JPH11172384A - Nonoriented silicon steel sheet with low iron loss - Google Patents

Nonoriented silicon steel sheet with low iron loss

Info

Publication number
JPH11172384A
JPH11172384A JP9350164A JP35016497A JPH11172384A JP H11172384 A JPH11172384 A JP H11172384A JP 9350164 A JP9350164 A JP 9350164A JP 35016497 A JP35016497 A JP 35016497A JP H11172384 A JPH11172384 A JP H11172384A
Authority
JP
Japan
Prior art keywords
iron loss
steel sheet
steel
ppm
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9350164A
Other languages
Japanese (ja)
Other versions
JP3424178B2 (en
Inventor
Yoshihiko Oda
善彦 尾田
Nobuo Yamagami
伸夫 山上
Akira Hiura
昭 日裏
Yoshihiko Ono
義彦 小野
Yasushi Tanaka
靖 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP35016497A priority Critical patent/JP3424178B2/en
Publication of JPH11172384A publication Critical patent/JPH11172384A/en
Application granted granted Critical
Publication of JP3424178B2 publication Critical patent/JP3424178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce iron loss after finish annealing at a low cost by providing a specific composition consisting of C, Si, Mn, P, N, Al, S, Sb, Ti, and the balance essentially Fe. SOLUTION: This steel sheet has a composition consisting of, by weight, <=0.005% C, 1.7-4.0% Si, 0.05-1.0% Mn, <=0.2% P, <=0.005% (including 0%) N, 0.1-1.0% Al, $0O.01% (including 0%) S, 0.001-0.05% Sb, 0.001-0.01% Ti, and the balance essentially Fe. By combinedly adding Ti and Sb in particular among the above elements, precipitates are agglomerated, coalesced, and coarsened and grain growth characteristic is improved. As the result, iron loss is reduced. The steel sheet can be produced by the ordinary method of nonoriented silicon steel sheet production, on condition that respective contents of the component elements including Sb and Ti in the composition are within the above ranges, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【従来の技術】近年、電気機器の省エネルギーの観点よ
り、より鉄損の低い電磁鋼板が求められるようになって
いる。この鉄損を低減するためには結晶粒の粗大化が効
果的であり、低鉄損が特に要求されるSi+Al量が1〜3
%程度の中・高級グレードの無方向性電磁鋼板において
は、仕上焼鈍温度を1000℃程度まで高めたり、焼鈍時の
ラインスピードを下げ、焼鈍時間を長くすることにより
結晶粒の粗大化を図っている。
2. Description of the Related Art In recent years, electromagnetic steel sheets having lower iron loss have been demanded from the viewpoint of energy saving of electric equipment. In order to reduce the iron loss, it is effective to increase the crystal grain size.
% Of medium- and high-grade non-oriented electrical steel sheets, increase the finish annealing temperature to about 1000 ° C, lower the line speed during annealing, and increase the annealing time to increase the grain size. I have.

【0002】この仕上焼鈍時の粒成長性を良好にするた
めには、鋼板中の介在物、析出物量を低減することが効
果的である。このため、これまで介在物、析出物を無害
化することが試みられており、特に高級材ではMnSの析
出防止の観点からS量を低減させる試みがなされてき
た。
In order to improve the grain growth during the finish annealing, it is effective to reduce the amount of inclusions and precipitates in the steel sheet. For this reason, attempts have been made to render the inclusions and precipitates harmless, and particularly in high-grade materials, attempts have been made to reduce the S content from the viewpoint of preventing precipitation of MnS.

【0003】例えば、特公平2−50190号公報に
は、Si:2.5〜3.5%、Al:0.25〜1.0%の鋼においてS
を15ppm以下、Oを20ppm以下、Nを25ppm以下とするこ
とにより鉄損を低下させる技術が開示されている。
For example, Japanese Patent Publication No. 50190/1990 discloses that S: 2.5 to 3.5% and Al: 0.25 to 1.0%
A technique is disclosed in which iron loss is reduced by setting the content of O to 15 ppm or less, O to 20 ppm or less, and N to 25 ppm or less.

