JPH1036411A - 多孔質架橋ポリマー材料の製造方法 - Google Patents

多孔質架橋ポリマー材料の製造方法

Info

Publication number
JPH1036411A
JPH1036411A JP19728296A JP19728296A JPH1036411A JP H1036411 A JPH1036411 A JP H1036411A JP 19728296 A JP19728296 A JP 19728296A JP 19728296 A JP19728296 A JP 19728296A JP H1036411 A JPH1036411 A JP H1036411A
Authority
JP
Japan
Prior art keywords
parts
water
emulsion
polymer material
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19728296A
Other languages
English (en)
Inventor
Koichi Yonemura
耕一 米村
Shigeru Sakamoto
繁 坂本
Nobuyuki Harada
信幸 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP19728296A priority Critical patent/JPH1036411A/ja
Publication of JPH1036411A publication Critical patent/JPH1036411A/ja
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【課題】 改良された吸収容量を有する多孔質の架橋ポ
リマー材料を、高い水対油比における油中水型高分散相
エマルジョンを維持した状態で生産性よく製造する方法
を提供する。 【解決手段】 少なくとも1種のビニルモノマーおよび
分子中に少なくとも2個の重合性不飽和基を有する架橋
性単量体からなる単量体成分および水を、油溶性界面活
性剤の存在下に混合し、油中水滴型エマルジョンを形成
させた後、該エマルジョンをその体積収縮率が20%未
満となるように制御しながら重合させる工程を含む多孔
質架橋ポリマー材料の製造方法。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、高分散相油中水滴
型エマルジョン重合方法による多孔質架橋ポリマー材料
の製造に関する。
【0002】
【従来の技術】水性液体を多量に含有する多孔質架橋ポ
リマー材料として、90%までの内部水相を含む油中水
滴型エマルジョンの硬化物が知られている(英国特許第
1458203号公報、特開昭47−29479号公
報、特開昭48−94785号公報)。そしてこのよう
な油中水滴型エマルジョンの応用として、特開昭62−
250002号公報には弾性を有する低密度多孔質架橋
ポリマー材料が開示され、特開平6−510076号公
報、特開平6−510075号公報、特開平6−510
806号公報、特開平6−509834号公報、特開平
7−505667号公報には高吸収容量の低密度フォー
ムが開示されている。
【0003】一般的に、これらの高吸収容量の低密度フ
ォームは、界面活性剤の存在下で9:1を越える水相対油
相の重量比の高分散相油中水滴型エマルジョンを形成さ
せ、このエマルジョンの油相のモノマーを約60℃におい
て重合開始剤によって約8時間重合させることによって
製造される。しかしながら、例えば25:1を越えるよ
うな高い水対油比の場合、エマルジョンの重合硬化時の
安定性が悪く、凝集のために孔の一部が破壊され、設計
通りの吸収容量が出ないなどの問題が指摘されてきた。
【0004】
【発明が解決しようとする課題】本発明の目的は、改良
された吸収容量を有する多孔質の架橋ポリマー材料を、
高い水対油比における油中水型高分散相エマルジョンを
維持した状態で生産性よく製造する方法を提供すること
である。
【0005】
【課題を解決するための手段】本願発明者らは、改良さ
れた吸収容量を有する、低密度で多孔質の架橋ポリマー
材料を得るために、高い水対油比においても高い安定性
を有する油中水型高分散相エマルジョンを用いて製造す
る方法について鋭意検討した結果、エマルジョンの重合
前後の収縮率が得られる多孔質の架橋ポリマー材料の吸
収容量を左右することを見いだし、さらには特定の重合
触媒の添加方法と重合温度、さらには得られる多孔質架
橋ポリマー材料を切断するための刃物の材質が、吸収容
量およびそのセルサイズに影響を及ぼすことを見いだ
し、本発明に到達した。
【0006】すなわち本発明は、(1)少なくとも1種
のビニルモノマーおよび分子中に少なくとも2個の重合
性不飽和基を有する架橋性単量体からなる単量体成分お
よび水を、油溶性界面活性剤の存在下に混合し、油中水
滴型エマルジョンを形成させた後、該エマルジョンをそ
の体積収縮率が20%未満となるように制御しながら重
合させる工程を含む多孔質架橋ポリマー材料の製造方
法。(2)少なくとも1種のビニルモノマーおよび分子
中に少なくとも2個の重合性不飽和基を有する架橋性単
量体からなる単量体成分と、水と、油溶性界面活性剤と
を含む混合物に、予め水溶性酸化剤を攪拌混合して油中
水滴型エマルジョンを形成させ、その後該エマルジョン
に対し還元剤水溶液を添加混合し該エマルジョンの重合
を行う工程を含む多孔質架橋ポリマー材料の製造方法。
(3)非金属刃物で低密度多孔質架橋ポリマー材料を裁
断することを特徴とする多孔質架橋ポリマー材料の製造
方法を提供するものである。
【0007】以下に本発明を詳しく説明する。
【0008】本発明の多孔質架橋ポリマー材料の製造に
は、油中水滴型高分散相エマルジョン中に分散するか又
はこのエマルジョンの油相を形成することができるもの
であれば、種々のビニルモノマーと分子中に少なくとも
2個の重合性不飽和基を有する架橋性単量体が使用可能
である。
【0009】本発明で用いられるビニルモノマーには、
例えば、スチレン、α一メチルスチレン、クロロメチル
スチレン、ビニルエチルベンゼン及びビニルトルエンの
ような、モノアルケニルアレンモノマー:2ーエチルヘ
キシル(メタ)アクリレート、n一ブチル(メタ)アク
リレート、イソブチル(メタ)アクリレート、t−ブチ
ル(メタ)アクリレート、ヘキシル(メタ)アクリレー
ト、フェニル(メタ)アクリレート、オクチル(メタ)
