Lになるよ
う酸化剤貯蔵槽8に30%過酸化水素水を加え、廃水に
添加した際にCu2+濃度が100mg/Lになるよう
に硫酸銅溶液をCu化合物貯蔵槽6に加えた。廃水のp
Hが3.0になるように20%硫酸で調節し、送液ポン
プ10によって紫外線反応セル4と槽5との間を循環さ
せた。この試料の紫外線反応セル4における滞留時間
は、約25秒である。
【0032】次に254nmを主波長とする低圧水銀ラ
ンプ3を紫外線反応用の光源として使用し、上記試料に
紫外線を照射した。照射中の低圧水銀ランプは温度が上
昇するため、ランプの周囲に空気を通気して冷却した。
10分間隔で試料のサンプリングを行い、pHの測定、
およびジメチルスルホキシド、ジメチルスルホン、メタ
ンスルホン酸イオン、硫酸イオンの分析を行った。試料
の分析方法としては、ジメチルスルホキシド、およびジ
メチルスルホンはガスクロマトグラフ法を利用した。分
析に際し、残留する過酸化水素がジメチルスルホキシド
を酸化するため、事前に過酸化水素分解酵素を用いて分
解した後にこれらを分析した。メタンスルホン酸イオ
ン、硫酸イオンについては、イオンクロマトグラフ法を
利用した。これを実施例1とし、結果を図4に示した。 (比較例1)また、実施例1と同様の、上記の操作にお
いて、Cu2+を添加せずに試料を調整し、同様に紫外
線を照射したものを比較例1とした。
【0033】図4は、Cu2+を含む実施例1とCu
2+を含まない比較例1との紫外線照射量に伴うジメチ
ルスルホキシドの濃度変化である。いずれの方法で紫外
線照射を行ってもジメチルスルホキシドは減少したが、
Cu2+を共存させた場合の方がジメチルスルホキシド
処理速度は速いことがわかる。実施例1は紫外線累積照
射量が約80kW・hr/mの時点で処理を終えてい
るのに対し、比較例1は120kW・hr/mの時点
で約120mg/Lのジメチルスルホキシドが残留し、
完全に処理することができなかった。
【0034】図5は、実施例1における紫外線照射量に
伴う各成分の濃度変化である。ジメチルスルホキシド濃
度は紫外線照射に伴って低下し、ジメチルスルホン濃度
が上昇した。また、メタンスルホン酸イオンはほとんど
検出されなかった。紫外線累積照射量が100kW・h
r/mの時点でのpHは2.92であり、紫外線処理
を行ってもほとんど低下していなかった。なお、紫外線
照射中、硫黄系の臭気は全く感じられなかった。
【0035】図6は、比較例1における紫外線照射量に
伴う各成分の濃度変化である。ジメチルスルホキシド濃
度は紫外線照射に伴って低下し、メタンスルホン酸イオ
ン濃度が上昇した。また、ジメチルスルホンはほとんど
検出されなかった。紫外線累積照射量が100kW・h
r/mの時点でのpHは1.36であり、紫外線照射
前と比較して大きな低下が認められた。なお、廃水中の
ジメチルスルホキシド濃度が高いため、紫外線照射を行
っている間、過酸化水素濃度を適量溶解していても硫黄
系の臭気が感じられた。
【0036】実施例1の紫外線照射で生成した約8,0
00mg/Lジメチルスルホンは、残留するCu2+
沈殿除去した後、水で100倍まで希釈して30リット
ルとし、好気条件下で一般的な生物学的処理を施した。
約12時間の処理でジメチルスルホンは完全に分解し、
好気条件下での分解能力を確認した。 (実施例2)次に、共存させる銅を実施例1の硫酸銅か
ら金属銅粉末に変更して処理を行った。10,000m
g/Lのジメチルスルホキシドを含有する廃水300m
Lに、過酸化水素濃度が13,000mg/Lになるよ
うに30%過酸化水素水を加え、銅粉末1.0gを加え
た。溶液のpHを3.0に調整した後、送液ポンプによ
って石英製紫外線反応セルと槽との間を循環させた。次
に254nmを主波長とする低圧水銀ランプを紫外線反
応用の光源として使用し、試料に紫外線を照射した。実
験の結果、金属銅粉末は完全に溶解し、80kW・hr
/m照射した試料中には8,200mg/Lのジメチ
ルスルホンが生成しており、金属銅粉末でも実施例1と
同じ反応が進行することを確認した。
【0037】
【発明の効果】以上説明したように、本発明のスルホキ
シド類含有廃水の処理方法では、効率的にスルホン類を
生成させ、その後既存の生物学的処理によってHSO