【0004】さらに特開平5−140647号公報に
は、Si:2.0〜4.0%、Al:0.10〜2.0%の鋼においてS
を30ppm以下、Ti、Zr、Nb、Vをそれぞれ50ppm以下とす
ることにより鉄損を低下させる技術が開示されている。
Further, Japanese Patent Application Laid-Open No. Hei 5-140647 discloses that S: 2.0 to 4.0% and Al: 0.10 to 2.0%
A technique for reducing iron loss by reducing Ti to 30 ppm or less and Ti, Zr, Nb, and V to 50 ppm or less, respectively, is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかし、これらの技術
においては、実質的にはS量を10ppm以下としているた
め、極低S化処理に起因する製鋼コストの著しい上昇が
避けられないという問題点がある。
However, in these technologies, since the amount of S is substantially set to 10 ppm or less, there is a problem that a remarkable increase in steelmaking cost due to the extremely low S treatment is inevitable. There is.

【0006】本発明はこのような事情に鑑みなされたも
のであり、仕上焼鈍後の鉄損の低い電磁鋼板を、安価に
提供することを課題とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide an inexpensive electromagnetic steel sheet having low iron loss after finish annealing.

【0007】[0007]

【課題を解決するための手段】本発明の骨子は、無方向
性電磁鋼板において、TiとSbの複合添加により、粒成長
性を大幅に向上させ、それによって鉄損を低下させるこ
とである。
The gist of the present invention is to significantly improve grain growth and reduce iron loss in a non-oriented electrical steel sheet by adding a combination of Ti and Sb.

【0008】すなわち、前記課題は、重量%で、C:0.
005%以下、Si:1.7〜4.0%、Mn:0.05〜1.0%、P:0.
2%以下、N:0.005%以下(0を含む)、Al:0.1〜1.0
%、S:0.01%以下(0を含む)、Sb:0.001〜0.05
%、Ti:0.001〜0.01%を含有し、残部が実質的にFeで
あることを特徴とする鉄損の低い無方向性電磁鋼板によ
り解決される。
[0008] That is, the above-mentioned problem is that C: 0.
005% or less, Si: 1.7 to 4.0%, Mn: 0.05 to 1.0%, P: 0.
2% or less, N: 0.005% or less (including 0), Al: 0.1 to 1.0
%, S: 0.01% or less (including 0), Sb: 0.001 to 0.05
%, Ti: 0.001 to 0.01%, and the balance is substantially Fe.

【0009】ここで、「残部が実質的にFeである」と
は、本発明の作用効果を無くさない限り、不可避不純物
を始め、他の微量元素を含有するものが本発明の範囲に
含まれることを意味するものである。
Here, "the balance is substantially Fe" means that those containing other trace elements including unavoidable impurities are included in the scope of the present invention unless the effects of the present invention are lost. It means that.

【0010】(発明に至る経緯とTi、Sbの限定理由)発
明者らは、無方向性電磁鋼板の鉄損低減手法について鋭
意研究を行った。
(Circumstances leading to the invention and reasons for limiting Ti and Sb) The inventors have conducted intensive studies on a method for reducing iron loss of a non-oriented electrical steel sheet.

【0011】最初に、鉄損に及ぼすSbの影響を調査する
ため、C:0.0025%、Si:1.85%、Mn:0.20%、P:0.
01%、Al:0.31%、S:0.003%、N:0.0021%とし、
(1)Ti free、Sb freeとした鋼、(2)Ti free、Sb:
0.004%とした鋼、(3)Ti:0.004%、Sb freeとした
鋼、(4)Ti :0.004%、Sb:0.004%とした鋼の4種類
の材料を実験室にて真空溶解し、熱延後、酸洗を行っ
た。引き続きこの熱延板に75%H2−25%N2雰囲気で77
0℃×3hrの熱延板焼鈍を施し、その後、板厚0.5mmまで
冷間圧延し、25%H2−75%N2雰囲気で900℃×2min間
の仕上焼鈍を行った。
First, in order to investigate the effect of Sb on iron loss, C: 0.0025%, Si: 1.85%, Mn: 0.20%, P: 0.2%.
01%, Al: 0.31%, S: 0.003%, N: 0.0021%,
(1) Ti free, Sb free steel, (2) Ti free, Sb:
Four types of materials, 0.004% steel, (3) Ti: 0.004%, Sb free steel, and (4) Ti: 0.004%, Sb: 0.004% steel, were vacuum melted in a laboratory and heated. After the elongation, pickling was performed. Subsequently, the hot rolled sheet was heated to 77% in a 75% H 2 -25% N 2 atmosphere.
A hot rolled sheet was annealed at 0 ° C. × 3 hours, then cold rolled to a sheet thickness of 0.5 mm, and subjected to finish annealing at 900 ° C. × 2 min in a 25% H 2 -75% N 2 atmosphere.