アクリレート、ノニルフェニル(メタ)アクリレート、
ジノニルフェニル(メタ)アクリレート、ラウリル(メ
タ)アクリレート、イソデシル(メタ)アクリレート、
ジブチルマレエート、ジドデシルマレエート、ドデシル
クロトネート、ジドデシルイタコネートのような不飽和
カルボン酸エステル:ブタジエン、イソプレン、1−ヘ
キセン、1−オクテン、イソオクテン、1−ノネン、1
−デセン、1−ドデセンなどのα−オレフィン:ビニル
シクロヘキセンなどの脂環式ビニル化合物:ドデシルア
リルエーテルなどのアリルエーテル:カプロン酸ビニ
ル、ラウリン酸ビニル、ステアリン酸ビニルなどのビニ
ルエステル:ブチルビニルエーテル、ドデシルビニルエ
ーテルなどのビニルエーテル:およびこれらの混合物を
挙げることができる。
【0010】本発明で用いられる分子中に少なくとも2
個の重合性不飽和基を有する架橋性単量体としては、例
えばエチレングリコールジ(メタ)アクリレート、ジエ
チレングリコールジ(メタ)アクリレート、ポリエチレ
ングリコールジ(メタ)アクリレート、ポリエチレング
リコールーポリプロピレングリコールジ(メタ)アクリ
レート、プロピレングリコールジメタアクリレート、ポ
リプロピレングリコールジ(メタ)アクリレート、1,
3−ブチレングリコールジ(メタ)アクリレート、ネオ
ペンチルグリコールジ(メタ)アクリレート、1,6−
ヘキサンジオールジ(メタ)アクリレート、トリメチロ
ールプロパントリ(メタ)アクリレート、テトラメチロ
ールメタンテトラ(メタ)アクリレートなどの多官能
(メタ)アクリレートやジビニルベンゼンなどを挙げる
ことができる。
【0011】また、本発明において使用される分子中に
少なくとも2個の重合性不飽和基を有する架橋性単量体
の全単量体成分に対する割合は、全単量体成分中の1〜5
0重量%、好ましくは5〜45重量%、より好ましくは10〜
40重量%の範囲である。架橋性単量体の使用量が1重量
%未満では、得られる多孔質架橋ポリマー材料の強度が
不足し、50重量%よりも多い場合には得られる多孔質
架橋ポリマー材料が硬くなりすぎることがある。
【0012】本発明において使用される油溶性界面活性
剤としては、例えばソルビタンモノラウレート、ソルビ
タンモノパルミテート、ソルビタンモノステアレート、
ソルビタンジステアレート、ソルビタントリステアレー
ト、ソルビタンモノオレエート等のソルビタン誘導体:
グリセロールモノステアレート、グリセロールモノオレ
エートなどのグリセリン誘導体:ポリオキシエチレンラ
ウリルエーテル等のポリオキシエチレン脂肪酸エステル
類などを例示できる。これら油溶性界面活性剤は単独で
もしくは2種以上を混合して使用され、その使用量は単
量体成分100重量部に対し1〜40重量部の範囲、好
ましくは5〜30重量部の範囲である。1重量部よりも
少ない場合には油中水滴型エマルジョンが不安定とな
り、40重量部よりも多い場合には得られる多孔質架橋
ポリマー材料が脆くなりすぎることがある。
【0013】更に本発明では、重合時の油中水滴型エマ
ルジョンを安定化せしめる目的で、各種の安定化剤を上
記界面活性剤に加えて添加することもできる。安定化剤
として好適なものは水溶性の無機塩であり、このものを
水相中に添加しておくことが好ましい。このような水溶
性無機塩としては、例えばカリウム、ナトリウム、カル
シウム、マグネシウム、アルミニウム等の水溶性塩が挙
げられ、特に多価金属塩が好ましい。水溶性無機塩の添
加量は水100重量部に対し0.1〜20重量部、特に
0.5〜15重量部の範囲が好ましい。
【0014】本発明において、フォームの収縮、すなわ
ちエマルジョン生成硬化時のエマルジョンの体積収縮率
を20%未満に押さえながらエマルジョンの重合硬化を
図ることで、高度に吸収容量を有する多孔質架橋ポリマ
ー材料が得られることが判明した。エマルジョンの体積
収縮率を制御するにあたり、重合硬化触媒の選択、触媒
の添加時期、が特に重要であり、硬化温度も影響するこ
とが本発明により判明した。
【0015】本発明においてエマルジョン生成硬化時の
エマルジョンの体積収縮率を20%未満に制御するに
は、多孔質架橋ポリマー材料を得るにあたり例えば、少
なくとも1種のビニルモノマーおよび分子中に少なくと
も2個の重合性不飽和基を有する架橋性単量体からなる
単量体成分と、水と、油溶性界面活性剤とを含む混合物
に、予め水溶性酸化剤を攪拌混合して油中水滴型エマル
ジョンを形成し、その後該エマルジョンに対し還元剤水
溶液を添加混合し該エマルジョンの重合を行う工程を含
むことが好ましい。本発明では、重合硬化触媒系として
レドックス触媒系を選択することがそのセルサイズの制
御の点からも好ましい。
【0016】本発明において使用される水溶性酸化剤と
しては、過酸化水素のような水溶性過酸化物:過硫酸カ
リウム、過硫酸ナトリウム、過硫酸アンモニウム等の水
溶性過硫酸塩:過酢酸ナトリウム、過酢酸カリウム等の
水溶性過酢酸塩:過炭酸ナトリウム、過炭酸カリウムな
どの水溶性過炭酸塩などを挙げることができる。水溶性
酸化剤の使用量は総単量体成分の総モル数に対し、0.00
1モル%〜80モル%の範囲が好ましい。
【0017】本発明において酸化剤と共に使用される還
元剤としては、亜硫酸水素ナトリウム、亜硫酸水素カリ
ウムなどの亜硫酸水素塩:チオ硫酸ナトリウム、チオ硫
酸カリウムなどのチオ硫酸塩:トリエタノールアミン、
ジエタノールアミン、ジメチルアニリンなどのアミン
類:などの多価金属塩:L−アスコルビン酸などを挙げ
ることができる。また還元剤の使用量も本発明で重要で
あり、エマルジョンの体積収縮率をより制御するには水
溶性酸化剤/還元剤のモル比が1以下となるような量の
還元剤を使用することがより好ましい。
【0018】本発明の多孔質架橋ポリマー材料を得るた
めには、まずビニルモノマーと、分子中に少なくとも2
個の重合性不飽和基を有する架橋性単量体からなる油相
成分1〜10重量%と水99〜90重量%とを単量体100重量部
に対し1〜40重量部の界面活性剤の存在下に混合し、多
量の水を内部不連続相として有する油中水滴型エマルジ
ョンを形成せしめる。油相成分と水の混合割合は油相成
分1〜10重量%に対し水99〜90重量%の範囲が好まし
く、さらに好ましくは油相成分1〜5重量部に対し水99〜
95重量%の範囲である。油相成分の量が1重量%未満で
は、得られた多孔質架橋ポリマー材料の強度が低下して
取扱い性に問題が生じる場合がある。また油相成分の量
が10重量%よりも多い場合には、得られる多孔質架橋ポ
