JPH11176612A - 電圧非直線抵抗体の製造方法 - Google Patents

電圧非直線抵抗体の製造方法

Info

Publication number
JPH11176612A
JPH11176612A JP9344655A JP34465597A JPH11176612A JP H11176612 A JPH11176612 A JP H11176612A JP 9344655 A JP9344655 A JP 9344655A JP 34465597 A JP34465597 A JP 34465597A JP H11176612 A JPH11176612 A JP H11176612A
Authority
JP
Japan
Prior art keywords
powder
zno
mol
mixed
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9344655A
Other languages
English (en)
Inventor
Shigeru Tanaka
田中  滋
Seiichi Yamada
誠一 山田
Moritaka Shoji
守孝 庄司
Ken Takahashi
高橋  研
Shingo Shirakawa
晋吾 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9344655A priority Critical patent/JPH11176612A/ja
Publication of JPH11176612A publication Critical patent/JPH11176612A/ja
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【課題】寿命特性に優れたZnO素子を簡単に製造する
プロセスを提供する。 【解決手段】ZnO粉末とBi酸化物を必須添加元素と
して含んでいる数種類の金属酸化物粉末とを混合した成
形体を作り、成形体を作製するための粉末を合成する工
程のなかに、少なくとも所定量のBi酸化物粉末を2段
階に分けて混ぜることを必須とし、第1段階で出発原料
粉として混合し、第2段階を仮焼き後の粉末に混ぜる工
程を含んでいることを特徴とする電圧非直線抵抗体の製
造方法。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、主として送変電シ
ステムなどの電力分野に用いられる避雷器用のZnOを
主成分とする電圧非直線抵抗体の製造方法に係り、特に
粉末合成工程に関するものである。
【0002】
【従来の技術】最近の電力需要の伸びに応じるべく、送
変電機器にも一層の信頼性と高度化が求められている。
ZnOを主成分とする電圧非直線抵抗体(以下、ZnO
素子と記す)は、その電流電圧特性が特異な非直線性い
わゆるバリスタ特性を示すことから、避雷器の基盤デバ
イスとして幅広く利用されている。
【0003】このZnO素子は、一般に主成分のZnO
(90mol% 以上)に主添加成分として、Bi酸化物を
含み、さらに副添加物としてMn,Co,Sb,Ni,
Cr,Si,Al,Bなどの酸化物が加えられており、
これらの原料粉末を適当な方法で混合,造粒,仮焼きな
どを経た後、円盤状,ドーナツ状,板状など所定形状に
成形し、これを焼結、側面に沿面尖洛防止用の高抵抗層
を焼き付けた後、両端面に電極を形成して得られるもの
である。
【0004】このようにして得られた電力用のZnO素
子には、電流電圧特性の性能指数となる非線形係数(α
値)や、サージが入ったときの保護レベルを決める目安
となる平坦率の低減,動作開始電圧(バリスタ電圧)の
最適化,放電耐量の増加,寿命特性の改善などといった
数多くの重要な特性が求められている。なかでも長期使
用に対して信頼性を保証する寿命特性は重要である。こ
こでいう寿命特性とは具体的には、ある温度のもとでZ
nO素子に一定電圧を印加して、もれ電流の変化を調べ
るもので、長時間経過後ももれ電流が増加しないことが
求められている。
【0005】ZnO素子の寿命特性は、原理的にはn型
半導体であるZnO素子のキャリア濃度によって支配さ
れる。しかしZnO素子の電気的性質は結晶粒界の状態
に影響されるため不明な点が多い。実用上は製造プロセ
スを調節することにより、この寿命特性を改善してい
る。代表的には、添加物のBi酸化物の変態を利用する
制御法が知られている。たとえば特開昭62−93904 号に
おいては焼結体を得たのち熱処理を4〜5時間という長
時間あるいは多段階処理を行い、焼結体中にγ型Bi酸
化物を分散させる制御法である。また特公昭62−6324号
においては、焼結体表面からBi酸化物相を拡散させる
方法が示されている。
【0006】
【発明が解決しようとする課題】ZnO素子の電気特性
にとって、添加物のBi酸化物はきわめて重要である。
構造的にはBi成分は結晶粒界に偏析して、そこに電気