【0012】表1に、このようにして得られたサンプル
の磁気特性を示す。ここで、磁気測定は25cmエプスタイ
ン法により行った。
Table 1 shows the magnetic properties of the samples thus obtained. Here, the magnetic measurement was performed by a 25 cm Epstein method.

【0013】[0013]

【表1】 [Table 1]

【0014】表1より磁束密度にはSbおよびTi添加の影
響は認められないことがわかる。鉄損はSb単独添加では
ほとんど変化せず、Ti単独添加鋼では若干増加すること
がわかる。これに対し、Ti、Sbを複合添加した場合には
大幅に低下することがわかる。
From Table 1, it can be seen that the influence of Sb and Ti addition is not recognized on the magnetic flux density. It can be seen that the iron loss hardly changes when Sb is added alone, and increases slightly when steel is added with Ti alone. On the other hand, it can be seen that when Ti and Sb are added in combination, the content is significantly reduced.

【0015】この鉄損低下の原因を調査するため光学顕
微鏡にて組織観察を行った。その結果、無添加材に比
べ、Sb単独添加鋼では結晶粒径は変化せず、Ti単独添加
鋼では若干細粒となっていた。これに対し、Ti、Sb複合
添加鋼の結晶粒は約1.5倍に粗大化していることが明ら
かとなった。
In order to investigate the cause of the decrease in iron loss, the structure was observed with an optical microscope. As a result, the crystal grain size was not changed in the steel with Sb added alone, and it was slightly finer in the steel with Ti added alone, as compared with the non-added material. On the other hand, it became clear that the grain size of the Ti and Sb composite added steel was about 1.5 times larger.

【0016】そこで、このように粒成長性が変化した原
因を調査するためTEMにて析出物観察を行った。その
結果、Sb単独添加を行った材料ではMnSが多数観察され
たが、その量およびサイズはSb無添加材とほぼ同等であ
った。一方、Ti単独添加鋼ではMnSとTi系析出物がそれ
ぞれ単独析出しており、Ti系析出物は非常に微細に析出
していることが明らかとなった。これに対し、Ti、Sb複
合添加材においては、Ti系析出物とMnSの複合析出物が
多数認められ、また、単独析出したMnSのサイズも無添
加材よりも大きくなっていることが判明した。
Therefore, in order to investigate the cause of the change in the grain growth, precipitates were observed by TEM. As a result, a large amount of MnS was observed in the material to which only Sb was added, but the amount and size were almost the same as those of the material without Sb. On the other hand, in the Ti-added steel, MnS and Ti-based precipitates were separately precipitated, respectively, and it became clear that Ti-based precipitates were very finely precipitated. On the other hand, in the Ti and Sb composite additive materials, a large number of composite precipitates of Ti-based precipitates and MnS were observed, and it was also found that the size of MnS precipitated alone was larger than that of the additive-free material. .

【0017】以上のことから、Ti、Sbを複合添加した場
合に析出物が凝集合体し粗大化することが、粒成長性向
上の原因と考えられる。このような、Ti、Sbの複合添加
により粒成長性が向上し、鉄損が低下することは従来知
られておらず、全く新規な知見である。
From the above, it is considered that when Ti and Sb are added as a composite, the precipitates are aggregated and coalesced and become coarse, which is a cause of the improvement in grain growth. It is not heretofore known that such a composite addition of Ti and Sb enhances grain growth and reduces iron loss, and is a completely new finding.

【0018】次にSbの最適添加量を調査するため、C:
0.0026%、Si:1.85%、Mn:0.18%、P:0.020%、A
l:0.30%、S:0.003%、N:0.0020%、Ti:0.004%と
し、Sb量をtr.〜600ppmの範囲で変化させた鋼を実験室
真空溶解し、熱延後、酸洗を行った。引き続きこの熱延
板に75%H2−25%N2雰囲気で770℃×3hrの熱延板焼
鈍を施し、その後、板厚0.5mmまで冷間圧延し、25%H2
−75%N2雰囲気で900℃×2min間の仕上焼鈍を行っ
た。
Next, in order to investigate the optimum addition amount of Sb, C:
0.0026%, Si: 1.85%, Mn: 0.18%, P: 0.020%, A
l: 0.30%, S: 0.003%, N: 0.0020%, Ti: 0.004%, steel in which the amount of Sb was changed in the range of tr. to 600 ppm was vacuum melted in a laboratory, hot rolled, and pickled. Was. Subsequently, the hot-rolled sheet was subjected to hot-rolled sheet annealing at 770 ° C. for 3 hours in a 75% H 2 -25% N 2 atmosphere, and then cold-rolled to a sheet thickness of 0.5 mm to obtain a 25% H 2
Finish annealing was performed at 900 ° C. for 2 minutes in a −75% N 2 atmosphere.