にまで分解することができるため、高濃度の廃水でも
短時間、低コストで処理することができる。また、pH
調整を行う必要がなく、しかも硫黄系悪臭物質の発生を
抑制することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の処理フローである。
【図2】本発明の実施の形態のCu2+濃度の変化に伴
う残留ジメチルスルホキシド濃度の違いを示すグラフで
ある。
【図3】本発明の実施例1および比較例1における装置
概略図である。
【図4】本発明の実施例1および比較例1における、C
u共存下と非共存下でのジメチルスルホキシドの処理性
の比較を示すグラフである。
【図5】本発明の実施例1Cu添加処理における各成分
の濃度変化を示すグラフである。
【図6】本発明の比較例1Cu無添加処理における各成
分の濃度変化を示すグラフである。
【図7】従来のスルホキシド類含有廃水の処理フロー図
である。
【符号の説明】
1.紫外線照射装置 2.低圧水銀ランプ用電源 3.低圧水銀ランプ 4.石英製紫外線反応セル 5.ジメチルスルホキシド含有廃水流入槽 6.銅化合物添加槽 7.銅化合物注入ポンプ 8.酸化剤添加槽 9.酸化剤注入ポンプ 10.送液ポンプ
【手続補正書】
【提出日】平成11年5月6日
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】特許請求の範囲
【補正方法】変更
【補正内容】
【特許請求の範囲】
【請求項】 前記スルホキシド類含有廃水の処理にお
いて、前記酸素系酸化剤の下で紫外線を照射する工程の
開始時および終了時の廃水のpHが2〜9であることを
特徴とする請求項1に記載のスルホキシド類含有廃水の
処理方法。
【請求項10】 前記酸素系酸化剤の下で銅供給源を共
存させ、紫外線を照射してスルホキシド類を部分酸化処
理してスルホン類に変換する工程の後、生物処理により
有機物を分解処理する工程を有する、請求項1〜9のい
ずれかに記載のスルホキシド類含有廃水の処理方法。
【請求項11】 前記生物処理により有機物を分解処理
する工程の前に、銅成分を除去する工程を有する、請求
項10に記載のスルホキシド類含有廃水の処理方法。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0015
【補正方法】変更
【補正内容】
【0015】
【課題を解決するための手段】前記課題を解決する本発
明は、スルホキシド類含有廃水の処理方法で、過酸化水
素、オゾンなどの酸素系酸化剤の下で紫外線を照射して
スルホキシド類を酸化処理する工程を有するスルホキシ
ド類含有廃水の処理方法において、該酸素系酸化剤の下
で紫外線を照射する工程で銅供給源を共存させること
で、該工程での該スルホキシド類の酸化がスルホン類の
段階で安定に留まることを特徴とする。前記酸素系酸化
剤としては過酸化水素が好適に用いられる。 ─────────────────────────────────────────────────────
【手続補正書】
【提出日】平成11年8月13日
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】特許請求の範囲
【補正方法】変更
【補正内容】
【特許請求の範囲】
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0015
【補正方法】変更
【補正内容】
【0015】
【課題を解決するための手段】前記課題を解決する本発
明は、スルホキシド類含有廃水の処理方法で、過酸化水
素またはオゾンの下で紫外線を照射してスルホキシド類
を酸化処理する工程を有するスルホキシド類含有廃水の
処理方法において、該過酸化水素またはオゾンの下で紫
外線を照射する工程で銅供給源を共存させることで、該
工程での該スルホキシド類の酸化がスルホン類の段階で
安定に留まることを特徴とする。前記酸化処理工程では
過酸化水素が好適に用いられる。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 9/00 502 C02F 9/00 502N 502R 503 503C 504 504A

