JPH10282069A - Ultrasonic flaw detector and sensitivity calibration method thereof - Google Patents

Ultrasonic flaw detector and sensitivity calibration method thereof

Info

Publication number
JPH10282069A
JPH10282069A JP9088307A JP8830797A JPH10282069A JP H10282069 A JPH10282069 A JP H10282069A JP 9088307 A JP9088307 A JP 9088307A JP 8830797 A JP8830797 A JP 8830797A JP H10282069 A JPH10282069 A JP H10282069A
Authority
JP
Japan
Prior art keywords
probe
inspected
ultrasonic
flaw detector
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9088307A
Other languages
Japanese (ja)
Inventor
Shigeji Wakabayashi
茂治 若林
Yohei Kawabata
洋平 川畑
Osamu Furuumi
修 古海
Shin Murata
伸 村田
Toshiji Tsuboi
利治 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KURAUTO KUREEMAA FUERUSUTAA KK
Nippon Steel Corp
KJTD Co Ltd
Original Assignee
NIPPON KURAUTO KUREEMAA FUERUSUTAA KK
Nippon Steel Corp
KJTD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KURAUTO KUREEMAA FUERUSUTAA KK, Nippon Steel Corp, KJTD Co Ltd filed Critical NIPPON KURAUTO KUREEMAA FUERUSUTAA KK
Priority to JP9088307A priority Critical patent/JPH10282069A/en
Publication of JPH10282069A publication Critical patent/JPH10282069A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

PROBLEM TO BE SOLVED: To position a probe mechanism quickly and easily with high accuracy without replacing the probe mechanism for different shape of steel member to be inspected by adjusting the azimuth, distance and height of an ultrasonic probe with respect to the steel member to be inspected. SOLUTION: In a flaw detector suspended from an upper frame 15, the angle and the position of a probe holder 1 is adjusted previously depending on the shape or size of a rail R to be inspected and the flaw detector is lowered under that state and set automatically at a specified position. At that position, the rail R abuts against copy rollers 12a, 12b and the probe holder 1 follows up the rail R while keeping a constant distance (water column distance) from a plane to be inspected thus realizing a stabilized flaw detecting operation. The probe holder 1 is elevated/lowered, traversed or turned by operating an elevating/lowering motor 7, a traverse motor 10 or a stepping motor 4 and the water column distance of an ultrasonic medium can be sustained correctly for other type of rail of different size.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レールを代表とす
る曲率をもった被検査材に超音波をあて内部欠陥を検査
するための超音波探傷装置及びその感度較正方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic inspection apparatus for inspecting an internal defect by applying ultrasonic waves to a material having a curvature represented by a rail, and a sensitivity calibration method thereof.

【0002】[0002]

【従来の技術】従来、レールや角形鋼材等の曲率をもっ
た被検査材の内部欠陥検査を行うための超音波探傷装置
は、被検査鋼材の形状毎に合致した探触子保持機構を被
検査鋼材の種類に応じた数だけ用意して、種類が変わる
ごとにその都度保持機構を交換し、探触子を付け替えて
いた。しかも、探触子保持機構を被検査鋼材の形状に合
わせることにより、超音波の入射角度も物理的に固定し
ていた。
2. Description of the Related Art Conventionally, an ultrasonic flaw detector for inspecting an internal defect of a material to be inspected having a curvature, such as a rail or a square steel material, is equipped with a probe holding mechanism that matches each shape of the steel to be inspected. As many as the number corresponding to the type of the inspection steel were prepared, and each time the type changed, the holding mechanism was replaced and the probe was replaced. Moreover, the angle of incidence of the ultrasonic wave was physically fixed by matching the probe holding mechanism to the shape of the steel material to be inspected.

【0003】また、特開平1−65445号公報には、
機構の一部にウォームギアとウォームホイールによる超
音波伝播方向可変手段を設けて、探傷に最適な板波モー
ドを発生する入射角を特定することを可能とする探触子
が開示されている。
[0003] Japanese Patent Application Laid-Open No. 1-65445 discloses that
A probe is disclosed in which an ultrasonic wave propagation direction changing means including a worm gear and a worm wheel is provided in a part of a mechanism, and an incident angle at which a plate wave mode optimal for flaw detection is generated can be specified.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記した被検
査鋼材の形状に合致した探触子保持機構にその都度交換
し、超音波の被検査鋼材への入射角を物理的に固定する
探傷装置の場合、設備面及び操作面での不利益の他に、
探触子を保持機構に組み込んだ際の微妙な取り付け方の
違いによって、微調整作業が発生し調整時間がかかって
しまう問題があった。
However, a flaw detector which replaces the probe holding mechanism corresponding to the shape of the steel to be inspected each time and physically fixes the incident angle of the ultrasonic wave to the steel to be inspected. In the case of, in addition to the disadvantages in equipment and operation,
There is a problem that a fine adjustment operation occurs and an adjustment time is required due to a delicate difference in a mounting method when the probe is incorporated in the holding mechanism.

【0005】また、特開平1−65445号公報に記載
された技術では、回転タイヤ部の内部に探触子が円弧状
駆動機構を介して保持されているに過ぎず、昇降及び横
行の動作はできない構造であり、必ずしも本発明の探傷
対象とする曲率をもった被検査材の探傷に適したものと
はいえない。
In the technique described in Japanese Patent Application Laid-Open No. 1-65445, the probe is merely held inside the rotating tire portion via an arc-shaped driving mechanism, and the vertical and horizontal movements are limited. It cannot be said that the structure is not suitable for flaw detection of a material to be inspected having a curvature to be flaw-detected according to the present invention.

【0006】本発明はこのような点に鑑みなされたもの
で、被検査鋼材形状に対応して探触子保持機構をいちい
ち交換することなく、所定の位置に簡単・迅速にかつ精
度よく位置決めすることができる、曲率をもった被検査
鋼材の超音波探傷に最適な装置を提供することを課題と
する。
The present invention has been made in view of such a point, and simply, quickly and accurately positions a predetermined position in a predetermined position without changing a probe holding mechanism corresponding to a shape of a steel material to be inspected. It is an object of the present invention to provide an apparatus which is capable of performing ultrasonic inspection of a steel material to be inspected having a curvature.