【0019】図1に、Sb量と鉄損W15/50の関係を示
す。図1より、Sb添加量が10ppm以上の領域で鉄損が低
下することがわかる。しかし、Sbをさらに添加し、Sb>
100ppmとなった場合には、鉄損は再び増大することもわ
かる。
FIG. 1 shows the relationship between the amount of Sb and the iron loss W 15/50 . FIG. 1 shows that iron loss is reduced in a region where the amount of Sb added is 10 ppm or more. However, when Sb is further added, Sb>
It can also be seen that when the concentration becomes 100 ppm, the iron loss increases again.

【0020】このSb>100ppmの領域での鉄損増大原因を
調査するため、光学顕微鏡による組織観察を行った。そ
の結果、平均結晶粒径が若干小さくなっていた。この原
因は明確ではないが、Sbが粒界に偏析しやすい元素であ
るため、Sbの粒界ドラッグ効果により粒成長性が低下し
たものと考えられる。但し、Sbを500ppmまで添加しても
鉄損はSbフリー鋼よりも低いことがわかる。
In order to investigate the cause of the increase in iron loss in the region where Sb> 100 ppm, the structure was observed with an optical microscope. As a result, the average crystal grain size was slightly smaller. Although the cause is not clear, it is considered that since Sb is an element that is easily segregated at the grain boundary, the grain growth property is reduced by the grain boundary drag effect of Sb. However, even if Sb is added up to 500 ppm, the iron loss is lower than that of Sb-free steel.

【0021】以上のことより、Sbは10ppm以上としコス
トの観点より上限を500ppmとする。また、鉄損の観点よ
り20ppm以上100ppm以下とすることが望ましい。
From the above, Sb is set to 10 ppm or more, and the upper limit is set to 500 ppm from the viewpoint of cost. Further, from the viewpoint of iron loss, it is desirable to set the content to 20 ppm or more and 100 ppm or less.

【0022】次にTiの最適添加量を調査するため、C:
0.0026%、Si:1.85%、Mn:0.18%、P:0.020%、Al:
0.30%、S:0.003%、N:0.0020%、Sb:0.004%と
し、Ti量をtr.〜200ppmの範囲で変化させた鋼を実験室
真空溶解し、熱延後、酸洗を行った。引き続きこの熱延
板に75%H2−25%N2雰囲気で770℃×3hrの熱延板焼
鈍を施し、その後、板厚0.5mmまで冷間圧延し、25%H2
−75%N2雰囲気で900℃×2min間の仕上焼鈍を行った。
Next, in order to investigate the optimum addition amount of Ti, C:
0.0026%, Si: 1.85%, Mn: 0.18%, P: 0.020%, Al:
Steel in which 0.30%, S: 0.003%, N: 0.0020%, Sb: 0.004%, and the Ti amount was changed in the range of tr. To 200 ppm was melted in a laboratory under vacuum, hot rolled, and then pickled. Subsequently, the hot-rolled sheet was subjected to hot-rolled sheet annealing at 770 ° C. for 3 hours in a 75% H 2 -25% N 2 atmosphere, and then cold-rolled to a sheet thickness of 0.5 mm to obtain a 25% H 2
Finish annealing was performed at 900 ° C. for 2 minutes in a −75% N 2 atmosphere.

【0023】図2に、Ti量と鉄損W15/50の関係を示
す。図2より、Ti添加量が10ppm以上の領域で鉄損が低
下することがわかる。しかし、Tiをさらに添加し、Ti>
100ppmとなった場合には、鉄損は再び増大することもわ
かる。
FIG. 2 shows the relationship between the amount of Ti and the iron loss W 15/50 . FIG. 2 shows that iron loss is reduced in the region where the amount of Ti added is 10 ppm or more. However, if Ti is further added, Ti>
It can also be seen that when the concentration becomes 100 ppm, the iron loss increases again.