リマー材料の吸収容量が低下する場合がある。
【0019】本発明において、油相成分を油溶性界面活
性剤の存在下に水と混合し油中水滴型エマルジョンを形
成する方法としては、多量の水を内部不連続相として有
する油中水滴型エマルションを形成できるのであれば特
にこだわらない。例えば、1)油溶性界面活性剤を溶解
した油相を攪拌下に水中に添加する方法、2)油溶性界
面活性剤を溶解した油相に水を攪拌下に添加する方法、
3)油溶性界面活性剤を溶解した油相に水を加え攪拌す
る方法、4)水に油溶性界面活性剤を溶解した油相を加
え攪拌する方法、5)油溶性界面活性剤を溶解した油相
と水とをそれぞれ連続的にフィードしながら混合する方
法などを挙げることができる。またそれぞれの方法にお
いて、油溶性界面活性剤は前記のように油相に予め溶解
していてもよいが、水に予め分散させておいたり、油相
成分と水と油溶性界面活性剤を別々に供給混合すること
もできる。経済的観点から好ましい方法は予め油溶性界
面活性剤を油相成分に溶解させておく方法である。
【0020】本発明において使用できる混合あるいは攪
拌装置としては、従来公知のものを使用でき、例えば、
各種攪拌翼を装備した槽型攪拌装置、スタティックミキ
サー、二一ダー、ホモジナイザー、マグネットスターラ
ー等を例示できる。
【0021】本発明の方法では前記手法により形成され
た油中水滴型エマルジョンはレドックス開始剤存在下で
好ましくは60℃未満の温度に加熟重合され、その体積
収縮率が20%以下に制御されながら多孔質架橋ポリマ
ー材料を得る。重合に際し、油中水滴型エマルジョン
は、その内部水相が破壊されない条件下で静置重合する
のが好ましく、例えば油中水型エマルジョンをバッチ毎
にあるいは連続的にフィードしながら、キャスト重合す
ることができる。重合にあたり、重合容器を任意の形状
とすることで、重合により得られる多孔質架橋重合体を
任意形状、例えば粒子状、繊維状、マット状、シート
状、ブロック状等に成形重合することも可能である。も
ちろん重合法として連続重合法を採用することも可能で
ある。硬化温度は好ましくは60℃未満の範囲、より好
ましくは20〜50℃の範囲である。硬化を20〜50℃の温度
範囲で行ない、硬化後に重合を50〜90℃の温度範囲で完
結することが最も好ましい。重合硬化時間は1〜30時間
程度が適切である。重合温度が15℃未満では、重合に長
時間を要し工業的に好ましくない、硬化温度が60℃を
越える場合、得られる多孔質架橋ポリマー材料の孔径が
不均一となることがあり、また多孔質架橋ポリマー材料
の吸収容量が低下する。
【0022】上記方法により得られた本発明の多孔質架
橋ポリマー材料は、含水状態で任意の形状に裁断され、
使用できる。好ましい切断器具は非金属刃物である。プ
ラスチックやセラミックスのような非金属刃物で裁断す
ることにより裁断面のセル破壊の程度を著しく押さえる
ことが可能で、高吸収容量の多孔質架橋ポリマー材料を
得ることが可能である。
【0023】本発明の方法によって製造した多孔質架橋
ポリマー材料を洗浄し、乾燥させて、液体の吸収に特に
有用な吸収性ブロックを得ることができる。多孔質架橋
ポリマー材料中の電解質含量を減ずるために、これらの
多孔質架橋ポリマー材料を溶剤によって一般的に洗浄す
る。適当な溶剤は、例えば、アルコール、低濃度の電解
質溶液(水相よりも低濃度)、例えば1%塩化カルシウ
ム溶液又は脱イオン水等である。洗浄した多孔質架橋ポ
リマー材料は多孔質架橋ポリマー材料から水及び/又は
溶剤をスクィーズすることによって及び/又は風乾、熱
乾燥若しくは真空乾燥を用いることによって乾燥させる
ことができる。
【0024】本発明の製造方法では硬化後のセルサイズ
が均質であり、したがって高い吸収容量を有する多孔質
架橋ポリマー材料を製造することができる。このように
して得られる本発明の多孔質架橋ポリマー材料は、さら
に裁断するなどして任意の形状、例えばシート状、ブロ
ック状、繊維状、フィルム状、粉末状などの目的に応じ
た形態とすることができ、しかも、水、アルコール、石
油等の液体と接触した際に液体が成形体内部へ浸透して
ゆく連続した多数の孔を有した多孔質成形体よりなるも
のであるので、著しく吸液倍率に優れている。本発明の
多孔質架橋ポリマー材料をそのまま吸液材として用いて
もよいが、多孔質架橋ポリマー材料を少なくとも一部が
液透過性を有するフィルムで挟持したり、多孔質架橋ポ
リマー材料を液透過性材料からなる容器に充填したりし
て、吸液物品として使用することも可能である。
【0025】次に、本発明について実施例をあげて詳細
に説明するが、本発明はこれだけに限定されるものでは
ない。なお、例中特にことわりのない限り、部は重量部
を表すものとする。
【0026】本発明における体積収縮率および多孔質架
橋ポリマー材料の吸収容量は以下の方法で測定した。
【0027】(収縮率)硬化後のエマルジョンの体積を
測定し以下の式で収縮率(体積%)を求めた。
【0028】収縮率=(1−{硬化後のエマルジョンの
体積/エマルジョン形成時(硬化前)の体積})×10
0 (吸収容量)裁断した予め秤量した試料を用い、十分な
量の生理食塩水(0.9%食塩水)にこの試料を浸した。生
理食塩水を吸収し膨張した試料を、直径120mm高さ5mmの
ガラスフィルター(#0:Duran社製)の上に30秒間放置
して液切りを行なった後、吸液した試料の重量を測定
し、以下の式で吸収容量(g/g)を求めた。
【0029】 吸収容量=吸液後の試料重量/吸液前の試料重量 実施例1 1000mlの円筒形ポリプロピレン製容器に、水相とし
て塩化カルシウム50部、過硫酸ナトリウム0.7部お
よび純水450部を仕込んだ。ついで、油相としてスチ
レン3.47部、2−エチルヘキシルアクリレート1
0.43部、55%ジビニルベンゼン3.47部、および
ソルビタンモノラウレート(商品名レオドールスーパー
SP−L10、花王株式会社製)2.63部からなる溶
液を室温で攪拌下に容器中へ添加した。混合物がヨーグ
ルト状になり良好なエマルジョンが得られたのを確認し
て、亜硫酸水素ナトリウム0.7部を純水10部に溶か
した溶液を加え、再びエマルジョンが均一になるまで攪
拌した。攪拌終了後、容器を40℃に保って3時問重合
硬化を行ない重合を完結させた。この時、エマルジョン
の体積収縮率は6.4%であった。硬化物を60℃の湯
で湯洗したのち含水状態で厚さ10mmの大きさにセラミ
ック刃でスライスし、さらに穴あきプレートの間で厚さ
方向に圧縮脱水した。次に60℃の1%塩化カルシウム