Claims (12)

    【特許請求の範囲】
  1. 【請求項1】 スルホキシド類含有廃水に銅供給源およ
    び酸化剤を共存させ、紫外線を照射して処理することを
    特徴とするスルホキシド類含有廃水の処理方法。
  2. 【請求項2】 前記スルホキシド類含有廃水の処理にお
    いて、共存させる酸化剤が過酸化水素であることを特徴
    とする請求項1に記載のスルホキシド類含有廃水の処理
    方法。
  3. 【請求項3】 前記スルホキシド類含有廃水の処理にお
    いて、共存させる銅供給源が二価の銅を含む化合物であ
    ることを特徴とする請求項1または2に記載のスルホキ
    シド類含有廃水の処理方法。
  4. 【請求項4】 前記スルホキシド類含有廃水の処理にお
    いて、共存させる銅供給源が単体金属銅であることを特
    徴とする請求項1または2に記載のスルホキシド類含有
    廃水の処理方法。
  5. 【請求項5】 前記スルホキシド類含有廃水の処理にお
    いて、廃水中のCu濃度が10〜3500mg/Lにな
    るように銅供給源を共存させることを特徴とする請求項
    1ないし3のいずれかに記載のスルホキシド類含有廃水
    の処理方法。
  6. 【請求項6】 前記スルホキシド類含有廃水の処理にお
    いて、紫外線の累積照射量がスルホキシド類濃度1mg
    /Lあたり5〜50W・hr/m3であることを特徴と
    する請求項1ないし5のいずれかに記載のスルホキシド
    類含有廃水の処理方法。
  7. 【請求項7】 前記スルホキシド類含有廃水の処理にお
    いて、照射する紫外線が150〜400nmの波長範囲
    のものを含むことを特徴とする請求項1ないし6のいず
    れかに記載のスルホキシド類含有廃水の処理方法。
  8. 【請求項8】 前記スルホキシド類含有廃水の処理にお
    いて、照射する紫外線の発生源が低圧水銀ランプ、高圧
    水銀ランプ、中圧水銀ランプ、キセノンランプ、重水素
    ランプおよびメタルハライドランプの中のいずれかであ
    ることを特徴とする請求項1ないし7のいずれかに記載
    のスルホキシド類含有廃水の処理方法。
  9. 【請求項9】 前記スルホキシド類含有廃水の処理にお
    いて、処理されるスルホキシド類の濃度が1〜1500
    0mg/Lであることを特徴とする請求項1ないし8の
    いずれかに記載のスルホキシド類含有廃水の処理方法。
  10. 【請求項10】 前記スルホキシド類含有廃水の処理に
    おいて、処理開始時および終了時の廃水のpHが2〜9
    であることを特徴とする請求項1ないし9のいずれかに
    記載のスルホキシド類含有廃水の処理方法。
  11. 【請求項11】 前記スルホキシド類含有廃水の処理に
    おいて、請求項1ないし10の方法で処理した後、生物
    処理により有機物を分解処理することを特徴とするスル
    ホキシド類含有廃水の処理方法。
  12. 【請求項12】 前記スルホキシド類含有廃水の処理に
    おいて、請求項1ないし10の方法で処理した後、生物
    処理により有機物を分解処理する請求項11に記載のス
    ルホキシド類含有廃水の処理方法において、該生物処理
    の前に、銅成分を除去することを特徴とするスルホキシ
    ド類含有廃水の処理方法。
JP14566698A 1998-05-27 1998-05-27 スルホキシド類含有廃水の処理方法 Expired - Lifetime JP3000996B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14566698A JP3000996B2 (ja) 1998-05-27 1998-05-27 スルホキシド類含有廃水の処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14566698A JP3000996B2 (ja) 1998-05-27 1998-05-27 スルホキシド類含有廃水の処理方法