的な障壁を形成する。この電気的な障壁がZnO素子の
電気特性を左右する。寿命特性においても結晶粒界の重
要性、すなわちBi酸化物の挙動が重要である。
【0007】一方、Bi酸化物の代表的組成であるBi
23は、融点が830℃程度と低くかつ揮発分解しやす
い不安定な物質である。そのためZnO素子を作製する
製造工程中で揮発消失することが問題となっている。
【0008】寿命特性を改善するために前記の従来技術
を用いた場合、熱処理によってBi酸化物の相変態を図
る方法では、熱処理時間が4時間以上と長いために、所
期の組成が得られない可能性が高い。そのため特性が変
化する可能性がある。すなわち製品ロットの安定性が低
いという問題がある。またBiの表面拡散法では、試料
表面部と中心部とでは、Bi濃度が異なるという不均一
性を本質的に含んでおり、ZnO素子としての電気的特
性が保証できない問題がある。
【0009】そこで本発明では、寿命特性の良いZnO
素子を、比較的簡単な方法で製造できる製造方法の提供
を目的とするものである。
【0010】
【課題を解決するための手段】本発明者らは鋭意検討を
進めた結果、粉末を合成する段階で、添加物のうちBi
酸化物を2度に分けて添加混合し、このような工程を経
て得られた粉末を用いて作製したZnO素子は、寿命特
性に優れていることを見出した。本発明は、この事実を
基に得られたものであり、その骨子は、(1).ZnO粉末
とBi酸化物を必須添加元素として含んでいる数種類の
金属酸化物粉末とを混合し、所望形状の成形体を作り、
これを熱処理して焼結体を得る工程を経て製造される、
電圧の変化に対して電流が非線形に変化する特性を示す
焼結体から成る電圧非直線抵抗体の製造方法において、
成形体を作製するための粉末を合成する工程のなかに、
少なくとも所定量のBi酸化物粉末を2段階に分けて混
ぜることを必須とし、第1段階で出発原料粉として混合
し、第2段階を仮焼き後の粉末に混ぜる工程を含んでい
ることを特徴とする電圧非直線抵抗体の製造方法であ
り、(2).仮焼き後の第2段階に混ぜる粉末の量は、所定
量の20%以上で80%を超えない量を混ぜることを特
徴とする電圧非直線抵抗体の製造方法、である。
【0011】通常ZnO素子を作製する工程としては、
ZnO粉末とZnOに対して1mol%程度のBi、その他
の金属酸化物をボールミルなどにより混合する。このス
ラリーを乾燥して仮焼きし、ZnO素子用の粉末を得
る。あるいは添加物混合粉を仮焼きして、その後ZnO
粉末と混ぜてZnO素子用粉末を得ることが知られてい
る。
【0012】本発明では、ZnO素子に必要な所定量の
Bi酸化物を2回に分けて混合しZnO素子用粉末を得
るところに特徴がある。すなわち所定量のBi酸化物粉
の一部を最初に混合し、仮焼き粉を得る。この仮焼き粉
に残りのBi酸化物粉を混ぜてZnO素子用粉末にす
る。仮焼き粉は、添加物粉だけでも良いし、またZnO粉
に添加物が混じった仮焼き粉でも良い。
【0013】その後、通常の方法で造粒,成形,焼結,
側面高抵抗層焼き付け処理してZnO素子を得る。ZnO
素子の電気的特性にとって最も重要な働きをするBi酸
化物を2段階に分けて混合する方法により、ZnO素子
粒界の組成・特性を安定化でき、従来よりも簡単な方法
で、寿命特性の優れたZnO素子を製造することができ
る。
【0014】2段階目に入れるBi酸化物粉量は、所定
量の20%以上で80%を超えないことがよい。2段階
目に入れるBi量が所定量の20%よりも少ないと、寿
命特性改善の効果が少なく、また80%以上では、Zn
O素子の電気的特性が安定しない。また2段階だけでな
く、多数段階に分けてBi酸化物を混合しても構わな
い。
【0015】以下、具体的実施例によって本発明を説明
する。
【0016】
【発明の実施の形態】(実施例1)出発原料粉として純
度99.9% 以上のZnO:97.4mol%,Bi23
0.6mol%,Sb23:0.45mol%,MnO:0.5m
ol%,CoO:0.5mol% ,NiO:0.4mol%,S
iO2 :0.1mol%,Al23:0.05mol%になるよ
うに各粉末を所定量秤量した。このうちBi23の半分
量と残りの添加物粉末について樹脂ボール(φ15)を
媒体としたボールミル混合(溶媒としてイオン交換水を
使用)を20時間行った。この粉末混合物を大型乾燥炉
中にて、120℃で乾燥し、その後大気中750℃、4
時間保持の条件で仮焼きした。
【0017】この仮焼き粉末にBi23の残り半分とZ
nO粉末とをボールミル混合し、スラリーを乾燥後、Z
nO素子用粉末(原料粉末)とした。
【0018】準備した原料粉末に適当量の5%ポリビニ
ルアルコール(PVA)水溶液を加え、再度ボールミル
混合(6時間、樹脂ボール使用)によって造粒粉を作製
した。得られたそれぞれの原料粉末を金型に入れ、一軸
プレスにより円盤状の成形体(φ30,厚み2mm)を作
製した。
【0019】次に、それぞれの成形体を大気中1200
℃、3時間保持の条件で本焼結し、側面には沿面尖洛防