水溶液で膨潤、脱水を2回行い60℃の熱風乾燥機中で
1時間乾燥して、本発明の多孔質架橋ポリマー材料
(1)を得た。多孔質架橋ポリマー材料(1)の吸収容量
は20g/gであった。
【0030】実施例2 1000mlの円筒形ポリプロピレン製容器に、水相とし
て塩化カルシウム50部、過硫酸ナトリウム0.7部お
よび純水450部を仕込んだ。ついで、油相としてスチ
レン3.47部、2−エチルヘキシルアクリレート1
0.43部、55%ジビニルベンゼン3.47部、および
ソルビタンモノラウレート(商品名レオドールスーパー
SP−L10、花王株式会社製)2.63部からなる溶
液を室温で攪拌下に容器中へ添加した。混合物がヨーグ
ルト状になり良好なエマルジョンが得られたのを確認し
て、亜硫酸水素ナトリウム0.7部を純水10部に溶か
した溶液を加え、再びエマルジョンが均一になるまで攪
拌した。攪拌終了後、容器を50℃に保って3時問重合
硬化を行ない重合を完結させた。この時、エマルジョン
の体積収縮率は14.6%であった。硬化物を60℃の
湯で湯洗したのち含水状態で厚さ10mmの大きさにセラ
ミック刃でスライスし、さらに穴あきプレートの間で厚
さ方向に圧縮脱水した。次に60℃の1%塩化カルシウ
ム水溶液で膨潤、脱水を2回行い60℃の熱風乾燥機中
で1時間乾燥して、本発明の多孔質架橋ポリマー材料
(2)を得た。多孔質架橋ポリマー材料(2)の吸収容
量は17g/gであった。 比較例1 1000mlの円筒形ポリプロピレン製容器に、水相とし
て塩化カルシウム50部、過硫酸ナトリウム0.7部お
よび純水450部を仕込んだ。ついで、油相としてスチ
レン3.47部、2−エチルヘキシルアクリレート1
0.43部、55%ジビニルベンゼン3.47部、および
ソルビタンモノラウレート(商品名レオドールスーパー
SP−L10、花王株式会社製)2.63部からなる溶
液を室温で攪拌下に容器中へ添加した。混合物がヨーグ
ルト状になり良好なエマルジョンが得られたのを確認し
て攪拌を終了し、容器を60℃に保って3時問重合硬化
を行ない重合を完結させた。この時、エマルジョンの体
積収縮率は20.3%であった。硬化物を60℃の湯で
湯洗したのち含水状態で厚さ10mmの大きさにスライス
し、さらに穴あきプレートの間で厚さ方向に圧縮脱水し
た。次に60℃の1%塩化カルシウム水溶液で膨潤、脱
水を2回行い60℃の熱風乾燥機中で1時間乾燥して、
比較多孔質架橋ポリマー材料(1)を得た。比較多孔質
架橋ポリマー材料(1)の吸収容量は14.8g/gで
あった。 実施例3 1000mlの円筒形ポリプロピレン製容器に、水相とし
て塩化カルシウム50部、過硫酸ナトリウム7.5部お
よび純水450部を仕込んだ。ついで、油相としてスチ
レン3.47部、2−エチルヘキシルアクリレート1
0.43部、55%ジビニルベンゼン3.47部、および
ソルビタンモノラウレート(商品名レオドールスーパー
SP−L10、花王株式会社製)2.63部からなる溶
液を室温で攪拌下に容器中へ添加した。混合物がヨーグ
ルト状になり良好なエマルジョンが得られたのを確認し
て、亜硫酸水素ナトリウム3.8部を純水10部に溶か
した溶液を加え、再びエマルジョンが均一になるまで攪
拌した。攪拌終了後、容器を25℃に保って24時問重
合硬化を行ない重合を完結させた。この時、エマルジョ
ンの体積収縮率は11.8%であった。硬化物を60℃
の湯で湯洗したのち含水状態で厚さ10mmの大きさにセ
ラミック刃でスライスし、さらに穴あきプレートの間で
厚さ方向に圧縮脱水した。次に60℃の1%塩化カルシ
ウム水溶液で膨潤、脱水を2回行い60℃の熱風乾燥機
中で1時間乾燥して、本発明の多孔質架橋ポリマー材料
(3)を得た。多孔質架橋ポリマー材料(3)の吸収容
量は19g/gであった。
【0031】実施例4 1000mlの円筒形ポリプロピレン製容器に、水相とし
て塩化カルシウム50部、過硫酸アンモニウム1.5部
および純水450部を仕込んだ。ついで、油相としてス
チレン3.12部、2−エチルヘキシルアクリレート
9.39部、55%ジビニルベンゼン3.12部、および
ソルビタンモノラウレート(商品名レオドールスーパー
SP−L10、花王株式会社製)2.36部からなる溶
液を室温で攪拌下に容器中へ添加した。混合物がヨーグ
ルト状になり良好なエマルジョンが得られたのを確認し
て、亜硫酸水素ナトリウム0.28部を純水6.72部
に溶かした溶液を加え、再びエマルジョンが均一になる
まで攪拌した。攪拌終了後、容器を25℃に保って72
時問重合硬化を行ない重合を完結させた。この時、エマ
ルジョンの体積収縮率は13%であった。硬化物を60
℃の湯で湯洗したのち含水状態で厚さ10mmの大きさに
セラミック刃でスライスし、さらに穴あきプレートの間
で厚さ方向に圧縮脱水した。次に60℃の1%塩化カル
シウム水溶液で膨潤、脱水を2回行い60℃の熱風乾燥
機中で1時間乾燥して、本発明の多孔質架橋ポリマー材
料(4)を得た。多孔質架橋ポリマー材料(4)の吸収
容量は18g/gであった。
【0032】実施例5 1000mlの円筒形ポリプロピレン製容器に、水相とし
て塩化カルシウム50部、過硫酸ナトリウム1.5部お
よび純水450部を仕込んだ。ついで、油相としてスチ
レン3.47部、2−エチルヘキシルアクリレート1
0.43部、55%ジビニルベンゼン3.47部、および
ソルビタンモノラウレート(商品名レオドールスーパー
SP−L10、花王株式会社製)2.63部からなる溶
液を室温で攪拌下に容器中へ添加した。混合物がヨーグ
ルト状になり良好なエマルジョンが得られたのを確認し
て、亜硫酸水素ナトリウム7.5部を純水20部に溶か
した溶液を加え、再びエマルジョンが均一になるまで攪
拌した。攪拌終了後、容器を25℃に保って4時問重合
硬化を行ない、更に60℃で1時間保持して重合を完結
させた。この時、エマルジョンの体積収縮率は12.3
%であった。硬化物を60℃の湯で湯洗したのち含水状
態で厚さ10mmの大きさにセラミック刃でスライスし、
さらに穴あきプレートの間で厚さ方向に圧縮脱水した。
次に60℃の1%塩化カルシウム水溶液で膨潤、脱水を
2回行い60℃の熱風乾燥機中で1時間乾燥して、本発
明の多孔質架橋ポリマー材料(5)を得た。多孔質架橋
ポリマー材料(5)の吸収容量は19g/gであった。
【0033】実施例6 1000mlの円筒形ポリプロピレン製容器に、水相とし
て塩化カルシウム50部、過硫酸ナトリウム7.5部お
よび純水450部を仕込んだ。ついで、油相としてスチ
レン3.04部、2−エチルヘキシルアクリレート9.