【0007】[0007]

【課題を解決するための手段】上記課題を達成するため
の本発明に係る請求項1の探傷装置は、曲率をもった被
検査鋼材を走間搬送しながら、該被検査鋼材の表面に対
し探触子保持機構に固定された超音波探触子を指向させ
て内部欠陥を検査する超音波探傷装置において、前記探
触子保持機構に、縦方向回動機構、昇降機構及び横行機
構を付設し、被検査鋼材に対する超音波探触子の指向角
度、距離、高さ位置を調整可能にしたことを構成とす
る。
According to a first aspect of the present invention, there is provided a flaw detection apparatus according to the present invention, wherein a surface of a steel material to be inspected having a curvature is conveyed while traveling. In an ultrasonic flaw detector for directing an ultrasonic probe fixed to a probe holding mechanism to inspect an internal defect, a vertical rotation mechanism, an elevating mechanism, and a traversing mechanism are added to the probe holding mechanism. In addition, the directivity angle, distance, and height position of the ultrasonic probe with respect to the steel material to be inspected can be adjusted.

【0008】前記探触子保持機構に付設した縦方向回動
機構は、探触子を内蔵した探触子ホルダーを保持する探
触子保持板と、該探触子保持板に被検査鋼材表面を支点
とする一定角度範囲の円弧状軌跡を付与する駆動部とか
ら構成される(請求項2)。また、前記探触子保持機構
に付設した昇降機構及び横行機構は、前記保持板をスラ
イドガイド板に保持し、該スライドガイド板を上下方向
に駆動装置によりスライド可能に設けると共に、前記ス
ライドガイド板をほぼ水平方向に横行可能にする別の駆
動装置を設けたことより構成される(請求項3)。
[0008] The vertical rotation mechanism attached to the probe holding mechanism includes a probe holding plate for holding a probe holder having a built-in probe, and a surface of a steel material to be inspected provided on the probe holding plate. And a drive unit for providing an arc-shaped trajectory within a certain angle range with the fulcrum as a fulcrum (claim 2). Further, an elevating mechanism and a traversing mechanism attached to the probe holding mechanism hold the holding plate on a slide guide plate, and the slide guide plate is slidably provided in a vertical direction by a driving device. Is provided with another drive device that enables the vehicle to traverse in a substantially horizontal direction (claim 3).

【0009】一方、本発明に係る請求項4の方法は、被
検査鋼材の内部欠陥検査の事前作業である人工欠陥付き
同一形状鋼材による超音波探傷装置の感度較正方法であ
って、上記した縦方向回動機構を使用し、それぞれの探
触子保持板を被検査鋼材表面を支点として円弧状軌跡に
沿って倣い移動させて、最適感度となる超音波入射角度
となるように探触子ホルダーを設定することを構成内容
とする。
On the other hand, a method according to claim 4 of the present invention is a method for calibrating the sensitivity of an ultrasonic flaw detector using an identically shaped steel material with an artificial defect, which is a preliminary operation for an internal defect inspection of a steel material to be inspected. Using the directional rotation mechanism, each probe holding plate is moved along the arc-shaped locus with the surface of the steel material to be inspected as a fulcrum, and the probe holder is set so that the ultrasonic incidence angle becomes the optimum sensitivity. Is set as the configuration content.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明するが、その前に本発明のように曲率をもった被
検査鋼材について超音波音波探傷を実施する際に考慮す
べき点を、超音波の性質と共に説明する。超音波は、レ
ールに限らず被検査鋼材の面や異形状部に当たると、反
射する性質をもつ。被検査鋼材の内部欠陥検査のため
に、超音波探触子から発信される超音波が水、油等の媒
体を通して被検査鋼材に到達すると、まず被検査鋼材表
面で表面反射エコーが戻ってくる。また、超音波は被検
査鋼材中を伝播し、その内部に欠陥があると、欠陥の大
きさに比例した欠陥エコーが反射してくる。さらに、超
音波が被検査鋼材中を伝播し、その底面に到達すると、
底面エコーが反射してくる。この様子を図5に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below. Prior to that, points to be considered when performing ultrasonic flaw detection on a steel material to be inspected having a curvature as in the present invention. , And the nature of the ultrasonic wave. Ultrasonic waves have a property of being reflected when hitting not only on the rail but also on the surface or the deformed portion of the steel material to be inspected. When an ultrasonic wave transmitted from an ultrasonic probe reaches a steel to be inspected through a medium such as water or oil for an internal defect inspection of the steel to be inspected, first, a surface reflection echo returns on the surface of the steel to be inspected. . The ultrasonic wave propagates through the steel to be inspected, and if there is a defect inside the steel, a defect echo proportional to the size of the defect is reflected. Furthermore, when the ultrasonic wave propagates through the steel to be inspected and reaches the bottom surface,
The bottom echo is reflected. This is shown in FIG.

【0011】超音波が境界面に斜めに入ると、反射屈折
については光と同様にスネルの法則に従う。超音波媒体
である水から鋼材に超音波が入射すると、CW /sin i
C =CL /sin θL の関係が成り立つ。ここで、CW
水中の音速、CL は鋼材中の縦波音速、iC は入射角、
θL は屈折角である。
When an ultrasonic wave enters a boundary surface obliquely, the reflection and refraction obey Snell's law as in the case of light. When ultrasonic waves are incident on steel from water, which is an ultrasonic medium, C W / sin i
The relationship of C = C L / sin θ L holds. Where C W is the velocity of sound in water, C L is the velocity of longitudinal waves in steel, i C is the angle of incidence,
θ L is the refraction angle.

【0012】一般に、水中音速は1480m/秒、鋼材
中の縦波音速は5960m/秒であり、θL =arc sin
(5960/1480×sin iC )となる。このこと
は、水浸法では垂直に入射したつもりでも、仮に1°傾
くと上式により鋼中では約4°強傾くことを示してい
る。
Generally, the underwater sound speed is 1480 m / sec, the longitudinal wave sound speed in steel is 5960 m / sec, and θ L = arc sin
(5960/1480 × sin i C ). This indicates that even if it is intended to be vertically incident in the water immersion method, if it is tilted by 1 °, it is tilted by about 4 ° in steel by the above equation.