止用の高抵抗ガラス層を焼き付け、試料とした。得られ
た試料の両面を簡単に研磨して平行性を出した後、Ag
ペーストを塗付し電気的特性測定用の電極を設けた。図
1に本発明による製造プロセスを示す。また比較用試料
として、Bi23を1度に混合し、仮焼きしたのち、Z
nO粉末を混合した従来プロセスに従った原料粉末を用
いて、上記の方法で作製したZnO素子も準備した。
【0020】ZnO素子の寿命特性を以下の方法で検討
した。はじめに室温で直流の電流−電圧特性を測定し、
ZnO素子に0.25mAの電流が流れるときの電圧
(Vb)を求めた。Vbの値は、単位厚みに換算して、
本発明品,比較試料とも約180V/mmであった。次
にZnO素子を恒温層内にセットし、温度を120℃に
保持した。この状態でVbの90%の値(160V/m
m)を印加し、もれ電流の時間経過を調べた。
【0021】表1に結果を示す。
【0022】
【表1】
【0023】表から分かるように、本発明の製造工程の
ようにBi酸化物粉を2度に分けて混合して得た原料粉
末を用いて作製したZnO素子では、上記のような過酷
な条件下において、200時間という長時間経過したと
きでも、そのもれ電流値は、初期の値と殆ど変わらず、
逆に小さくなるぐらい安定性に優れている。これに対し
て、従来法で作製したZnO素子では、10時間経過し
た段階で、初期もれ電流の10倍近く流れており、その
後は熱暴走を起こし測定が不可能であった。すなわち寿
命特性がきわめて悪いことが分かる。
【0024】(実施例2)実施例1と同じ方法でZnO
素子用原料粉末を合成した。この際、2回目に投入する
Bi23量を、所定量の18%,25%,60%,80
%,85%と変えて原料粉末を作製した。ZnO素子の
形状は実施例1と同じである。また実施例1と同じ寿命
特性試験を行った。寿命試験を200時間行った後に、
再び電流−電圧試験を行い、試料に0.25mA 流れる
電圧(Vb:V/mm)を測定しこれを最初のVb値との
変化の度合いで、試料の安定性を評価した。
【0025】結果を表2に示す。
【0026】
【表2】
【0027】表から分かるように、2回目に投入するB
23量が所定量18%程度では、試料番号1に見られ
るように寿命試験で200時間後のもれ電流値が大きく
上昇している。逆に多く入れた場合では、試料番号5の
ように、寿命特性は良いが、その後の電流−電圧特性が
初期とは大きく変化してしまい、ZnO素子の安定性と
いう点で問題である。
【0028】
【発明の効果】本発明では、ZnO素子にとって重要な
Bi酸化物を、2回に分けて混合するという比較的簡単
なプロセスにより、ZnO素子の寿命特性を安定化させ
ることができる。そのためこれを用いたZnO素子を組
み込んだ電力用避雷器などの信頼性を確保できる。その
ため送変電システムの安定性に寄与すること大である。
【図面の簡単な説明】
【図1】本発明による電圧非直線抵抗体製造プロセスを
示すフローチャート。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 研 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 白川 晋吾 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】ZnO粉末とBi酸化物を必須添加元素と
    して含んでいる数種類の金属酸化物粉末とを混合し、所
    望形状の成形体を作り、これを熱処理して焼結体を得る
    工程を経て製造される、電圧の変化に対して電流が非線
    形に変化する特性を示す焼結体から成る電圧非直線抵抗
    体の製造方法において、成形体を作製するための粉末を
    合成する工程のなかに、少なくとも所定量のBi酸化物
    粉末を2段階に分けることを必須とし、第1段階で出発
    原料粉として混合し、第2段階を仮焼き後の粉末に混ぜ
    る工程を含んでいることを特徴とする電圧非直線抵抗体
    の製造方法。
  2. 【請求項2】請求項1記載の電圧非直線抵抗体の製造方
    法において、仮焼き後の第2段階に混ぜる粉末の量は、
    所定量の20%以上で80%を超えない量を混ぜること
    を特徴とする電圧非直線抵抗体の製造方法。
JP9344655A 1997-12-15 1997-12-15 電圧非直線抵抗体の製造方法 Pending JPH11176612A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9344655A JPH11176612A (ja) 1997-12-15 1997-12-15 電圧非直線抵抗体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9344655A JPH11176612A (ja) 1997-12-15 1997-12-15 電圧非直線抵抗体の製造方法