13部、55%ジビニルベンゼン3.04部、およびソルビ
タンモノラウレート(商品名レオドールスーパーSP−
L10、花王株式会社製)2.30部からなる溶液を室
温で攪拌下に容器中へ添加した。混合物がヨーグルト状
になり良好なエマルジョンが得られたのを確認して、亜
硫酸水素ナトリウム7.5部を純水20部に溶かした溶
液を加え、再びエマルジョンが均一になるまで攪拌し
た。攪拌終了後、容器を25℃に保って9時問重合硬化
を行ない、更に60℃で2時間保持して重合を完結させ
た。この時、エマルジョンの体積収縮率は13.5%で
あった。硬化物を60℃の湯で湯洗したのち含水状態で
厚さ10mmの大きさにセラミック刃でスライスし、さら
に穴あきプレートの間で厚さ方向に圧縮脱水した。次に
60℃の1%塩化カルシウム水溶液で膨潤、脱水を2回
行い60℃の熱風乾燥機中で1時間乾燥して、本発明の
多孔質架橋ポリマー材料(6)を得た。多孔質架橋ポリ
マー材料(6)の吸収容量は18g/gであった。
【0034】実施例7 1000mlの円筒形ポリプロピレン製容器に、水相とし
て塩化カルシウム50部、過硫酸ナトリウム0.7部お
よび純水450部を仕込んだ。ついで、油相としてスチ
レン2.17部、2−エチルヘキシルアクリレート6.
52部、55%ジビニルベンゼン2.17部、およびソル
ビタンモノラウレート(商品名レオドールスーパーSP
−L10、花王株式会社製)1.64部からなる溶液を
室温で攪拌下に容器中へ添加した。混合物がヨーグルト
状になり良好なエマルジョンが得られたのを確認して、
亜硫酸水素ナトリウム0.7部を純水10部に溶かした
溶液を加え、再びエマルジョンが均一になるまで攪拌し
た。攪拌終了後、容器を40℃に保って3.5時問重合
硬化を行ない重合を完結させた。この時、エマルジョン
の体積収縮率は10.8%であった。硬化物を60℃の
湯で湯洗したのち含水状態で厚さ10mmの大きさにセラ
ミック刃でスライスし、さらに穴あきプレートの間で厚
さ方向に圧縮脱水した。次に60℃の1%塩化カルシウ
ム水溶液で膨潤、脱水を2回行い60℃の熱風乾燥機中
で固形分が71%となるまで乾燥し、本発明の多孔質架
橋ポリマー材料(7)を得た。多孔質架橋ポリマー材料
(7)の吸収容量は26g/gであった。
【0035】実施例8 1000mlの円筒形ポリプロピレン製容器に、水相とし
て塩化カルシウム50部、過硫酸ナトリウム0.7部お
よび純水450部を仕込んだ。ついで、油相としてスチ
レン2.17部、2−エチルヘキシルアクリレート6.
52部、55%ジビニルベンゼン2.17部、およびソル
ビタンモノラウレート(商品名レオドールスーパーSP
−L10、花王株式会社製)1.64部からなる溶液を
室温で攪拌下に容器中へ添加した。混合物がヨーグルト
状になり良好なエマルジョンが得られたのを確認して、
亜硫酸水素ナトリウム0.7部を純水10部に溶かした
溶液を加え、再びエマルジョンが均一になるまで攪拌し
た。攪拌終了後、容器を50℃に保って3時問重合硬化
を行ない重合を完結させた。この時、エマルジョンの体
積収縮率は16.0%であった。硬化物を60℃の湯で
湯洗したのち含水状態で厚さ10mmの大きさにセラミッ
ク刃でスライスし、さらに穴あきプレートの間で厚さ方
向に圧縮脱水した。次に60℃の1%塩化カルシウム水
溶液で膨潤、脱水を2回行い60℃の熱風乾燥機中で固
形分が64%となるまで乾燥し、本発明の多孔質架橋ポ
リマー材料(8)を得た。多孔質架橋ポリマー材料
(8)の吸収容量は22.4g/gであった。
【0036】比較例2 1000mlの円筒形ポリプロピレン製容器に、水相とし
て塩化カルシウム50部、過硫酸ナトリウム0.7部お
よび純水450部を仕込んだ。ついで、油相としてスチ
レン2.17部、2−エチルヘキシルアクリレート6.
52部、55%ジビニルベンゼン2.17部、およびソル
ビタンモノラウレート(商品名レオドールスーパーSP
−L10、花王株式会社製)1.64部からなる溶液を
室温で攪拌下に容器中へ添加した。混合物がヨーグルト
状になり良好なエマルジョンが得られたのを確認して、
亜硫酸水素ナトリウム0.7部を純水10部に溶かした
溶液を加え、再びエマルジョンが均一になるまで攪拌し
た。攪拌終了後、容器を60℃に保って3時問重合硬化
を行ない重合を完結させた。この時、エマルジョンの体
積収縮率は21.4%であった。硬化物を60℃の湯で
湯洗したのち含水状態で厚さ10mmの大きさにスライス
し、さらに穴あきプレートの間で厚さ方向に圧縮脱水し
た。次に60℃の1%塩化カルシウム水溶液で膨潤、脱
水を2回行い60℃の熱風乾燥機中で固形分が60%と
なるまで乾燥し、本発明の比較多孔質架橋ポリマー材料
(2)を得た。比較多孔質架橋ポリマー材料(2)の吸
収容量は19.8g/gであった。
【0037】実施例9 1000mlの円筒形ポリプロピレン製容器に、水相とし
て塩化カルシウム50部、過硫酸ナトリウム0.7部お
よび純水450部を仕込んだ。ついで、油相としてスチ
レン1.74部、2−エチルヘキシルアクリレート5.
21部、55%ジビニルベンゼン1.74部、およびソル
ビタンモノラウレート(商品名レオドールスーパーSP
−L10、花王株式会社製)1.32部からなる溶液を
室温で攪拌下に容器中へ添加した。混合物がヨーグルト
状になり良好なエマルジョンが得られたのを確認して、
亜硫酸水素ナトリウム0.7部を純水10部に溶かした
溶液を加え、再びエマルジョンが均一になるまで攪拌し
た。攪拌終了後、容器を25℃に保って6.5時問重合
硬化を行ない、更に60℃で3時間保持して重合を完結
させた。この時、エマルジョンの体積収縮率は19.3
%であった。硬化物を60℃の湯で湯洗したのち含水状
態で厚さ10mmの大きさにセラミック刃でスライスし、
さらに穴あきプレートの間で厚さ方向に圧縮脱水した。
次に60℃の1%塩化カルシウム水溶液で膨潤、脱水を
2回行い60℃の熱風乾燥機中で1時間乾燥して、本発
明の多孔質架橋ポリマー材料(9)を得た。多孔質架橋
ポリマー材料(9)の吸収容量は33.8g/gであっ
た。
【0038】比較例3 1000mlの円筒形ポリプロピレン製容器に、水相とし
て塩化カルシウム50部および純水450部を仕込ん
だ。ついで、油相としてスチレン1.74部、2−エチ
ルヘキシルアクリレート5.21部、55%ジビニルベン
ゼン1.74部、およびソルビタンモノラウレート(商
品名レオドールスーパーSP−L10、花王株式会社
製)1.32部からなる溶液を室温で攪拌下に容器中へ
添加した。混合物がヨーグルト状になり良好なエマルジ
ョンが得られたのを確認して、過硫酸ナトリウム0.7
部を純水10部に溶かした溶液と、亜硫酸水素ナトリウ
ム0.7部を純水10部に溶かした溶液を加え、再びエ
マルジョンが均一になるまで攪拌した。攪拌終了後、容
器を40℃に保って5時問重合硬化を行ない、更に60
℃で3時間保持して重合を完結させた。この時、エマル
ジョンの体積収縮率は22.7%であった。硬化物を6
0℃の湯で湯洗したのち含水状態で厚さ10mmの大きさ
にスライスし、さらに穴あきプレートの間で厚さ方向に
圧縮脱水した。次に60℃の1%塩化カルシウム水溶液
で膨潤、脱水を2回行い60℃の熱風乾燥機中で1時間
乾燥して、本発明の比較多孔質架橋ポリマー材料(3)
を得た。比較多孔質架橋ポリマー材料(3)の吸収容量
は23.8g/gであった。
【0039】比較例4 1000mlの円筒形ポリプロピレン製容器に、水相とし
て塩化カルシウム50部、過硫酸ナトリウム0.7部お
よび純水450部を仕込んだ。ついで、油相としてスチ
レン1.74部、2−エチルヘキシルアクリレート5.
21部、55%ジビニルベンゼン1.74部、およびソル
ビタンモノラウレート(商品名レオドールスーパーSP
−L10、花王株式会社製)1.32部からなる溶液を
室温で攪拌下に容器中へ添加した。混合物がヨーグルト
状になり良好なエマルジョンが得られたのを確認して、
亜硫酸水素ナトリウム0.7部を純水10部に溶かした
溶液を加え、再びエマルジョンが均一になるまで攪拌し
た。攪拌終了後、容器を60℃に保って5時問重合硬化
を行ない重合を完結させた。この時、エマルジョンの体
積収縮率は24.7%であった。硬化物を60℃の湯で
湯洗したのち含水状態で厚さ10mmの大きさにスライス
し、さらに穴あきプレートの間で厚さ方向に圧縮脱水し
た。次に60℃の1%塩化カルシウム水溶液で膨潤、脱
水を2回行い60℃の熱風乾燥機中で1時間乾燥して、
本発明の比較多孔質架橋ポリマー材料(4)を得た。比
較多孔質架橋ポリマー材料(4)の吸収容量は24.7
g/gであった。
【0040】実施例10 1000mlの円筒形ポリプロピレン製容器に、水相とし
て塩化カルシウム50部、過硫酸ナトリウム0.7部お
よび純水450部を仕込んだ。ついで、油相としてスチ
レン1.74部、2−エチルヘキシルアクリレート5.
21部、55%ジビニルベンゼン1.74部、およびソル
ビタンモノラウレート(商品名レオドールスーパーSP
−L10、花王株式会社製)1.32部からなる溶液を
室温で攪拌下に容器中へ添加した。混合物がヨーグルト
状になり良好なエマルジョンが得られたのを確認して、
亜硫酸水素ナトリウム0.7部を純水10部に溶かした
溶液を加え、再びエマルジョンが均一になるまで攪拌し
た。攪拌終了後、容器を40℃に保って2.5時問重合
硬化を行ない、更に60℃で3時間保持して重合を完結
させた。この時、エマルジョンの体積収縮率は17.4
%であった。硬化物を60℃の湯で湯洗したのち含水状
態で厚さ10mmの大きさにセラミック刃でスライスし、
さらに穴あきプレートの間で厚さ方向に圧縮脱水した。
次に60℃の1%塩化カルシウム水溶液で膨潤、脱水を
2回行い60℃の熱風乾燥機中で固形分が96.7%と
なるまで乾燥し、本発明の多孔質架橋ポリマー材料(1
0)を得た。多孔質架橋ポリマー材料(10)の吸収容
量は40.8g/gであった。
【0041】実施例11 1000mlの円筒形ポリプロピレン製容器に、水相とし
て塩化カルシウム50部、過硫酸ナトリウム0.7部お
よび純水450部を仕込んだ。ついで、油相としてスチ
レン1.52部、2−エチルヘキシルアクリレート4.
56部、55%ジビニルベンゼン1.52部、およびソル
ビタンモノラウレート(商品名レオドールスーパーSP
−L10、花王株式会社製)1.15部からなる溶液を
室温で攪拌下に容器中へ添加した。混合物がヨーグルト
状になり良好なエマルジョンが得られたのを確認して、
亜硫酸水素ナトリウム0.7部を純水10部に溶かした
溶液を加え、再びエマルジョンが均一になるまで攪拌し
た。攪拌終了後、容器を40℃に保って3時問重合硬化
を行ない、更に60℃で3時間保持して重合を完結させ
た。この時、エマルジョンの体積収縮率は16.7%で
あった。硬化物を60℃の湯で湯洗したのち含水状態で
厚さ10mmの大きさにセラミック刃でスライスし、さら
に穴あきプレートの間で厚さ方向に圧縮脱水した。次に
60℃の1%塩化カルシウム水溶液で膨潤、脱水を2回
行い60℃の熱風乾燥機中で固形分が85%となるまで
乾燥し、本発明の多孔質架橋ポリマー材料(11)を得
た。多孔質架橋ポリマー材料(11)の吸収容量は4
1.4g/gであった。
【0042】実施例12 1000mlの円筒形ポリプロピレン製容器に、水相とし
て塩化カルシウム50部、過硫酸ナトリウム0.7部お
よび純水450部を仕込んだ。ついで、油相としてスチ
レン1.30部、2−エチルヘキシルアクリレート3.
91部、55%ジビニルベンゼン1.30部、およびソル
ビタンモノラウレート(商品名レオドールスーパーSP
−L10、花王株式会社製)0.99部からなる溶液を
室温で攪拌下に容器中へ添加した。混合物がヨーグルト
状になり良好なエマルジョンが得られたのを確認して、
亜硫酸水素ナトリウム0.7部を純水10部に溶かした
溶液を加え、再びエマルジョンが均一になるまで攪拌し
た。攪拌終了後、容器を40℃に保って3時問重合硬化
を行ない、更に60℃で3時間保持して重合を完結させ
た。この時、エマルジョンの体積収縮率は18.08%
であった。硬化物を60℃の湯で湯洗したのち含水状態
で厚さ10mmの大きさにセラミック刃でスライスし、さ
らに穴あきプレートの間で厚さ方向に圧縮脱水した。次
に60℃の1%塩化カルシウム水溶液で膨潤、脱水を2
回行い60℃の熱風乾燥機中で固形分が87%となるま
で乾燥し、本発明の多孔質架橋ポリマー材料(12)を
得た。多孔質架橋ポリマー材料(12)の吸収容量は4
7.6g/gであった。
【0043】実施例13 1000mlの円筒形ポリプロピレン製容器に、水相とし
て塩化カルシウム50部、過硫酸ナトリウム0.7部お
よび純水450部を仕込んだ。ついで、油相としてスチ
レン1.31部、2−エチルヘキシルアクリレート3.
91部、55%ジビニルベンゼン2.38部、およびソル
ビタンモノラウレート(商品名レオドールスーパーSP
−L10、花王株式会社製)1.15部からなる溶液を
室温で攪拌下に容器中へ添加した。混合物がヨーグルト
状になり良好なエマルジョンが得られたのを確認して、
亜硫酸水素ナトリウム0.7部を純水10部に溶かした
溶液を加え、再びエマルジョンが均一になるまで攪拌し
た。攪拌終了後、容器を40℃に保って3時問重合硬化
を行ない、更に60℃で3時間保持して重合を完結させ
た。この時、エマルジョンの体積収縮率は11.80%
であった。硬化物を60℃の湯で湯洗したのち含水状態
で厚さ10mmの大きさにセラミック刃でスライスし、さ
らに穴あきプレートの間で厚さ方向に圧縮脱水した。次
に60℃の1%塩化カルシウム水溶液で膨潤、脱水を2
回行い60℃の熱風乾燥機中で固形分が95%となるま
で乾燥し、本発明の多孔質架橋ポリマー材料(13)を
得た。多孔質架橋ポリマー材料(13)の吸収容量は4
8.8g/gであった。
【0044】実施例14 1000mlの円筒形ポリプロピレン製容器に、水相とし
て塩化カルシウム50部、過硫酸ナトリウム0.7部お
よび純水450部を仕込んだ。ついで、油相としてスチ
レン1.12部、2−エチルヘキシルアクリレート3.
35部、55%ジビニルベンゼン2.04部、およびソル
ビタンモノラウレート(商品名レオドールスーパーSP
−L10、花王株式会社製)0.99部からなる溶液を
室温で攪拌下に容器中へ添加した。混合物がヨーグルト
状になり良好なエマルジョンが得られたのを確認して、
亜硫酸水素ナトリウム0.7部を純水10部に溶かした
溶液を加え、再びエマルジョンが均一になるまで攪拌し
た。攪拌終了後、容器を40℃に保って3時問重合硬化
を行ない、更に60℃で3時間保持して重合を完結させ
た。この時、エマルジョンの体積収縮率は11.80%
であった。硬化物を60℃の湯で湯洗したのち含水状態
で厚さ10mmの大きさにセラミック刃でスライスし、さ
らに穴あきプレートの間で厚さ方向に圧縮脱水した。次
に60℃の1%塩化カルシウム水溶液で膨潤、脱水を2
回行い60℃の熱風乾燥機中で固形分が90%となるま
で乾燥し、本発明の多孔質架橋ポリマー材料(14)を
得た。多孔質架橋ポリマー材料(14)の吸収容量は5
3.8g/gであった。
【0045】
【発明の効果】本発明により、高吸収容量かつ均質な孔
径を有する低密度で多孔質の架橋ポリマー材料を、高い
水対油比における油中水型高分散相エマルジョンを維持
した状態で生産性よく製造することができる。また本発
明の方法によりエネルギーコスト的にも安価でセル破壊
のない、液体吸い上げ特性に優れる多孔質の架橋ポリマ
ー材料を高生産性を維持しながら製造できる。

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】 少なくとも1種のビニルモノマーおよび
    分子中に少なくとも2個の重合性不飽和基を有する架橋
    性単量体からなる単量体成分および水を、油溶性界面活
    性剤の存在下に混合し、油中水滴型エマルジョンを形成
    させた後、該エマルジョンをその体積収縮率が20%未
    満となるように制御しながら重合させる工程を含む多孔
    質架橋ポリマー材料の製造方法。
  2. 【請求項2】 少なくとも1種のビニルモノマーおよび
    分子中に少なくとも2個の重合性不飽和基を有する架橋
    性単量体からなる単量体成分と、水と、油溶性界面活性
    剤とを含む混合物に、予め水溶性酸化剤を攪拌混合して
    油中水滴型エマルジョンを形成させ、その後該エマルジ
    ョンに対し還元剤水溶液を添加混合し該エマルジョンの
    重合を行う工程を含む多孔質架橋ポリマー材料の製造方
    法。
  3. 【請求項3】 水溶性酸化剤/還元剤のモル比が1以下
    である請求項2記載の多孔質架橋ポリマー材料の製造方
    法。
  4. 【請求項4】 油中水滴型エマルジョンを温度60℃未
    満で硬化させる請求項1〜3のいずれか1項に記載の多
    孔質架橋ポリマー材料の製造方法。
  5. 【請求項5】 非金属刃物で多孔質架橋ポリマー材料を
    裁断することを特徴とする多孔質架橋ポリマー材料の製
    造方法。
JP19728296A 1996-07-26 1996-07-26 多孔質架橋ポリマー材料の製造方法 Pending JPH1036411A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19728296A JPH1036411A (ja) 1996-07-26 1996-07-26 多孔質架橋ポリマー材料の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19728296A JPH1036411A (ja) 1996-07-26 1996-07-26 多孔質架橋ポリマー材料の製造方法

Publications (1)