【0013】例えば、平底人工欠陥を付けたレール頭部
を例にして上記のことを説明してみる。探触子は便宜上
一つとした。図6にレール頭部の断面形状と縦波超音波
の進行方向と人工欠陥の関係を示す。スネルの法則に基
づき、人工欠陥底面に垂直に当たるような頭部表面法線
方向から入射角iC 傾けて超音波を入射すると、θL
折し、超音波は人工欠陥底面に垂直に当たる。このとき
反射疵信号Fは最大となる(図6(b)参照)。
For example, the above will be described with reference to an example of a rail head provided with a flat bottom artificial defect. One probe was used for convenience. FIG. 6 shows the relationship between the cross-sectional shape of the rail head, the traveling direction of longitudinal ultrasonic waves, and artificial defects. Based on Snell's law, when an ultrasonic wave is incident at an angle of incidence i C from the normal direction of the head surface such that it hits the artificial defect bottom surface perpendicularly, it is refracted by θ L and the ultrasonic wave strikes the artificial defect bottom surface perpendicularly. At this time, the reflection flaw signal F becomes maximum (see FIG. 6B).

【0014】次に、入射角がiC +1°変化した時の様
子を図7に示す。図7から分かるように、屈折角はθL
+4°程度となるため、人工欠陥底面には超音波は垂直
には当たらない。その結果、図7(b)のように、この
ときの反射疵信号Fは入射角iC の時と比べて、減衰す
ることがわかる。
Next, FIG. 7 shows a state when the incident angle changes by i C + 1 °. As can be seen from FIG. 7, the refraction angle is θ L
Since the angle is about + 4 °, the ultrasonic wave does not hit the artificial defect bottom surface vertically. As a result, as shown in FIG. 7B, it is found that the reflection flaw signal F at this time is attenuated as compared with the case of the incident angle i C.

【0015】以上のことから、探触子をホルダーに組み
込む際の微妙な取り付け方の違いによって、人工欠陥の
底面と超音波の指向方向が法線関係から外れた場合、反
射疵信号は減衰することから、規定の疵信号の大きさと
するためには必要以上に感度を上げなければならず、反
射疵信号が最大となる入射角に精度よく設定することが
要求される。特に、レールのごとき曲率を有する鋼材に
対する超音波探傷については、超音波の指向方向に関し
ては厳格な微調整が必要とされ、このため従来では、位
置決めのための微調整が繰り返されることとなる。
From the above, when the bottom of the artificial defect and the directing direction of the ultrasonic wave deviate from the normal line due to a delicate difference in how the probe is incorporated into the holder, the reflection flaw signal is attenuated. Therefore, the sensitivity must be increased more than necessary in order to make the magnitude of the specified flaw signal, and it is required to set the incident angle at which the reflection flaw signal is maximized with high accuracy. In particular, regarding ultrasonic flaw detection for a steel material having a curvature such as a rail, strict fine adjustment is required for the direction of ultrasonic waves, and thus fine adjustment for positioning is conventionally repeated.

【0016】本発明では被検査鋼材の形状、高さ、幅及
び検査すべき位置に応じて、複数の探触子の各保持機構
に、縦方向回動、昇降及び横行動作を行わしめる手段を
搭載し、被検査鋼材に対する超音波探触子の指向角度、
距離、高さ位置を適宜調整可能にして、当該被検査鋼材
に対し常に最適な位置に探触子を迅速にかつ高精度にセ
ットし得るようにしたものである。つまり、被検査鋼材
の形状やサイズ変化に応じて探触子保持機構をその都度
交換することなく、一台の装置によって対応し得るよう
にした。
According to the present invention, means for vertically rotating, raising and lowering, and traversing operations are provided in each holding mechanism of the plurality of probes according to the shape, height, width, and position of the steel material to be inspected. Mounted, the directional angle of the ultrasonic probe with respect to the steel to be inspected,
The distance and the height position can be adjusted appropriately so that the probe can always be quickly and accurately set at the optimum position with respect to the steel material to be inspected. That is, a single device can be used without changing the probe holding mechanism according to the shape or size change of the steel material to be inspected.

【0017】本発明において、探触子保持機構とは、超
音波探触子(プローブ)を内蔵する探触子ホルダーと、
該ホルダーを固定保持する保持板と、該保持板を支持す
るフレームをいう。従って、保持板自体を縦方向に回
動、昇降及び横行させれば、それに応じて探触子ホルダ
ーが回動、昇降及び横行動作し、被検査鋼材の被検査面
に対する角度、高さ位置、被検査面との距離を最適に保
つことになる。また通常、探触子及び保持機構は複数組
配置されているが、探傷操作時にはこれらの複数組を連
動させてもよいし、また、個々に独立して動作させても
よい。
In the present invention, the probe holding mechanism includes a probe holder having a built-in ultrasonic probe (probe);
A holding plate for fixedly holding the holder, and a frame for supporting the holding plate. Therefore, if the holding plate itself is rotated in the vertical direction, ascending and descending and traversing, the probe holder is accordingly rotated, ascending and descending and traversing, and the angle of the steel to be inspected with respect to the surface to be inspected, the height position, The distance from the surface to be inspected is kept optimal. Usually, a plurality of sets of the probe and the holding mechanism are arranged. However, at the time of the flaw detection operation, these sets may be interlocked, or may be operated independently.

【0018】[0018]

【実施例】次に、本発明の実施例を図面に基づいて説明
するが、被検査鋼材としてレールを例とし、その内部を
超音波探傷する場合を説明する。図1は長手方向に一定
速度で搬送される被検査レールRに対し両側から同一構
造の一対の探傷機構を備えた装置を示す。実際にはレー
ルの搬送ラインに沿って複数組の探傷装置を配列し、レ
ールの全断面に対して探傷操作が可能な如く配置してい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of the present invention will be described with reference to the accompanying drawings. The case where a rail to be inspected is used as an example and the inside of the rail is subjected to ultrasonic flaw detection will be described. FIG. 1 shows an apparatus provided with a pair of flaw detection mechanisms having the same structure from both sides of a rail to be inspected R conveyed at a constant speed in a longitudinal direction. Actually, a plurality of sets of flaw detection devices are arranged along the rail transport line, and are arranged so that flaw detection operation can be performed on the entire cross section of the rail.