【0024】このTi>100ppmの領域での鉄損増大原因を
調査するため、光学顕微鏡による組織観察を行った。そ
の結果、平均結晶粒径が若干小さくなっていた。この原
因はTi量の増大にともないfree Tiのドラッグ効果が大
きくなるためと考えられる。
In order to investigate the cause of the increase in iron loss in the region where Ti> 100 ppm, the structure was observed with an optical microscope. As a result, the average crystal grain size was slightly smaller. It is considered that this is because the drag effect of free Ti increases as the Ti amount increases.

【0025】以上のことより、Tiは10ppm以上とし上限
を100ppmとする。また、鉄損の観点より10ppm以上60ppm
以下とすることが望ましい。
From the above, Ti is set to 10 ppm or more and the upper limit is set to 100 ppm. Also, from the viewpoint of iron loss, 10 ppm or more and 60 ppm
It is desirable to make the following.

【0026】(その他の成分の限定理由)次に、その他
の成分の限定理由について説明する。 C: Cは磁気時効の問題があるため0.005%以下とす
る。 Si: Siは鋼板の固有抵抗を上げるために有効な元素で
あるため1.7%以上添加する。一方、4.0%を超えると飽
和磁束密度の低下に伴い磁束密度が低下するため上限を
4.0%とする。 Mn: Mnは熱間圧延時の赤熱脆性を防止するために、0.
05%以上必要であるが、1.0%以上になると磁束密度を
低下させるので0.05〜1.0%とする。 P: Pは鋼板の打ち抜き性を改善するために必要な元
素であるが、0.2%を超えて添加すると鋼板が脆化する
ため0.2%以下とする。
(Reasons for Limiting Other Components) Next, reasons for limiting other components will be described. C: C is 0.005% or less because of the problem of magnetic aging. Si: Since Si is an element effective for increasing the specific resistance of a steel sheet, it is added in an amount of 1.7% or more. On the other hand, if it exceeds 4.0%, the magnetic flux density decreases with the decrease in the saturation magnetic flux density, so the upper limit is set.
4.0%. Mn: Mn is 0.1% to prevent red hot brittleness during hot rolling.
It is required to be not less than 05%, but if it is not less than 1.0%, the magnetic flux density is reduced. P: P is an element necessary for improving the punching property of the steel sheet, but if added in excess of 0.2%, the steel sheet will be embrittled, so that the content is set to 0.2% or less.

【0027】N: Nは、含有量が多い場合にはAlNの
析出量が多くなり、粒成長性が低下しするため0.005%
以下とする。 Al: Alは微量に添加すると微細なAlNを生成し磁気特
性を劣化させる。このため、下限を0.1%以上とし、Al
Nを粗大化する必要がある。一方、1.0%以上になると
磁束密度を低下させるため上限は1.0%以下とする。 S: Sは含有量が多い場合にはMnSの析出量が多くな
り、粒成長性が低下するため0.01%以下とする。
N: 0.005% of N, when the content of N is large, the precipitation amount of AlN increases, and the grain growth property decreases.
The following is assumed. Al: When Al is added in a small amount, fine AlN is generated and magnetic properties are deteriorated. Therefore, the lower limit is set to 0.1% or more,
N needs to be coarsened. On the other hand, if it exceeds 1.0%, the magnetic flux density decreases, so the upper limit is made 1.0% or less. S: When the content of S is large, the precipitation amount of MnS increases, and the grain growth is reduced, so that the content of S is set to 0.01% or less.

【0028】(製造方法)本発明においては、Sb、Tiを
はじめ、前記各成分が所定の範囲内であれば、製造方法
は通常の無方向性電磁鋼板を製造する方法でかまわな
い。すなわち、転炉で吹練した溶鋼を脱ガス処理し所定
の成分に調整し、引き続き鋳造、熱間圧延を行う。熱間
圧延時の仕上焼鈍温度、巻取り温度は特に規定する必要
はなく、通常の範囲でかまわない。また、熱延後の熱延
板焼鈍は行っても良いが必須ではない。次いで一回の冷
間圧延、もしくは中間焼鈍をはさんだ2回以上の冷間圧
延により所定の板厚とした後に、最終焼鈍を行う。
(Manufacturing method) In the present invention, as long as each of the above components including Sb and Ti is within a predetermined range, the manufacturing method may be a method of manufacturing a normal non-oriented electrical steel sheet. That is, the molten steel blown in the converter is degassed and adjusted to a predetermined component, and subsequently casting and hot rolling are performed. The finish annealing temperature and the winding temperature at the time of hot rolling do not need to be particularly specified, and may be in a normal range. In addition, hot-rolled sheet annealing after hot-rolling may be performed, but is not essential. Next, final cold-rolling or cold-rolling two or more times with intermediate annealing to obtain a predetermined sheet thickness is performed, followed by final annealing.