Publication Number Publication Date
JPH1036411A true JPH1036411A (ja) 1998-02-10

Family

ID=16371877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19728296A Pending JPH1036411A (ja) 1996-07-26 1996-07-26 多孔質架橋ポリマー材料の製造方法

Country Status (1)

Country Link
JP (1) JPH1036411A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001233902A (ja) * 1999-12-13 2001-08-28 Nippon Shokubai Co Ltd 多孔質架橋重合体の製造方法
US6323250B1 (en) 1999-11-18 2001-11-27 Nippon Shokubai Co. Ltd Method for production of porous material
JP2002020408A (ja) * 2000-07-05 2002-01-23 Nippon Shokubai Co Ltd 多孔質重合体の製造方法
US6395793B1 (en) 1999-11-18 2002-05-28 Nippon Shokubai Co., Ltd. Method for production of porous material
JP2003510390A (ja) * 1999-09-17 2003-03-18 スリーエム イノベイティブ プロパティズ カンパニー エマルジョンの光重合によって製造されるフォーム
JP2007512404A (ja) * 2003-11-28 2007-05-17 コミッサリア ア レネルジー アトミーク 非常に低密度のポリマームースおよびこの製造の方法
JP2007534786A (ja) * 2003-12-19 2007-11-29 コミツサリア タ レネルジー アトミーク 非常に小さな直径を有する開放セルポリマーフォーム及びその製造方法
JP2010097858A (ja) * 2008-10-17 2010-04-30 Hitachi Cable Ltd 多孔質体を用いた発泡電線の製造方法及び発泡電線
US8309851B2 (en) 2009-02-24 2012-11-13 Hitachi Cable, Ltd. Insulated wire and manufacturing method of the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510390A (ja) * 1999-09-17 2003-03-18 スリーエム イノベイティブ プロパティズ カンパニー エマルジョンの光重合によって製造されるフォーム
JP2010121138A (ja) * 1999-09-17 2010-06-03 Three M Innovative Properties Co エマルジョンの光重合によって製造されるフォーム
US6323250B1 (en) 1999-11-18 2001-11-27 Nippon Shokubai Co. Ltd Method for production of porous material
US6395793B1 (en) 1999-11-18 2002-05-28 Nippon Shokubai Co., Ltd. Method for production of porous material
JP2001233902A (ja) * 1999-12-13 2001-08-28 Nippon Shokubai Co Ltd 多孔質架橋重合体の製造方法
JP2002020408A (ja) * 2000-07-05 2002-01-23 Nippon Shokubai Co Ltd 多孔質重合体の製造方法
JP2007512404A (ja) * 2003-11-28 2007-05-17 コミッサリア ア レネルジー アトミーク 非常に低密度のポリマームースおよびこの製造の方法
JP2007534786A (ja) * 2003-12-19 2007-11-29 コミツサリア タ レネルジー アトミーク 非常に小さな直径を有する開放セルポリマーフォーム及びその製造方法
JP2010097858A (ja) * 2008-10-17 2010-04-30 Hitachi Cable Ltd 多孔質体を用いた発泡電線の製造方法及び発泡電線
US8309851B2 (en) 2009-02-24 2012-11-13 Hitachi Cable, Ltd. Insulated wire and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP3264494B2 (ja) 低密度多孔質架橋ポリマー性材料の製造法
US5252619A (en) Process for preparing low density porous crosslinked polymeric materials
US5189070A (en) Process for preparing low density porous crosslinked polymeric materials
KR100254656B1 (ko) 저밀도 다공성 가교 중합체 물질의 제조 방법
EP0060138B1 (en) Low density porous cross-linked polymeric materials and their preparation
US5250576A (en) Process for preparing emulsions that are polymerizable to absorbent foam materials
US5149720A (en) Process for preparing emulsions that are polymerizable to absorbent foam materials
US5728743A (en) Use of foam materials derived from high internal phase emulsions for insulation
JP2002537460A (ja) Hipeからhipeフォームへの連続硬化方法
JP2002537462A (ja) 高い温度および圧力で高内相エマルジョンからのフォーム物質の急速製造方法
JP2004529212A (ja) 高内相エマルジョンからの発泡体物質の急速調製
JPH11507409A (ja) 高分散相エマルジョンから誘導された絶縁用フォーム材料
JPH1036411A (ja) 多孔質架橋ポリマー材料の製造方法
JP4713802B2 (ja) 多孔質材料の製造方法
JP4766811B2 (ja) 多孔質架橋ポリマー材料の製法
JP4330265B2 (ja) 多孔質架橋重合体の製造方法
JP4766812B2 (ja) 多孔質架橋ポリマー材料の製造方法
US6846439B2 (en) Process for producing porous polymer
JP3699225B2 (ja) 多孔質吸水性架橋重合体およびその製法
JPH1045929A (ja) 多孔質架橋ポリマー材料の製造方法
JPH0366323B2 (ja)
JP3386131B2 (ja) 吸液材およびその製造方法
JP3103242B2 (ja) シート状吸油材