【0019】図1に示すように、探傷装置全体はレール
搬送ラインを跨ぐ上部フレーム15に懸架されるととも
に、シリンダ等の駆動装置により全体をレールRに対し
上下動できるようになっている。このため探傷操作開始
前に上方待機位置にある探傷装置は、事前に被検査レー
ルの形状やサイズに応じてその探触子(ホルダー)の角
度や位置を調整しておき、その状態で下降すれば自動的
に所定位置にセットされる。この位置でレールRには倣
いローラ12a、12b、12c(12cは図示してい
ない)が当接し、探傷操作時にはこれら倣いローラがレ
ール表面に倣うことにより、走間中のレールに上下・左
右の振動が生じても、探触子ホルダーが被検査面に対し
一定距離(即ち、一定水柱距離)を保って追従し、安定
した探傷操作が行えるようにしている。
As shown in FIG. 1, the whole flaw detector is suspended on an upper frame 15 straddling a rail transport line, and can be moved up and down with respect to the rail R by a driving device such as a cylinder. Therefore, before the flaw detection operation starts, the flaw detection device at the upper standby position adjusts the angle and position of the probe (holder) according to the shape and size of the rail to be inspected in advance, and moves down in that state. If it is, it is automatically set at a predetermined position. In this position, the copying rollers 12a, 12b, and 12c (12c are not shown) abut on the rail R, and the copying rollers follow the rail surface during the flaw detection operation. Even if vibration occurs, the probe holder follows the surface to be inspected while maintaining a constant distance (ie, a constant water column distance), so that a stable flaw detection operation can be performed.

【0020】探傷装置の探触子(ホルダー)を上述の如
く事前に所定位置にセットするために、探触子保持機構
に縦方向回動機構、昇降機構及び横行機構を組み込んで
おく。以下、これらの各機構についてその具体例を説明
する。図2は、縦方向回動機構の例を示し、超音波媒体
となる水を流すための水ノズルを兼ねた探触子ホルダー
1と、該探触子ホルダー1を取り付け保持する円弧状歯
形付き保持板2と、該保持板2を被検査鋼材(レール)
Rの表面を支点として縦方向に一定角度範囲にわたって
円弧運動自在にする円弧スライドガイド3と、前記保持
板2に円弧運動を付与するための駆動源となるステッピ
ングモータ4を基本構成とする。
In order to set the probe (holder) of the flaw detector to a predetermined position in advance as described above, a vertical rotation mechanism, a lifting mechanism, and a traversing mechanism are incorporated in the probe holding mechanism. Hereinafter, specific examples of each of these mechanisms will be described. FIG. 2 shows an example of a vertical rotation mechanism, which has a probe holder 1 also serving as a water nozzle for flowing water serving as an ultrasonic medium, and an arc-shaped tooth profile for attaching and holding the probe holder 1. Holding plate 2 and steel plate (rail) to be inspected
The basic configuration includes an arc slide guide 3 that enables circular motion in the vertical direction over a certain angle range with the surface of R as a fulcrum, and a stepping motor 4 that serves as a drive source for applying the circular motion to the holding plate 2.

【0021】探触子ホルダー1の内部には、探触子Pが
固定されており、被検査鋼材の形状が変化しても探触子
を取り外す必要はないが、探触子自身が不良となった場
合には、ホルダー内の探触子のみを交換すればよい。ま
た、探触子ホルダー1の後面には、図2(b)に示すよ
うに、超音波媒体となる水を供給する孔があり、ホルダ
ー内は常時水が充満しており、探傷時に水がホルダー前
面から噴出され、水柱状態が保たれる。この水柱は被検
査鋼材表面に当たり、被検査鋼材表面との間で超音波媒
体を形成する。
A probe P is fixed inside the probe holder 1, and it is not necessary to remove the probe even if the shape of the steel material to be inspected changes. If this happens, only the probe in the holder needs to be replaced. As shown in FIG. 2B, a hole for supplying water serving as an ultrasonic medium is provided on the rear surface of the probe holder 1, and the inside of the holder is always filled with water. Spouted from the front of the holder, maintaining a water column. The water column hits the surface of the steel to be inspected and forms an ultrasonic medium with the surface of the steel to be inspected.

【0022】保持板2の一端側に探触子ホルダー1が固
定されており、他端には円弧状に歯形が刻まれると共
に、この円弧状歯形はステッピングモータ4の円形ギア
4aと噛み合っている。また、保持板2はその他端側で
スライドガイド板6に支持されているが、スライドガイ
ド板6に固定した円弧スライドガイド3を係合する受け
枠3aを有する。この円弧スライドガイド3及び受け枠
3aと、前記保持板2の歯形及びステッピングモータ4
の円形ギア4aとにより、保持板自身がレールの検査表
面を支点とするような縦方向の回動軌跡をとる。なお、
保持板2の歯形よりには該歯形及びスライドガイド3と
平行な溝2aが形成され、該溝にスライドガイド板6に
設けたピン5を挿入することにより、保持板の脱落防止
と回動範囲の限定(角度α)を行っている。
A probe holder 1 is fixed to one end of the holding plate 2, and a tooth profile is formed in an arc shape at the other end, and the arc tooth profile is engaged with the circular gear 4 a of the stepping motor 4. . The holding plate 2 is supported by the slide guide plate 6 on the other end side, and has a receiving frame 3a for engaging the arc slide guide 3 fixed to the slide guide plate 6. The arcuate slide guide 3 and the receiving frame 3a, the tooth profile of the holding plate 2 and the stepping motor 4
With the circular gear 4a described above, the holding plate itself takes a vertical rotation locus such that the inspection surface of the rail is a fulcrum. In addition,
A groove 2a is formed parallel to the tooth profile of the holding plate 2 and the slide guide 3, and the pin 5 provided on the slide guide plate 6 is inserted into the groove to prevent the holding plate from falling off and rotate. (Angle α).

【0023】また、スライドガイド板6は、図2
(b)、(c)に示す如く、側部フレーム16の縦方向
のスライドガイド9に対し係合する受け枠9aを有して
おり、昇降自在になっている。昇降機構としては、フレ
ーム16側に設けた昇降用モータ7によって回動するね
じ7aと噛み合うウォームギア8をスライドガイド板6
側に設けて構成し、昇降用モータ7の駆動によりウォー
ムギア8を上下させることにより昇降を行う。
Further, the slide guide plate 6 is shown in FIG.
As shown in (b) and (c), it has a receiving frame 9a which engages with the vertical slide guide 9 of the side frame 16, and is vertically movable. As the lifting mechanism, a worm gear 8 meshed with a screw 7a rotated by a lifting motor 7 provided on the frame 16 side is provided with a slide guide plate 6.
The worm gear 8 is moved up and down by driving the elevating motor 7 to move up and down.

【0024】さらに、保持板2及びスライドガイド板6
をほぼ水平方向に横行させ、レール表面と探触子ホルダ
ー1との距離を調整するための横行機構としては、昇降
機構と同様なものを採用している。すなわち、図3
(a)(b)に横行機構の具体例を示すが、保持板支持
フレーム16の上部を固定した横行フレーム17を、装
置全体を保持するための中間フレーム18(図1参照)
にスライドガイド19及びスライドガイド枠11a、1
1bを介してレールRと交差する方向に摺動自在に取り
付け、前記横行フレーム17を横行用モータ10及びフ
レーム一端に設けた回転−直進伝達機構(例えば、ウォ
ームギアとチェーンなど)20によって一定範囲にわた
って横行させるべく構成されている。
Further, the holding plate 2 and the slide guide plate 6
Are traversed in a substantially horizontal direction, and the same traversing mechanism as the elevating mechanism is adopted as a traversing mechanism for adjusting the distance between the rail surface and the probe holder 1. That is, FIG.
(A) and (b) show specific examples of the traversing mechanism. The traversing frame 17 to which the upper portion of the holding plate support frame 16 is fixed is connected to an intermediate frame 18 for holding the entire apparatus (see FIG. 1).
The slide guide 19 and the slide guide frames 11a, 1
1b so as to be slidable in a direction intersecting with the rail R via the first frame 1b. It is configured to traverse.

【0025】以上の如く昇降用モータ7、横行用モータ
10及びステッピングモータ4を作動させることによ
り、探触子ホルダー1を昇降、横行及び回動させ、異形
サイズの他品種レールに対し、必ず超音波媒体の水柱距
離(L)を適正に維持することが可能となる。
By operating the lifting motor 7, the traversing motor 10 and the stepping motor 4 as described above, the probe holder 1 is raised and lowered, traversed, and rotated. It is possible to appropriately maintain the water column distance (L) of the sonic medium.

【0026】なお、上記実施例においては、昇降、横
行、円弧状回動動作を行わせる駆動源としてモータを用
いた場合を示したが、これに変えてシリンダ等の他の公
知の駆動手段を用いてもよく、また、場合によっては全
て手動によることもできる。
In the above-described embodiment, the case where the motor is used as the drive source for performing the ascending, descending, traversing, and circularly rotating operations has been described, but other known driving means such as a cylinder may be used instead. It may be used, and in some cases, it may be all manually.

【0027】次に、上述した超音波探傷装置に制御装置
を付帯させ、各動作を全て自動で簡単に位置決めできる
ことから、被検査鋼材の内部欠陥検査の事前作業である
感度較正作業において本発明の超音波探傷装置を使用し
て、簡単・迅速にかつ精度よく最適感度較正作業を行う
ことができる。
Next, since a control device is attached to the above-described ultrasonic flaw detector and all operations can be automatically and easily positioned, the present invention is used in the sensitivity calibration work which is a preparatory work for the internal defect inspection of the steel to be inspected. Using the ultrasonic flaw detector, the optimum sensitivity calibration operation can be performed simply, quickly and accurately.

【0028】図4にその事前感度較正作業のフローを示
す。まず、被検査レールと同形状の人工欠陥付き基準レ
ールに対するプリセット角度(予めレール形状等で決ま
る)に探傷装置の各機構を設定する。その後、プリセッ
ト角度±X°(例えば、2°)の範囲を走査ピッチY°
(X>Y,例えば1°)にて角度走査を行うが、その際
に人工欠陥からの疵信号高さを逐次記憶しておき、疵信
号が最大となる角度を求める。次いで、この求めた角度
を基準とし、その±Z°(X>Z)の範囲を、走査ピッ
チW°(Y>W、例えば0.2°)にて再度走査し、そ
の際に人工欠陥からの疵信号高さを逐次記憶しておき、
疵信号が最大となる角度を求める。同様の走査をN回繰
り返し行い、疵信号が最大となる角度を徐々に狭めてい
き、超音波の入射角を最適にすることができる。なおこ
こで、X、Y、Z、W及び繰り返し回数Nは、制御装置
に予め設定しておけばよい。
FIG. 4 shows the flow of the pre-sensitivity calibration operation. First, each mechanism of the flaw detector is set to a preset angle (predetermined by a rail shape or the like) with respect to a reference rail having an artificial defect having the same shape as the rail to be inspected. Thereafter, the range of the preset angle ± X ° (for example, 2 °) is set to the scanning pitch Y °.
Angle scanning is performed at (X> Y, for example, 1 °). At this time, the height of the flaw signal from the artificial defect is sequentially stored, and the angle at which the flaw signal is maximized is obtained. Next, based on the obtained angle, the range of ± Z ° (X> Z) is again scanned at a scanning pitch W ° (Y> W, for example, 0.2 °). Flaw signal height is stored in sequence,
The angle at which the flaw signal is maximized is determined. The same scanning is repeated N times, and the angle at which the flaw signal becomes maximum is gradually narrowed, so that the incident angle of the ultrasonic wave can be optimized. Here, X, Y, Z, W and the number of repetitions N may be set in the control device in advance.

【0029】[0029]

【発明の効果】以上の如く本発明に係る超音波探傷装置
によれば、被検査鋼材形状に対応して探触子保持機構を
交換することなく、所定位置に簡単にかつ迅速に、しか
も精度よく探触子を位置決めすることができる。また、
本発明の較正方法によれば、被検査鋼材の内部欠陥検査
の前の較正作業において、最適感度となる超音波入射角
とすることができるので、感度較正作業後の被検査鋼材
の内部欠陥検査において過検出となることが防止でき、
検査能力が向上する。
As described above, according to the ultrasonic flaw detector according to the present invention, it is possible to simply and quickly move the probe to a predetermined position without changing the probe holding mechanism corresponding to the shape of the steel material to be inspected. The probe can be positioned well. Also,
According to the calibration method of the present invention, in the calibration work before the inspection of the internal defect of the steel material to be inspected, the ultrasonic incidence angle can be set to the optimum sensitivity, so that the internal defect inspection of the steel material to be inspected after the sensitivity calibration work is performed. Can be prevented from being over-detected,
Inspection ability is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る超音波探傷装置の一実施例を示す
全体正面図。
FIG. 1 is an overall front view showing one embodiment of an ultrasonic flaw detector according to the present invention.

【図2】図1に示す探触子保持機構における探触子回動
機構と昇降機構を例示する図であり、(a)は保持機構
の正面図、(b)は(a)の底面図、(c)は(a)の
側面図。
2A and 2B are diagrams illustrating a probe rotating mechanism and a lifting mechanism in the probe holding mechanism shown in FIG. 1, wherein FIG. 2A is a front view of the holding mechanism, and FIG. 2B is a bottom view of FIG. (C) is a side view of (a).

【図3】図1における探触子横行機構の具体例を示す図
で、(a)はその側面図、(b)は(a)のA−A矢視
図。
3A and 3B are diagrams showing a specific example of the probe traversing mechanism in FIG. 1, wherein FIG. 3A is a side view thereof, and FIG. 3B is a view taken along the line AA of FIG.

【図4】本発明の感度較正方法における最適角度決定ま
での一連動作を示すフロー図。
FIG. 4 is a flowchart showing a series of operations up to determination of an optimum angle in the sensitivity calibration method of the present invention.

【図5】超音波探傷の基本的な性質を説明するための
図。
FIG. 5 is a view for explaining basic properties of ultrasonic flaw detection.

【図6】被検査レールに対する超音波探傷において、超
音波が材料中に入射した時の屈折の基本特性と反射エコ
ーを説明するための図。
FIG. 6 is a diagram for explaining basic characteristics of refraction and reflected echoes when ultrasonic waves enter a material in ultrasonic flaw detection for a rail to be inspected.

【図7】図5の状態において入射角度を変えた場合の屈
折の特性と反射エコーを示す図。
FIG. 7 is a diagram showing a refraction characteristic and a reflected echo when the incident angle is changed in the state of FIG. 5;

【符号の説明】[Explanation of symbols]

1 探触子ホルダー 2 円弧状歯形付き
保持板 3 円弧状スライドガイド 3a スライドガイド
受け枠 4 ステッピングモータ 5 ピン 6 スライドガイド板 7 昇降用モータ 8 ウォームギア 9 スライドガイド 9a スライドガイド受け枠 10 横行用モータ 11a,11b スライドガイド枠 12a,12b,12c 倣いローラ 15 保持フレーム 16 保持板支持フレ
ーム 17 横行フレーム 18 中間フレーム 19 スライドガイド 20 回転−直進伝達
機構 P 探触子 R 被検査レール
REFERENCE SIGNS LIST 1 probe holder 2 holding plate with arcuate teeth 3 arcuate slide guide 3 a slide guide receiving frame 4 stepping motor 5 pin 6 slide guide plate 7 elevating motor 8 worm gear 9 slide guide 9 a slide guide receiving frame 10 traverse motor 11 a , 11b Slide guide frame 12a, 12b, 12c Copying roller 15 Holding frame 16 Holding plate support frame 17 Crossing frame 18 Intermediate frame 19 Slide guide 20 Rotation-straight transmission mechanism P Probe R Rail to be inspected

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古海 修 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 (72)発明者 村田 伸 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 (72)発明者 坪井 利治 大阪府東大阪市角田1丁目9番29号 日本 クラウトクレーマー株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Osamu Furumi, Inventor, 1-1 1-1 Tobata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Nippon Steel Corporation Yawata Works (72) Inventor: Shin Murata Hibata, Tobata-ku, Kitakyushu-shi, Fukuoka No. 1-1, New Town Nippon Steel Corporation Yawata Works (72) Inventor Toshiharu Tsuboi 1-9-29 Kakuda, Higashiosaka City, Osaka Inside Japan Kraut Kramer Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 曲率をもった被検査鋼材を走間搬送しな
がら、該被検査鋼材の表面に対し探触子保持機構に固定
された超音波探触子を指向させて内部欠陥を検査する超
音波探傷装置において、前記探触子保持機構に、縦方向
回動機構、昇降機構及び横行機構を付設し、被検査鋼材
に対する超音波探触子の指向角度、距離、高さ位置を調
整可能にしたことを特徴とする超音波探傷装置。
1. An ultrasonic probe fixed to a probe holding mechanism is directed toward a surface of a steel material to be inspected while the steel material to be inspected having a curvature is conveyed while running, and an internal defect is inspected. In the ultrasonic flaw detector, the probe holding mechanism is provided with a vertical rotation mechanism, an elevating mechanism, and a traversing mechanism, so that the directivity angle, distance, and height position of the ultrasonic probe with respect to the steel to be inspected can be adjusted. An ultrasonic flaw detector characterized by the following.
【請求項2】 探触子保持機構に付設した縦方向回動機
構は、探触子を内蔵した探触子ホルダーを保持する探触
子保持板と、該探触子保持板に被検査鋼材表面を支点と
する一定角度範囲の円弧状軌跡を付与する駆動部とから
構成される請求項1記載の超音波探傷装置。
2. A vertical rotation mechanism attached to a probe holding mechanism, comprising: a probe holding plate for holding a probe holder containing a probe; and a steel material to be inspected attached to the probe holding plate. 2. The ultrasonic flaw detector according to claim 1, further comprising: a drive unit for providing an arc-shaped trajectory within a certain angle range with the surface as a fulcrum.
【請求項3】 探触子保持機構に付設した昇降機構及び
横行機構は、前記保持板をスライドガイド板に保持し、
該スライドガイド板を上下方向に駆動装置によりスライ
ド可能に設けると共に、前記スライドガイド板をほぼ水
平方向に横行可能にする別の駆動装置を設けたことより
構成される請求項1又は2記載の超音波探傷装置。
3. A lifting mechanism and a traversing mechanism attached to the probe holding mechanism, wherein the holding plate is held by a slide guide plate,
3. A super-computer according to claim 1, wherein said slide guide plate is slidably provided in a vertical direction by a drive device, and another drive device is provided for enabling said slide guide plate to traverse in a substantially horizontal direction. Sonic flaw detector.
【請求項4】 被検査鋼材の内部欠陥検査の事前作業で
ある人工欠陥付き同一形状鋼材による超音波探傷装置の
感度較正方法において、請求項2記載の縦方向回動機構
を使用し、それぞれの探触子保持板を被検査鋼材表面を
支点として円弧状軌跡に沿って倣い移動させて、最適感
度となる超音波入射角度となるように探触子ホルダーを
設定することを特徴とする超音波探傷装置の感度較正方
法。
4. A method of calibrating the sensitivity of an ultrasonic flaw detector using an identically shaped steel material with an artificial defect, which is a preparatory operation for an internal defect inspection of a steel material to be inspected, wherein the vertical rotation mechanism according to claim 2 is used. Ultrasound characterized by setting the probe holder so that the probe holding plate is moved along the arc-shaped trajectory with the surface of the steel material to be inspected as a fulcrum, and the angle of incidence of the ultrasonic wave for optimum sensitivity is set. A method for calibrating the sensitivity of a flaw detector.
JP9088307A 1997-04-07 1997-04-07 Ultrasonic flaw detector and sensitivity calibration method thereof Withdrawn JPH10282069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9088307A JPH10282069A (en) 1997-04-07 1997-04-07 Ultrasonic flaw detector and sensitivity calibration method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9088307A JPH10282069A (en) 1997-04-07 1997-04-07 Ultrasonic flaw detector and sensitivity calibration method thereof

Publications (1)

Publication Number Publication Date
JPH10282069A true JPH10282069A (en) 1998-10-23

Family

ID=13939287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9088307A Withdrawn JPH10282069A (en) 1997-04-07 1997-04-07 Ultrasonic flaw detector and sensitivity calibration method thereof

Country Status (1)

Country Link
JP (1) JPH10282069A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305111A (en) * 2000-04-20 2001-10-31 Tokimec Inc Ultrasonic rail flaw detector
KR100441961B1 (en) * 2002-01-11 2004-07-27 한국전력공사 Tracking Device for Automatic Ultrasonic Inspection on Horizontal Tube of Boiler
KR101002434B1 (en) 2010-07-27 2010-12-21 나우기연주식회사 Automatic ultrasonic testing apparatus
CN102495137A (en) * 2011-12-26 2012-06-13 北京欧宁航宇检测技术有限公司 Combined TOFD and phased array imaging scanner for weld of seal head for pressure vessel
KR101206193B1 (en) 2010-11-08 2012-11-28 한국수력원자력 주식회사 Method for controlling gain of inspection in automated ultrasonic testing system
CN103207240A (en) * 2013-03-27 2013-07-17 国家电网公司 Angle probe ultrasonic field longitudinal sound pressure distribution measuring method
CN103217486A (en) * 2013-03-27 2013-07-24 国家电网公司 Angle probe ultrasonic field transverse sound pressure distribution measuring method
KR101321790B1 (en) * 2009-08-29 2013-11-04 국제비파괴검사(주) Crack Detection vehicle for railway
RU2550825C1 (en) * 2014-02-19 2015-05-20 Алексей Михайлович Кашин Method of dynamic calibration of ultrasonic detector
CN107389800A (en) * 2017-09-19 2017-11-24 中国航空综合技术研究所 Nonmagnetic metal thin board welding seam ultrasonic scan device
CN107458419A (en) * 2017-09-18 2017-12-12 四川曜诚无损检测技术有限公司 A kind of rail mother metal flange of rail ultrasonic flaw detecting device
CN107505397A (en) * 2017-09-18 2017-12-22 四川曜诚无损检测技术有限公司 A kind of in-service rail flange of rail tunneling boring method of detection and device
CN107505398A (en) * 2017-09-30 2017-12-22 佛山市华鸿铜管有限公司 The line flaw detection detection means of continuous extruder
CN109212036A (en) * 2018-11-14 2019-01-15 北京主导时代科技有限公司 A kind of track flaw detection ultrasonic probe fixture
CN109828032A (en) * 2019-02-25 2019-05-31 山东科技大学 Prestressing force rotation wetting acoustic sensitivity monitor
CN110068666A (en) * 2019-05-08 2019-07-30 义乌奥莉机械科技有限公司 A kind of prior-warning device of track crack detection
CN112557597A (en) * 2020-12-02 2021-03-26 安徽砺剑防务科技有限公司 Portable toxic gas detection device
CN113063859A (en) * 2021-03-25 2021-07-02 广西交科集团有限公司 Nonmetal ultrasonic detector
CN113984810A (en) * 2021-10-29 2022-01-28 北京星航机电装备有限公司 Probe supporting block and thick casting internal defect positioning method
CN114044023A (en) * 2021-11-17 2022-02-15 无锡工艺职业技术学院 Patrol and examine robot suitable for subway I-beam track
CN114062395A (en) * 2021-11-18 2022-02-18 江苏科技大学 Alpha-ray nondestructive testing device for high-temperature pipeline flaw detection
CN114371220A (en) * 2021-12-28 2022-04-19 唐山曹妃甸工业区长白机电设备检修有限公司 Continuous casting roll system fatigue strength detection device and method
CN115144471A (en) * 2022-06-17 2022-10-04 杭州申昊科技股份有限公司 Probe calibration system of rail flaw detection vehicle
CN113671023B (en) * 2021-08-25 2024-04-09 南昌航空大学 Suspension type double-shaft automatic scanning mechanism for railway vehicle plates and calibration method thereof

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001305111A (en) * 2000-04-20 2001-10-31 Tokimec Inc Ultrasonic rail flaw detector
KR100441961B1 (en) * 2002-01-11 2004-07-27 한국전력공사 Tracking Device for Automatic Ultrasonic Inspection on Horizontal Tube of Boiler
KR101321790B1 (en) * 2009-08-29 2013-11-04 국제비파괴검사(주) Crack Detection vehicle for railway
KR101002434B1 (en) 2010-07-27 2010-12-21 나우기연주식회사 Automatic ultrasonic testing apparatus
KR101206193B1 (en) 2010-11-08 2012-11-28 한국수력원자력 주식회사 Method for controlling gain of inspection in automated ultrasonic testing system
CN102495137A (en) * 2011-12-26 2012-06-13 北京欧宁航宇检测技术有限公司 Combined TOFD and phased array imaging scanner for weld of seal head for pressure vessel
CN103217486B (en) * 2013-03-27 2017-02-01 国家电网公司 Angle probe ultrasonic field transverse sound pressure distribution measuring method
CN103207240A (en) * 2013-03-27 2013-07-17 国家电网公司 Angle probe ultrasonic field longitudinal sound pressure distribution measuring method
CN103217486A (en) * 2013-03-27 2013-07-24 国家电网公司 Angle probe ultrasonic field transverse sound pressure distribution measuring method
CN103207240B (en) * 2013-03-27 2016-03-16 国家电网公司 The measuring method of the longitudinal acoustic pressure distribution of a kind of angle probe ultrasonic field
RU2550825C1 (en) * 2014-02-19 2015-05-20 Алексей Михайлович Кашин Method of dynamic calibration of ultrasonic detector
CN107458419A (en) * 2017-09-18 2017-12-12 四川曜诚无损检测技术有限公司 A kind of rail mother metal flange of rail ultrasonic flaw detecting device
CN107505397A (en) * 2017-09-18 2017-12-22 四川曜诚无损检测技术有限公司 A kind of in-service rail flange of rail tunneling boring method of detection and device
CN107458419B (en) * 2017-09-18 2023-06-23 四川曜诚无损检测技术有限公司 Ultrasonic flaw detector for rail base metal rail bottom
CN107389800A (en) * 2017-09-19 2017-11-24 中国航空综合技术研究所 Nonmagnetic metal thin board welding seam ultrasonic scan device
CN107389800B (en) * 2017-09-19 2023-05-26 中国航空综合技术研究所 Non-magnetic metal sheet welding seam ultrasonic scanning device
CN107505398A (en) * 2017-09-30 2017-12-22 佛山市华鸿铜管有限公司 The line flaw detection detection means of continuous extruder
CN109212036A (en) * 2018-11-14 2019-01-15 北京主导时代科技有限公司 A kind of track flaw detection ultrasonic probe fixture
CN109212036B (en) * 2018-11-14 2023-09-15 北京主导时代科技有限公司 Ultrasonic probe clamp for rail flaw detection
CN109828032A (en) * 2019-02-25 2019-05-31 山东科技大学 Prestressing force rotation wetting acoustic sensitivity monitor
CN109828032B (en) * 2019-02-25 2021-07-09 山东科技大学 Prestress rotary wetting acoustic wave sensitivity monitor
CN110068666A (en) * 2019-05-08 2019-07-30 义乌奥莉机械科技有限公司 A kind of prior-warning device of track crack detection
CN112557597A (en) * 2020-12-02 2021-03-26 安徽砺剑防务科技有限公司 Portable toxic gas detection device
CN113063859A (en) * 2021-03-25 2021-07-02 广西交科集团有限公司 Nonmetal ultrasonic detector
CN113063859B (en) * 2021-03-25 2024-01-05 广西交科集团有限公司 Nonmetal ultrasonic detector
CN113671023B (en) * 2021-08-25 2024-04-09 南昌航空大学 Suspension type double-shaft automatic scanning mechanism for railway vehicle plates and calibration method thereof
CN113984810A (en) * 2021-10-29 2022-01-28 北京星航机电装备有限公司 Probe supporting block and thick casting internal defect positioning method
CN114044023B (en) * 2021-11-17 2022-10-14 无锡工艺职业技术学院 Patrol and examine robot suitable for subway I-beam track
CN114044023A (en) * 2021-11-17 2022-02-15 无锡工艺职业技术学院 Patrol and examine robot suitable for subway I-beam track
CN114062395A (en) * 2021-11-18 2022-02-18 江苏科技大学 Alpha-ray nondestructive testing device for high-temperature pipeline flaw detection
CN114062395B (en) * 2021-11-18 2024-04-19 江苏科技大学 Alpha ray nondestructive testing device for high-temperature pipeline flaw detection
CN114371220A (en) * 2021-12-28 2022-04-19 唐山曹妃甸工业区长白机电设备检修有限公司 Continuous casting roll system fatigue strength detection device and method
CN114371220B (en) * 2021-12-28 2024-04-02 唐山曹妃甸工业区长白机电设备检修有限公司 Continuous casting roller system fatigue strength detection device and method
CN115144471A (en) * 2022-06-17 2022-10-04 杭州申昊科技股份有限公司 Probe calibration system of rail flaw detection vehicle
CN115144471B (en) * 2022-06-17 2024-04-23 杭州申昊科技股份有限公司 Probe calibration system of rail flaw detection vehicle

Similar Documents

Publication Publication Date Title
JPH10282069A (en) Ultrasonic flaw detector and sensitivity calibration method thereof
JP2642370B2 (en) Method and apparatus for detecting a feature of a defect in a tubular member
EP0434736B1 (en) Method and apparatus for tire inspection
US3977236A (en) Apparatus and method for ultrasonic fastener hole inspection
JP4630992B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus used therefor
JP2007147544A (en) Ultrasonic flaw detection method, and ultrasonic flaw detector
US4554834A (en) Acoustic sensor and method of using same for determining the position of a tool relative to a workpiece
KR20150001861A (en) Apparatus for detecting water immersion ultrasonic flaw
US3413843A (en) Transducer for ultrasonic testing of pipe
JPH10160437A (en) Method and device for judging external shape of tire
EP1798550B1 (en) Device for inspecting the interior of a material
JPH0386249A (en) Method and device for optical non-destructive inspection of quartz crucible
JP2001056318A (en) Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detector
JP2003057215A (en) Automatic ultrasonic flaw detection method and apparatus of welded section
CN113237959A (en) Ultrasonic water immersion detection method for shaft rod forgings
JP2005083907A (en) Defect inspection method
JP4160449B2 (en) Automatic flaw detector
KR102294412B1 (en) Ultrasonic test device
KR102487732B1 (en) Testing apparatus of auto-scanner for phased array ultrasonic inspection
JP2002202292A (en) Joint inspection method and inspection device
JP2001324484A (en) Ultrasonic flaw detection method and apparatus
JP3573967B2 (en) Plate wave ultrasonic inspection method
KR100591312B1 (en) Apparatus for inspecting display panel
KR102232470B1 (en) A flaw detector with angle adjustment
JPS598197Y2 (en) A device that injects an ultrasonic beam into a curved member

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706