【0029】[0029]

【実施例】表2に示す鋼を用い、転炉で吹練した後に脱
ガス処理を行うことにより所定の成分に調整後鋳造し、
スラブを1200℃で1hr加熱した後、板厚2.0mmまで熱間
圧延を行った。熱延仕上げ温度は750℃とした。巻取り
温度は610℃とし、酸洗後、表2に示す条件で熱延板焼鈍
を施した。熱延板焼鈍雰囲気は、75%H2−25%N2であ
った。その後、板厚0.5mmまで冷間圧延を行い、表2に
示す仕上焼鈍条件で焼鈍を行った。仕上焼鈍雰囲気は、
10%H2−90%N2であった。
EXAMPLES The steel shown in Table 2 was used, and after being degassed after being blown in a converter, the steel was adjusted to a predetermined component and cast.
After the slab was heated at 1200 ° C. for 1 hour, hot rolling was performed to a thickness of 2.0 mm. The hot rolling finishing temperature was 750 ° C. The winding temperature was 610 ° C., and after pickling, hot rolled sheet annealing was performed under the conditions shown in Table 2. The hot rolled sheet annealing atmosphere was 75% H 2 -25% N 2 . Thereafter, cold rolling was performed to a sheet thickness of 0.5 mm, and annealing was performed under finish annealing conditions shown in Table 2. The finish annealing atmosphere is
10% H 2 -90% N 2 .

【0030】磁気測定は25cmエプスタイン試験片を用い
て行った((L+C)/2)。各鋼板の磁気特性を表2
に併せて示す。
The magnetic measurement was performed using a 25 cm Epstein test piece ((L + C) / 2). Table 2 shows the magnetic properties of each steel sheet.
Are shown together.

【0031】[0031]

【表2】 [Table 2]

【0032】表2において、No.1〜No.12の鋼板は、Si
のレベルが約1.85%であり、No.13〜No.23、No.25〜No.
28の鋼板は、Siのレベルが2.78〜2.85%である。同一Si
のレベルで比較した場合、表2の備考欄に本発明鋼と記
載した、全ての成分値が本発明の範囲内に入る鋼板は、
他の鋼板に比して鉄損W15/50が低く、磁束密度B50
大きい。
In Table 2, the steel sheets No. 1 to No. 12 were made of Si
No. 13 to No. 23, No. 25 to No.
The 28 steel sheets have a Si level of 2.78 to 2.85%. Same Si
When compared at the level of, the steel sheet described as the steel of the present invention in the remarks column of Table 2, all the component values are within the range of the present invention,
Iron loss W 15/50 is low and magnetic flux density B 50 is large as compared with other steel sheets.

【0033】これに対して、No.8の鋼板は、SbとTi含有
量が本発明の範囲を下回っているので、鉄損の値が高く
なっている。No.9の鋼板は、Sb含有量が本発明の範囲を
下回っており、No.10の鋼板はSb含有量が本発明の範囲
を超えているので、共に鉄損が高くなっている。また、
No.11の鋼板は、Ti含有量が本発明の範囲を下回ってお
り、No.12の鋼板はTi含有量が本発明の範囲を超えてい
るので、やはり鉄損が高くなっている。
On the other hand, the steel sheet No. 8 has a high iron loss value because the Sb and Ti contents are below the range of the present invention. The steel sheet No. 9 has a lower Sb content than the range of the present invention, and the steel sheet No. 10 has a higher iron loss because the Sb content exceeds the range of the present invention. Also,
No. 11 steel sheet has a Ti content below the range of the present invention, and No. 12 steel sheet also has a high iron loss since the Ti content exceeds the range of the present invention.