Publications (2)

Publication Number Publication Date
JPH11333473A true JPH11333473A (ja) 1999-12-07
JP3000996B2 JP3000996B2 (ja) 2000-01-17

Family

ID=15390287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14566698A Expired - Lifetime JP3000996B2 (ja) 1998-05-27 1998-05-27 スルホキシド類含有廃水の処理方法

Country Status (1)

Country Link
JP (1) JP3000996B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070950A (ja) * 1999-09-02 2001-03-21 Kurita Water Ind Ltd ジメチルスルホキシド含有排水の処理方法及び処理装置
JP2001212597A (ja) * 2000-02-04 2001-08-07 Kurita Water Ind Ltd スルホキシド類含有排水の処理方法及び処理装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070950A (ja) * 1999-09-02 2001-03-21 Kurita Water Ind Ltd ジメチルスルホキシド含有排水の処理方法及び処理装置
JP4508317B2 (ja) * 1999-09-02 2010-07-21 栗田工業株式会社 ジメチルスルホキシド含有排水の処理方法及び処理装置
JP2001212597A (ja) * 2000-02-04 2001-08-07 Kurita Water Ind Ltd スルホキシド類含有排水の処理方法及び処理装置
JP4501204B2 (ja) * 2000-02-04 2010-07-14 栗田工業株式会社 スルホキシド類含有排水の処理方法及び処理装置

Also Published As

Publication number Publication date
JP3000996B2 (ja) 2000-01-17

Similar Documents

Publication Publication Date Title
Benitez et al. The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions
US8562828B2 (en) Wastewater treatment apparatus
US5178772A (en) Process for destruction of metal complexes by ultraviolet irradiation
KR100200535B1 (ko) 유기물 함유 폐수의 자외선 분해 처리 방법 및 장치
Aplin et al. Effect of Fe (III)-ligand properties on effectiveness of modified photo-Fenton processes
Koito et al. A novel treatment technique for DMSO wastewater
JP2009022940A (ja) 難分解性成分を含む畜産排水および有色排水の脱色方法
JPH0889975A (ja) 有機ハロゲン化合物含有水溶液の処理方法
JP5058922B2 (ja) ノニルフェノール処理方法
JP2007038113A (ja) 有機砒素化合物含有水の処理方法
Acero et al. Degradation of p-hydroxyphenylacetic acid by photoassisted Fenton reaction
JP3000996B2 (ja) スルホキシド類含有廃水の処理方法
JP2009254964A (ja) 揮発性有機化合物含有水の処理装置および処理方法
JP2792481B2 (ja) スルホキシド類含有廃水の処理方法
JP4277736B2 (ja) 有機ヒ素化合物含有水の処理方法
JPH10314763A (ja) 有機物含有廃液の処理方法
JPS63175689A (ja) アミン化合物を含む排水の処理方法
JPH11347591A (ja) 生物難分解性有機物含有汚水の処理方法
JP3506032B2 (ja) Dmso含有水の処理装置
JPH07241598A (ja) 水処理装置
JP3209195B2 (ja) 液晶パネルや半導体の製造工程におけるスルホキシド類含有排気の処理方法及びスルホキシド類含有排気の処理装置
JP2008055366A (ja) 排水処理方法
JP4430777B2 (ja) アルキルスルホキシド含有排水処理方法
JP2537586B2 (ja) 有機物の高度処理方法とその装置
JP3082036B2 (ja) パラジウムを担持した固定光触媒、めっき廃液中の有機物の処理方法および処理装置