Publications (1)

Publication Number Publication Date
JPH11176612A true JPH11176612A (ja) 1999-07-02

Family

ID=18370959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9344655A Pending JPH11176612A (ja) 1997-12-15 1997-12-15 電圧非直線抵抗体の製造方法

Country Status (1)

Country Link
JP (1) JPH11176612A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018531857A (ja) * 2015-07-17 2018-11-01 エプコス アクチエンゲゼルシャフトEpcos Ag 誘電体組成物、誘電体素子、電子部品および積層電子部品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018531857A (ja) * 2015-07-17 2018-11-01 エプコス アクチエンゲゼルシャフトEpcos Ag 誘電体組成物、誘電体素子、電子部品および積層電子部品
US10490350B2 (en) 2015-07-17 2019-11-26 Tdk Electronics Ag Dielectric composition, dielectric element, electronic component and multi-layer electronic component

Similar Documents

Publication Publication Date Title
US5770113A (en) Zinc oxide ceramics and method for producing the same
JPS604561B2 (ja) 非直線電圧依存特性を有するセラミツク電気抵抗およびその製造方法
US4452729A (en) Voltage stable nonlinear resistor containing minor amounts of aluminum and boron
JPH11176612A (ja) 電圧非直線抵抗体の製造方法
JP3323701B2 (ja) 酸化亜鉛系磁器組成物の製造方法
JPH01317158A (ja) バリスタ材料の製法
JP3313533B2 (ja) 酸化亜鉛系磁器組成物及びその製造方法
JP2536128B2 (ja) 電圧非直線抵抗素子の製造方法
JPS6057205B2 (ja) 非直線高抵抗を有するセラミツク電気材料およびその製造方法
JPS6249961B2 (ja)
JP2001102204A (ja) サーミスタ組成物とその製造方法及びサーミスタ
JPH0552642B2 (ja)
JP2882131B2 (ja) サーミスタ用酸化物半導体の製造方法
JPH05135913A (ja) サーミスタ用酸化物半導体の製造方法
JP3178083B2 (ja) チタン酸バリウム系セラミックス半導体およびその製造方法
JPH0383846A (ja) バルスタの製造方法
JPS6028121B2 (ja) 電圧非直線抵抗器の製造方法
JP5929152B2 (ja) 非直線抵抗体素子の製造方法
JPH0696908A (ja) 電圧非直線抵抗体の製造方法
JPS63315561A (ja) サーミスタ磁器組成物
JPS6046005A (ja) 電圧非直線抵抗体
JPS6330761B2 (ja)
JPH0817607A (ja) 高温測定用サーミスタ
JPH03161902A (ja) バリスタの製造方法
JP2000091108A (ja) バリスタおよびその製造方法