【0034】No.19の鋼板は、SbとTi含有量が本発明の
範囲を下回っているので、鉄損の値が高くなっている。
No.20の鋼板は、Sb含有量が本発明の範囲を下回ってお
り、No.21の鋼板はSb含有量が本発明の範囲を超えてい
るので、共に鉄損が高くなっている。No.22の鋼板は、T
i含有量が本発明の範囲を超えているので、鉄損が高く
なっている。
The steel sheet No. 19 has a high iron loss value since the Sb and Ti contents are below the range of the present invention.
The No. 20 steel sheet has an Sb content below the range of the present invention, and the No. 21 steel sheet has an Sb content exceeding the range of the present invention, so both have high iron losses. No.22 steel plate is T
Since the i content exceeds the range of the present invention, iron loss is high.

【0035】No.23の鋼板は、C含有量が本発明の範囲
を超えているので、鉄損が高くなっているのみならず、
磁気時効の問題を有している。No.24の鋼板は、Si含有
量が本発明の範囲を超えているので、鉄損の値は低いも
のの、磁束密度が低くなっている。No.25の鋼板は、Mn
含有量が本発明の範囲を超えているので、鉄損の値は低
いものの、磁束密度が低くなっている。
The steel sheet No. 23 not only has a high iron loss because the C content exceeds the range of the present invention, but also has
Has the problem of magnetic aging. Since the steel content of No. 24 has a Si content outside the range of the present invention, the iron loss value is low, but the magnetic flux density is low. No.25 steel plate is Mn
Since the content exceeds the range of the present invention, the value of iron loss is low, but the magnetic flux density is low.

【0036】No.26の鋼板は、Al含有量が本発明の範囲
を下回っているので、鉄損が高くなっている。また、N
o.27の鋼板は、Al含有量が本発明の範囲を超えているの
で、鉄損の値は低いものの、磁束密度が低くなってい
る。No.28の鋼板は、N含有量が本発明の範囲を超えて
いるので、磁束密度が低くなっている。
The steel sheet No. 26 has a high iron loss because the Al content is below the range of the present invention. Also, N
In the steel sheet No. 27, since the Al content is beyond the range of the present invention, the iron loss value is low, but the magnetic flux density is low. The steel sheet No. 28 has a low magnetic flux density because the N content exceeds the range of the present invention.

【0037】[0037]

【発明の効果】以上説明したように、本発明は、重量%
で、C:0.005%以下、Si:1.7〜4.0%、Mn:0.05〜1.0
%、P:0.2%以下、N:0.005%以下(0を含む)、A
l:0.1〜1.0%、S:0.01%以下(0を含む)、Sb:0.0
01〜0.05%、Ti:0.001〜0.01%を含有し、残部が実質
的にFeであることを特徴とするものであるので、仕上焼
鈍後の鉄損の低い無方向性電磁鋼板が安価に得られる。
本発明に係る無方向性電磁鋼板は、モータやトランスの
鉄心等、鉄損が低いことが要求される電気材料に広く使
用することができる。
As described above, according to the present invention, the weight%
And C: 0.005% or less, Si: 1.7 to 4.0%, Mn: 0.05 to 1.0
%, P: 0.2% or less, N: 0.005% or less (including 0), A
l: 0.1 to 1.0%, S: 0.01% or less (including 0), Sb: 0.0
Since it is characterized by containing 0.01 to 0.05% and Ti: 0.001 to 0.01% and the balance being substantially Fe, a non-oriented electrical steel sheet having low iron loss after finish annealing can be obtained at low cost. Can be
INDUSTRIAL APPLICABILITY The non-oriented electrical steel sheet according to the present invention can be widely used for electrical materials requiring low iron loss, such as iron cores of motors and transformers.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 Sb量と仕上焼鈍後の鉄損との関係を示す図で
ある。
FIG. 1 is a graph showing the relationship between the amount of Sb and iron loss after finish annealing.

【図2】 Ti量と仕上焼鈍後の鉄損との関係を示す図で
ある。
FIG. 2 is a diagram showing the relationship between the amount of Ti and iron loss after finish annealing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野 義彦 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 田中 靖 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshihiko Ono 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Yasushi Tanaka 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Sun Honko Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.005%以下、Si:1.7〜
4.0%、Mn:0.05〜1.0%、P:0.2%以下、N:0.005%
以下(0を含む)、Al:0.1〜1.0%、S:0.01%以下
(0を含む)、Sb:0.001〜0.05%、Ti:0.001〜0.01%
を含有し、残部が実質的にFeであることを特徴とする鉄
損の低い無方向性電磁鋼板。
(1) C: 0.005% or less, Si: 1.7 to
4.0%, Mn: 0.05-1.0%, P: 0.2% or less, N: 0.005%
Or less (including 0), Al: 0.1 to 1.0%, S: 0.01% or less (including 0), Sb: 0.001 to 0.05%, Ti: 0.001 to 0.01%
A non-oriented electrical steel sheet having a low iron loss, characterized in that:
JP35016497A 1997-12-05 1997-12-05 Non-oriented electrical steel sheet with low iron loss Expired - Fee Related JP3424178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35016497A JP3424178B2 (en) 1997-12-05 1997-12-05 Non-oriented electrical steel sheet with low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35016497A JP3424178B2 (en) 1997-12-05 1997-12-05 Non-oriented electrical steel sheet with low iron loss

Publications (2)

Publication Number Publication Date
JPH11172384A true JPH11172384A (en) 1999-06-29
JP3424178B2 JP3424178B2 (en) 2003-07-07

Family

ID=18408669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35016497A Expired - Fee Related JP3424178B2 (en) 1997-12-05 1997-12-05 Non-oriented electrical steel sheet with low iron loss

Country Status (1)

Country Link
JP (1) JP3424178B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089310B1 (en) * 2009-07-10 2011-12-02 주식회사 포스코 High strength non-oriented electrical steel sheet and method for manufacturing the same
CN104039998A (en) * 2011-12-28 2014-09-10 Posco公司 Non-oriented magnetic steel sheet and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089310B1 (en) * 2009-07-10 2011-12-02 주식회사 포스코 High strength non-oriented electrical steel sheet and method for manufacturing the same
CN104039998A (en) * 2011-12-28 2014-09-10 Posco公司 Non-oriented magnetic steel sheet and method for manufacturing same
EP2799573A4 (en) * 2011-12-28 2015-08-19 Posco Non-oriented magnetic steel sheet and method for manufacturing same
US10096414B2 (en) 2011-12-28 2018-10-09 Posco Non-oriented electrical steel sheet and method of manufacturing the same

Also Published As

Publication number Publication date
JP3424178B2 (en) 2003-07-07

Similar Documents

Publication Publication Date Title
KR102095142B1 (en) Non-oriented electrical steel sheet and production method thereof
KR101499371B1 (en) Method for producing non-oriented magnetic steel sheet
JP2000129410A (en) Nonoriented silicon steel sheet high in magnetic flux density
KR20060134154A (en) Nonoriented electromagnetic steel sheet excellent in blankability and magnetic characteristics after strain removal annealing, and method for production thereof
JP3037878B2 (en) Non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and method for producing the same
JP3424178B2 (en) Non-oriented electrical steel sheet with low iron loss
JP2000017330A (en) Production of nonoriented silicon steel sheet low in iron loss
JP2888226B2 (en) Non-oriented electrical steel sheet with low iron loss
JP3352599B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JPH1171650A (en) Nonoriented silicon steel sheet low in core loss
JP3766745B2 (en) Non-oriented electrical steel sheet with low iron loss after magnetic annealing
JPH1088297A (en) Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
JPH1046245A (en) Manufacture of nonoriented magnetic steel sheet reduced in iron loss after magnetic annealing
JPH11131196A (en) Nonoriented silicon steel sheet minimal in iron loss
JPH1112700A (en) Non-oriented electrical sheet having low iron loss
JPH1192892A (en) Nonoriented silicon steel sheet with low iron loss
JPH1112701A (en) Nonoriented silicon steel sheet with low iron loss
JPH10237606A (en) Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing
JPH11124626A (en) Production of nonoriented silicon steel sheet reduced in iron loss
JPH11315327A (en) Manufacture of non-oriented silicon steel sheet with low iron loss, and non-oriented silicon steel sheet with low iron loss
JPH11302741A (en) Production of nonoriented silicon steel sheet low in core loss and nonoriented silicon steel sheet low in core loss
JPH10330893A (en) Nonoriented silicon steel sheet low in core loss after low temperature-short time magnetic annealing
JPH11229097A (en) Nonoriented silicon steel sheet reduced in core loss
JPH1192890A (en) Nonoriented silicon steel sheet low in core loss and its production
JPH11315326A (en) Manufacture of nonoriented silicon steel sheet with low iron loss, and nonoriented silicon steel sheet with low iron loss

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees