JPH10160437A - Method and device for judging external shape of tire - Google Patents
Method and device for judging external shape of tireInfo
- Publication number
- JPH10160437A JPH10160437A JP8322876A JP32287696A JPH10160437A JP H10160437 A JPH10160437 A JP H10160437A JP 8322876 A JP8322876 A JP 8322876A JP 32287696 A JP32287696 A JP 32287696A JP H10160437 A JPH10160437 A JP H10160437A
- Authority
- JP
- Japan
- Prior art keywords
- tire
- light
- receiving
- amount
- light receiving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Tires In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、タイヤの外形状の
状態を判定するためのタイヤの外形状判定方法及び装置
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for determining the outer shape of a tire for determining the state of the outer shape of the tire.
【0002】[0002]
【従来の技術】タイヤ等の被検出体に関する表面の凹凸
波形の周波数解析を利用した欠陥検知方法には、高速フ
ーリエ変換による方法が提案されている(例えば、特開
平7−111333号公報、特開平3−54407号公
報参照)。また、参考として、テストデータとのマッチ
ングによる方法(特開平3−54407号公報参照)
や、原波形(測定波形)と遅延した波形の差による検知
方法(特開平1−51122号公報参照)等が提案され
ている。2. Description of the Related Art As a defect detection method using a frequency analysis of a surface unevenness waveform of an object to be detected such as a tire, a method based on a fast Fourier transform has been proposed (for example, Japanese Patent Application Laid-Open No. Hei 7-111333; See JP-A-3-54407. For reference, a method based on matching with test data (see Japanese Patent Application Laid-Open No. 3-54407).
Also, a detection method based on a difference between an original waveform (measured waveform) and a delayed waveform (see JP-A-1-51122) has been proposed.
【0003】前記高速フーリエ変換による方法では、計
測データに含まれる雑音(ノイズ)の除去、又は欠陥部
の抽出(欠陥位置の特定)が可能である。In the method using the fast Fourier transform, it is possible to remove noise (noise) included in measurement data or extract a defective portion (specify a defect position).
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記高
速フーリエ変換による方法では、欠陥部の大きさまでは
判別できない。また、フーリエ変換と逆変換を行うた
め、かなりの処理時間を要するという問題点がある。さ
らに、凹凸波形に処理を数回繰り返すため、信号を歪ま
せてしまう可能性もある。However, in the method using the fast Fourier transform described above, it is not possible to determine the size of a defective portion. In addition, since the Fourier transform and the inverse transform are performed, a considerable processing time is required. Further, since the processing is repeated several times for the uneven waveform, the signal may be distorted.
【0005】本発明は上記事実を考慮し、タイヤ表面の
欠陥凹凸を特定すると共に、この欠陥凹凸部の大きさを
認識し、欠陥度合いを判定することができるタイヤの外
形状判定方法及び装置を得ることが目的である。In view of the above facts, the present invention provides a method and an apparatus for determining the outer shape of a tire which can identify the irregularities on the surface of the tire, recognize the size of the irregularities on the tire, and judge the degree of the defect. The purpose is to get.
【0006】[0006]
【課題を解決するための手段】請求項1に記載の発明
は、タイヤ側面に測定点を定め、該測定点に向けて、測
定点半径寸法を維持しながらタイヤの全周に亘って、一
定光量の光ビームを照射し、該光ビームの照射方向に対
して、所定角度θの位置で前記光ビームの反射光を受光
することにより、それぞれの測定点における受光変移量
に基づいて、タイヤ側面の表面凹凸変移量を求め、この
表面変移量に基づいて、欠陥凹凸部を抽出し、この抽出
された欠陥凹凸部の位置、大きさ、形状に基づいて、欠
陥度合いを判定する、ことを特徴としている。According to the first aspect of the present invention, a measuring point is defined on a side surface of a tire, and the measuring point is fixed over the entire circumference of the tire toward the measuring point while maintaining a radius of the measuring point. By irradiating a light beam of an amount of light and receiving the reflected light of the light beam at a position at a predetermined angle θ with respect to the irradiation direction of the light beam, the tire side surface is determined based on the amount of received light displacement at each measurement point. Determining the degree of defect based on the position, size, and shape of the extracted defect asperity, based on the amount of surface asperity variation, extracting the defect asperity based on the amount of surface deviation. And
【0007】請求項1に記載の発明によれば、タイヤ側
面に定めた測定点に向けて光ビームを照射すると共にこ
の照射位置から反射する反射光を受光して受光変移量を
求める。この動作を、タイヤ全周分行うことにより、タ
イヤ側面の同芯円上の複数の測定点における受光変移量
データが揃う。According to the first aspect of the present invention, a light beam is radiated toward a measurement point defined on the side of the tire, and a reflected light reflected from the radiated position is received to determine a light-receiving variation. By performing this operation for the entire circumference of the tire, the received light displacement amount data at a plurality of measurement points on a concentric circle on the tire side surface is prepared.
【0008】受光変移量は、タイヤ側面の表面凹凸変移
量と相関関係があり、この相関関係を利用して、受光変
移量に基づいてタイヤ側面の表面凹凸変移量を得る。[0008] The amount of change in the received light has a correlation with the amount of change in the surface unevenness of the tire side surface. By utilizing this correlation, the amount of the unevenness of the surface of the tire side is obtained based on the amount of change in the received light.
【0009】この表面凹凸変移量には、タイヤロゴマー
ク等の意図的な凹凸部も含まれる。そこで、測定点の半
径寸法を変えて、異なる同芯円上の複数の測定点で同様
に反射光を受光し、タイヤの半径方向に沿った複数の同
芯円上の複数の測定点の受光量データから表面凹凸変移
量を得る。[0009] The surface irregularities include intentional irregularities such as tire logo marks. Therefore, by changing the radius dimension of the measurement point, the reflected light is similarly received at a plurality of measurement points on different concentric circles, and the plurality of measurement points on the plurality of concentric circles along the tire radial direction are received. The surface irregularity shift amount is obtained from the amount data.
【0010】これらを総合的に判断することにより、表
面凹凸が、意図的なものか、欠陥凹凸部なのかを判別す
ることができ、この欠陥凹凸部のみを抽出し、抽出され
た欠陥凹凸部の位置、大きさ、形状に基づいて欠陥度合
いを判定する。By comprehensively judging these, it is possible to determine whether the surface unevenness is intentional or a defect unevenness portion. Only the defect unevenness portion is extracted, and the extracted defect unevenness portion is extracted. The degree of defect is determined based on the position, size, and shape of.
【0011】請求項2に記載の発明は、前記光ビームが
タイヤ側面において、相対的に低い位置で反射した場合
に受光量が小さく、高い位置で反射した場合に受光量が
大きいことを特徴としている。The invention according to claim 2 is characterized in that, when the light beam is reflected at a relatively low position on the side surface of the tire, the light reception amount is small, and when the light beam is reflected at a high position, the light reception amount is large. I have.
【0012】請求項2に記載の発明によれば、前記タイ
ヤ側面の表面凹凸変移量と相関関係として、光ビームの
受光を所定角度θで受光することによって、タイヤ側面
において、相対的に、低い位置で反射した場合に受光変
移量が小さく、高い位置で反射した場合に受光変移量が
大きくなることを利用して、タイヤの表面凹凸変移量を
求めることができる。According to the second aspect of the present invention, the light beam is received at a predetermined angle θ as a correlation with the amount of change in the surface unevenness of the tire side surface. Taking advantage of the fact that the amount of change in received light is small when reflected at a position and the amount of change in received light is large when reflected at a high position, the amount of change in the surface unevenness of the tire can be determined.
【0013】請求項3に記載の発明は、少なくともタイ
ヤを固定する固定手段と、固定手段に固定されたタイヤ
を回転させる回転駆動手段と、前記回転駆動手段による
タイヤの回転時に、タイヤ側面の同芯円上となる測定点
に一定光量の光ビームを照射する発光手段と、前記光源
部に対応して配置され、前記光ビームの照射方向に対し
て、所定角度θの位置でタイヤからの反射光を受光する
受光手段と、前記受光手段で受光した同芯円上の複数の
受光変移量をタイヤ側面の表面凹凸変移量に変換する受
光変移量−凹凸変移量変換手段と、前記受光変移量−凹
凸変移量変換手段で得られたタイヤの表面凹凸変移量に
基づいて、欠陥凹凸部を抽出する抽出手段と、前記抽出
手段で抽出された欠陥凹凸部の位置、大きさ、形状に基
づいて、前記タイヤの欠陥度合いを判定する判定手段
と、を有している。According to a third aspect of the present invention, at least a fixing means for fixing the tire, a rotation driving means for rotating the tire fixed to the fixing means, and the same rotation of the tire by the rotation driving means, the rotation of the tire at the same time. A light emitting means for irradiating a light beam of a constant light amount to a measurement point on the core circle; and a light emitting unit disposed corresponding to the light source unit and reflecting from the tire at a position at a predetermined angle θ with respect to the irradiation direction of the light beam. Light-receiving means for receiving light; light-receiving displacement-concavo-convex displacement converting means for converting a plurality of light-receiving displacements on a concentric circle received by the light-receiving means into surface irregularity displacements on the tire side surfaces; and the light-receiving displacement Based on the amount of change in the surface irregularities of the tire obtained by the unevenness change amount conversion means, based on the extraction means for extracting the unevenness of the defect, and the position, size, and shape of the unevenness of the defect extracted by the extraction means; , Said Thailand It has a determining means for determining defective degree, the.
【0014】請求項3に記載の発明によれば、固定手段
によってタイヤを固定し、かつ回転駆動手段によってタ
イヤを回転(好ましくは等速度回転)させた状態で、発
光手段では、測定点に向けて光ビームを照射する。受光
手段では、タイヤから反射する前記光ビームの反射光を
受光する。According to the third aspect of the present invention, in a state where the tire is fixed by the fixing means and the tire is rotated (preferably at a constant speed) by the rotation driving means, the light emitting means is directed toward the measuring point. To irradiate a light beam. The light receiving means receives the reflected light of the light beam reflected from the tire.
【0015】次に、受光変移量−凹凸変移量変換手段で
前記受光手段で受光した同芯円上の複数の受光変移量を
タイヤ側面の表面凹凸変移量に変換する。Next, a plurality of light-receiving variations on the concentric circles received by the light-receiving means are converted into surface unevenness variations on the side surface of the tire by the light-receiving variation-concave / convex variation conversion means.
【0016】抽出手段では、この変換された表面凹凸変
移量に基づいて、欠陥凹凸部を抽出し、判定手段でその
抽出欠陥からタイヤの欠陥度合いを判定する。The extracting means extracts a defect unevenness portion based on the converted surface unevenness change amount, and the judging means judges the degree of tire defect from the extracted defect.
【0017】請求項4に記載の発明は、前記請求項3に
記載の発明において、前記発光手段は、半径方向が共通
で、かつ複数の異なる半径寸法の測定点に同時期に照射
すると共に、前記受光手段は、半径方向が共通する複数
の測定点からの反射光を同時期に受光することを特徴と
している。According to a fourth aspect of the present invention, in the third aspect of the present invention, the light emitting means simultaneously irradiates a plurality of measurement points having a common radial direction and different radial dimensions, The light receiving means receives reflected light from a plurality of measurement points having a common radial direction at the same time.
【0018】表面凹凸変移量には、タイヤロゴマーク等
の意図的な凹凸部も含まれる。そこで、測定点の半径寸
法を変えて、異なる同芯円上の複数の測定点で同様に反
射光を受光し、タイヤの半径方向に沿った複数の同芯円
上の複数の測定点の受光変移量データから表面凹凸変移
量を得る。The amount of surface irregularity displacement includes intentional irregularities such as tire logo marks. Therefore, by changing the radius dimension of the measurement point, the reflected light is similarly received at a plurality of measurement points on different concentric circles, and the plurality of measurement points on the plurality of concentric circles along the tire radial direction are received. The surface irregularity displacement amount is obtained from the displacement amount data.
【0019】これらを総合的に判断することにより、表
面凹凸が、意図的なものか、欠陥凹凸部なのかを判別す
ることができ、この欠陥凹凸部のみを抽出し、抽出され
た欠陥凹凸部の位置、大きさ、形状に基づいて欠陥度合
いを判定する。By comprehensively judging these, it is possible to determine whether the surface irregularities are intentional or defect irregularities. Only these defect irregularities are extracted, and the extracted defect irregularities are extracted. The degree of defect is determined based on the position, size, and shape of.
【0020】請求項5に記載の発明は、前記請求項4に
記載の発明において、前記発光手段が、タイヤ半径方向
に伸びる線状光源であり、前記受光手段が、少なくとも
前記線状光源に沿って受光素子が配列されたラインセン
サ又はエリアセンサであることを特徴としている。According to a fifth aspect of the present invention, in the fourth aspect of the invention, the light emitting means is a linear light source extending in a tire radial direction, and the light receiving means is at least along the linear light source. And a line sensor or an area sensor in which light receiving elements are arranged.
【0021】測定点は、それぞれ異なる点の集まりであ
るため、これを線状光源としておけば、受光手段として
のラインセンサ又はエリアセンサの受光素子の解像度に
依存して、より細かいデータを得ることができる。Since each measurement point is a group of different points, if this is used as a linear light source, finer data can be obtained depending on the resolution of the light receiving element of the line sensor or the area sensor as the light receiving means. Can be.
【0022】[0022]
【発明の実施の形態】図1には、本実施の形態に係るタ
イヤ形状検査装置100(以下、単に検査装置100と
いう)が示されている。FIG. 1 shows a tire shape inspection apparatus 100 (hereinafter, simply referred to as an inspection apparatus 100) according to the present embodiment.
【0023】検査装置100は、タイヤ102を保持す
る固定手段としてホルダ部104を備えている。このホ
ルダ部104は、タイヤ102を実装するホイールとし
ての役目を持っており、タイヤ102を装着した後、エ
アを注入することができるようになっている。The inspection apparatus 100 has a holder 104 as a fixing means for holding the tire 102. The holder portion 104 has a role as a wheel on which the tire 102 is mounted. After the tire 102 is mounted, air can be injected.
【0024】ホルダ部104は、一対の円盤部106が
互いに対向、かつ平行に配置されており、それぞれの中
心には、回転軸108、110がそれぞれ同軸上に取り
付けられている。The holder section 104 has a pair of disk sections 106 arranged facing each other and parallel to each other. Rotation shafts 108 and 110 are coaxially mounted at the centers of the pair.
【0025】回転軸108には、モータ112の駆動力
が伝達されるように、図示しない歯車やベルト等を介し
てモータ112の回転軸(図示省略)と連結されてい
る。モータ112は、パーソナルコンピュータ114
(以下、パソコン114という)に接続された駆動制御
部116からの指示信号に応じて回転され、ホルダ部1
04を等速度回転させることができるようになってい
る。The rotating shaft 108 is connected to a rotating shaft (not shown) of the motor 112 via a gear (not shown) or a belt so that the driving force of the motor 112 is transmitted. The motor 112 is a personal computer 114
(Hereinafter, referred to as a personal computer 114), the holder unit 1 is rotated in response to an instruction signal from a drive control unit 116 connected thereto.
04 can be rotated at a constant speed.
【0026】ホルダ部104に装着されたタイヤ102
の側面(図1では、上面となる)に対向して、発光部1
18Aと受光部118Bとが一対となって配設されてい
る。発光部118A発光部118Aは、支持アーム12
0の先端部に取り付けられ、受光部118Bは、タイヤ
側面の直上位置に取付けられている。Tire 102 mounted on holder 104
The light emitting unit 1 faces the side surface (the upper surface in FIG. 1)
18A and the light receiving section 118B are provided as a pair. The light emitting unit 118A is provided with the support arm 12
The light receiving portion 118B is attached to a position just above the side surface of the tire.
【0027】発光部118Aからは、タイヤ102の半
径方向に配列された複数の光ビーム(図1の一点鎖線参
照)が、互いに平行で、かつ図3に示される如く、タイ
ヤ基準平面Bの垂線Lに対して所定角度θとなるように
タイヤ側面に照射されるようになっている。なお、この
タイヤ基準平面Bとは、仮想的に設けるものであり、前
記所定角度θが一致する面であればどこでもよい。本実
施の形態では、このタイヤ基準平面Bを、タイヤ表面よ
りも内側に設定し、後述する受光部118Bでの受光範
囲内で、受光位置変移量が比較的大きくとれる位置とな
るようにしている。A plurality of light beams (see a dashed line in FIG. 1) arranged in the radial direction of the tire 102 are parallel to each other from the light emitting portion 118A and are perpendicular to the tire reference plane B as shown in FIG. Irradiation is performed on the tire side surface so as to have a predetermined angle θ with respect to L. The tire reference plane B is virtually provided, and may be any plane as long as the predetermined angle θ coincides. In the present embodiment, the tire reference plane B is set inside the tire surface, and is set to a position where the light receiving position shift amount can be relatively large within the light receiving range of the light receiving unit 118B described later. .
【0028】タイヤ表面に対して直上となる位置に配設
された受光部118Bは、CCDラインセンサが適用さ
れており、前記一直線上に並んだ複数の光ビームのライ
ンに沿って帯状の領域に対応するタイヤ102からの反
射光(図1の鎖線参照)を受光するようになっている。The light receiving section 118B, which is disposed at a position directly above the tire surface, employs a CCD line sensor. The light receiving section 118B is formed in a band-like area along the plurality of light beam lines arranged in a straight line. The reflected light (see the chain line in FIG. 1) from the corresponding tire 102 is received.
【0029】受光部18Bの受光データは、記憶装置1
30に記憶される。記憶装置130は、画像処理装置と
してのパソコン114に接続されている。The light receiving data of the light receiving section 18B is stored in the storage device 1
30 is stored. The storage device 130 is connected to a personal computer 114 as an image processing device.
【0030】パソコン114では、以下の処理が実行さ
れる。図3に示される如く、発光部118Aからの光ビ
ームの照射方向と、受光部118Bによるタイヤからの
反射光の受光方向とには、角度θの差がある。従って、
タイヤ102の表面の凹凸変移量に応じて、基準平面B
からの高さΔhが異なり、かつ反射点(実際に反射する
タイヤ表面の反射点Rと、基準平面B上での仮想反射点
V)のタイヤ半径方向のオフセット量Δdが生じる。こ
のため、以下の(1)が成り立つ。In the personal computer 114, the following processing is executed. As shown in FIG. 3, there is a difference in angle θ between the irradiation direction of the light beam from the light emitting unit 118A and the light receiving direction of the reflected light from the tire by the light receiving unit 118B. Therefore,
According to the amount of unevenness of the surface of the tire 102, the reference plane B
Are different from each other, and an offset amount Δd in the tire radial direction of the reflection point (the reflection point R on the tire surface that actually reflects and the virtual reflection point V on the reference plane B) occurs. Therefore, the following (1) holds.
【0031】Δh=Δd/tan θ・・・(1) 上記オフセット量は、受光部118Bにおける受光位置
の差に相当するため、本来受光すべき位置が既知であれ
ば、上記(1)式を用いることにより、高さの変移量Δ
hを容易に演算で求めることができる。Δh = Δd / tan θ (1) Since the offset amount corresponds to the difference between the light receiving positions in the light receiving section 118B, if the position where light is to be received is known, the above equation (1) is used. By using, the amount of height change Δ
h can be easily calculated.
【0032】パソコン114のモニタ132上には、上
記(1)式で得られたΔhに基づいて、タイヤ102側
面の表面形状を三次元的に表示したり、図4に示される
如く、所望の断面形状を表示するようになっている。ま
た、データ表示としては、図5に示される如くタイヤ1
02の1周分の受光変移量Δdの特性図や図6に示され
る如くタイヤ102の半径方向の凹凸変移量Δhの特性
図等が表示可能である。これらの表示データから凹凸変
移量の位置を認識することができる。On the monitor 132 of the personal computer 114, the surface shape of the side surface of the tire 102 is three-dimensionally displayed on the basis of Δh obtained by the above equation (1), or a desired shape as shown in FIG. The section shape is displayed. As the data display, as shown in FIG.
It is possible to display a characteristic diagram of the light-receiving variation Δd for one round of No. 02 and a characteristic diagram of the radial unevenness variation Δh of the tire 102 as shown in FIG. From these display data, the position of the unevenness shift amount can be recognized.
【0033】なお、パソコン114では、タイヤ102
の表面の凹凸変移量を得るだけでなく、この凹凸変移量
から欠陥凹凸部の抽出も可能である。その第1の手法と
しては、複数の異なる半径方向のデータ同志を掛け合わ
せることにより、欠陥凹凸部を抽出することができる。In the personal computer 114, the tire 102
In addition to obtaining the amount of unevenness of the surface, it is also possible to extract a defect uneven portion from the amount of unevenness. As a first method, a defect uneven portion can be extracted by multiplying a plurality of data in different radial directions.
【0034】すなわち、図2に示される如く、タイヤ1
02の凹凸部には、タイヤロゴマーク等の意図的な凹凸
部102Aと、欠陥凹凸部とに分類することができ、タ
イヤロゴマーク等の意図的な凹凸部102Aの位置はあ
る程度認識可能である。また、欠陥凹凸部は半径方向に
連続する性質を持つ。これらのことから、タイヤロゴマ
ーク等の意図的な凹凸部102Aが同時期に検出されな
いような少なくとも2種の半径寸法の異なる測定点(測
定円)を選択し、これらを掛け合わせることにより、意
図的な凹凸部は消去され、欠陥凹凸部は増幅されること
になる。That is, as shown in FIG.
The uneven portion of 02 can be classified into an intentional uneven portion 102A such as a tire logo mark and a defective uneven portion, and the position of the intentional uneven portion 102A such as a tire logo mark can be recognized to some extent. . Further, the defect unevenness has a property of being continuous in the radial direction. From these, at least two types of measurement points (measurement circles) having different radial dimensions such that the intentional uneven portion 102A such as a tire logo mark is not detected at the same time are selected, and these are multiplied to obtain an intended intention. The typical uneven portion is erased, and the defective uneven portion is amplified.
【0035】第2の手法としては、意図的な凹凸部10
2Aと欠陥凹凸部との形状の差を利用する。すなわち、
意図的な凹凸部102Aは急激に(ほぼ直角に)立ち上
がり、急激に(ほぼ直角に)立ち下がる所謂矩形状の凹
凸であり、一方、欠陥凹凸部は、比較的緩やかな傾きで
立ち上がり、比較的緩やかな傾きで立ち下がる所謂山型
の凹凸である。そこで、得られた凹凸変移量データの1
つの測定点(測定円)を基準として、その変化量に注目
し、急激な立ち上がりがあった場合には、他の測定点
(測定円)に移行することを繰り返すことにより、意図
的な凹凸部102Aを回避しながら、タイヤ1周分の欠
陥凹凸部の位置、大きさ、形状を認識することができ
る。As a second technique, the intentional irregularities 10
The difference in shape between 2A and the concave and convex portions is used. That is,
The intentional irregularities 102A are so-called rectangular irregularities that rise sharply (almost at right angles) and fall sharply (almost at right angles), while the defect irregularities rise with a relatively gentle slope, and This is a so-called mountain-shaped unevenness that falls with a gentle inclination. Therefore, 1
Focusing on the amount of change with reference to one measurement point (measurement circle), and when there is a sharp rise, repeating the transition to another measurement point (measurement circle), It is possible to recognize the position, the size, and the shape of the defective uneven portion for one circumference of the tire while avoiding 102A.
【0036】以下に本実施の形態の作用を説明する。被
検査物であるタイヤ102をホルダ部104に装着し、
空気を注入する。この状態でモータ112を駆動させ
て、ホルダ部104を回転駆動させる。The operation of this embodiment will be described below. The tire 102 to be inspected is mounted on the holder 104,
Inject air. In this state, the motor 112 is driven to rotate the holder 104.
【0037】この状態で、発光部118Aから複数の互
いに平行な光ビームをタイヤ102の側面に向けて照射
する。この照射方向に対して角度θの位置(タイヤ10
2の側面の直上)には、受光部118Bが設けられてお
り、この受光部118Bによって、前記光ビームのタイ
ヤ102からの反射光を受光する。この受光データは、
記憶装置130に記憶されると共に、全てのデータが揃
った時点でパソコン114に送出され、以下のような画
像処理が実行される。In this state, a plurality of mutually parallel light beams are emitted from the light emitting section 118A toward the side surface of the tire 102. The position of the angle θ with respect to this irradiation direction (the tire 10
A light receiving portion 118B is provided immediately above the second side surface), and the light receiving portion 118B receives reflected light of the light beam from the tire 102. This received light data
The data is stored in the storage device 130 and sent to the personal computer 114 when all the data are collected, and the following image processing is executed.
【0038】このとき、光ビームが仮想的に設けた同一
光路長となる基準平面で反射した場合には、受光部11
8Bによる受光位置が予め分かっている。At this time, when the light beam is reflected by a virtually provided reference plane having the same optical path length, the light receiving unit 11
The light receiving position by 8B is known in advance.
【0039】しかし、タイヤ102の表面は、この基準
平面よりも高い位置にあり、かつ曲面であるため、上記
既知の受光位置に対してずれることになる。また、タイ
ヤ102の表面に凹凸部が存在すれば、その受光位置は
さらに変移することになる。However, since the surface of the tire 102 is at a position higher than the reference plane and is a curved surface, it is shifted from the known light receiving position. In addition, if there is an uneven portion on the surface of the tire 102, the light receiving position is further shifted.
【0040】図3に示される如く、この受光位置変移量
Δdは、基準平面からの高さ変移量Δhに対して、
(1)式に示されるような相関関係がある。As shown in FIG. 3, the amount of displacement Δd of the light receiving position is different from the amount of displacement Δh from the reference plane.
There is a correlation as shown in equation (1).
【0041】Δh=Δd/tan θ・・・(1) 従って、パソコン114では、受光部118Bによる受
光位置変移量Δdが分かれば、図5に示されるような変
移データをモニタ132に表示することができる。この
場合、相対的に変移量Δdが大きい程凸であることを示
している。Δh = Δd / tan θ (1) Accordingly, in the personal computer 114, if the amount of shift Δd of the light receiving position by the light receiving section 118B is known, the shift data as shown in FIG. Can be. In this case, the larger the amount of displacement Δd is, the more convex it is.
【0042】また、図6に示される如く、(1)式に基
づいて、Δhを求めることにより、タイヤ102の1周
分の高さ変移の推移をモニタ132に表示することがで
きる。Further, as shown in FIG. 6, by calculating Δh based on the equation (1), the transition of the height change for one rotation of the tire 102 can be displayed on the monitor 132.
【0043】さらに、パソコン114では、上記データ
に基づいて、タイヤ102の表面を三次元的に表示した
り、図4に示される如く所望の位置の断面図を表示する
ことができる。Further, the personal computer 114 can display the surface of the tire 102 three-dimensionally or a sectional view of a desired position as shown in FIG. 4 based on the above data.
【0044】オペレータはこのような表示内容からタイ
ヤ102の欠陥凹凸部を抽出してもよいが、自動的に欠
陥凹凸部を抽出することも可能である。The operator may extract the irregularities of the tire 102 from such display contents, but it is also possible to automatically extract the irregularities of the tire 102.
【0045】すなわち、複数の異なる半径方向のデータ
同志を掛け合わせる(第1の手法)。タイヤ102の凹
凸部には、タイヤロゴマーク等の意図的な凹凸部102
Aと、欠陥凹凸部とに分類することができ、タイヤロゴ
マークの位置はある程度認識可能である。また、欠陥凹
凸部は半径方向に連続する性質を持つ。これらのことか
ら、タイヤロゴマーク等の意図的な凹凸部102Aが同
時期に検出されないような少なくとも2種の半径寸法の
異なる測定点(測定円)を選択し、これらを掛け合わせ
ることにより、意図的な凹凸部は消去され、欠陥凹凸部
は増幅されることになり、所定のしきい値比較すること
によって、欠陥凹凸部のみを抽出することができる。That is, a plurality of data in different radial directions are multiplied (first method). In the uneven portion of the tire 102, intentional uneven portion 102 such as a tire logo mark is provided.
A and a defect uneven portion, and the position of the tire logo can be recognized to some extent. Further, the defect unevenness has a property of being continuous in the radial direction. From these facts, at least two types of measurement points (measurement circles) having different radial dimensions such that the intentional uneven portion 102A such as a tire logo mark is not detected at the same time are selected, and these are multiplied to obtain an intended intention. The typical uneven portion is erased, and the defective uneven portion is amplified. Only the defective uneven portion can be extracted by comparing a predetermined threshold value.
【0046】第2の手法としては、意図的な凹凸部と欠
陥凹凸部との形状の差を利用する。すなわち、意図的な
凹凸部は所謂矩形状の凹凸であり、一方、欠陥凹凸部は
所謂山型の凹凸である。そこで、得られた凹凸変移量デ
ータの1つの測定点(測定円)を基準として、タイヤ1
02の1周分の凹凸部検出していき、急激な立ち上がり
があった場合には、他の測定点(測定円)に移行するこ
とを繰り返す。結果として、意図的な凹凸を回避しなが
ら、タイヤ1周分の欠陥凹凸部の位置、大きさ、形状を
認識することができる。As a second technique, a difference in shape between intentional uneven portions and defective uneven portions is used. That is, the intentional irregularities are so-called rectangular irregularities, while the defect irregularities are so-called mountain-like irregularities. Therefore, the tire 1 is determined based on one measurement point (measurement circle) of the obtained unevenness shift amount data.
The irregularities for one round of 02 are detected, and when there is a sharp rise, the transition to another measurement point (measurement circle) is repeated. As a result, it is possible to recognize the position, size, and shape of the defective uneven portion for one round of the tire while avoiding intentional unevenness.
【0047】本実施の形態によれば、光ビームを照射
し、所定角度θでこの光ビームのタイヤ102からの反
射光を受光することによって、その受光位置の変移量か
らタイジャ102の表面の凹凸形状を把握することがで
きるため、フーリエ変換等の複雑な処理を行うことな
く、迅速かつ確実にタイヤ102に表面に生じる欠陥凹
凸部を抽出することができる。According to the present embodiment, by irradiating a light beam and receiving the reflected light of this light beam from the tire 102 at a predetermined angle θ, the unevenness of the surface of the tiger 102 is obtained from the displacement of the light receiving position. Since the shape can be ascertained, it is possible to quickly and reliably extract the irregularities on the surface of the tire 102 without performing complicated processing such as Fourier transform.
【0048】なお、本実施の形態では、発光部118A
から複数本の光ビームを照射するようにしたが、タイヤ
102の半径方向に沿って連続する線状の光(スリット
光)を照射するようにしてもよい。この場合、受光部1
18A側の解像度に依存して、タイヤ102の測定点
(測定円)を増加させることができる。In the present embodiment, the light emitting section 118A
Although a plurality of light beams are irradiated from the above, a continuous linear light (slit light) along the radial direction of the tire 102 may be irradiated. In this case, the light receiving unit 1
The measurement points (measurement circles) of the tire 102 can be increased depending on the resolution on the 18A side.
【0049】また、受光部118Bとしてラインセンサ
を用いたが、エリアセンサをもちいてもよい。Although a line sensor is used as the light receiving section 118B, an area sensor may be used.
【0050】[0050]
【発明の効果】以上説明した如く本発明に係るタイヤの
外形状判定方法及び装置は、タイヤ表面の欠陥凹凸を特
定すると共に、この欠陥凹凸部の大きさを認識し、欠陥
度合いを判定することができるという優れた効果を有す
る。As described above, the method and apparatus for judging the outer shape of a tire according to the present invention specify defect irregularities on the tire surface, recognize the size of the defect irregularities, and judge the degree of defect. It has an excellent effect that it can be produced.
【図1】本実施の形態に係るタイヤ形状検査装置の概略
構成図である。FIG. 1 is a schematic configuration diagram of a tire shape inspection device according to the present embodiment.
【図2】被検査用タイヤの斜視図である。FIG. 2 is a perspective view of a tire to be inspected.
【図3】タイヤの表面形状を光ビームの反射光を受光す
ることによって認識するための説明図である。FIG. 3 is an explanatory diagram for recognizing a tire surface shape by receiving reflected light of a light beam.
【図4】モニタ上に写し出される特性図であり、タイヤ
表面の断面形状である。FIG. 4 is a characteristic diagram displayed on a monitor, which is a cross-sectional shape of a tire surface.
【図5】モニタ上に写し出される特性図であり、タイヤ
1周分の受光位置変移特性図である。FIG. 5 is a characteristic diagram displayed on a monitor, and is a characteristic diagram of a light receiving position shift characteristic for one rotation of a tire.
【図6】モニタ上に写し出される特性図であり、タイヤ
の一部分の高さ変移特性図である。FIG. 6 is a characteristic diagram displayed on a monitor, and is a height change characteristic diagram of a part of a tire.
100 タイヤ形状検査装置 102 タイヤ 104 ホルダ部(固定手段) 108A 発光部(発光手段) 108B 受光部(受光手段) 112 モータ(回転駆動手段) 114 パソコン(受光変移量−凹凸変移量変換手
段、抽出手段、判定手段)REFERENCE SIGNS LIST 100 tire shape inspection apparatus 102 tire 104 holder part (fixing means) 108A light emitting part (light emitting means) 108B light receiving part (light receiving means) 112 motor (rotation driving means) 114 personal computer (light receiving displacement-concave and convex displacement conversion means, extraction means , Determination means)
Claims (5)
向けて、測定点半径寸法を維持しながらタイヤの全周に
亘って、一定光量の光ビームを照射し、 該光ビームの照射方向に対して、所定角度θの位置で前
記光ビームの反射光を受光することにより、それぞれの
測定点における受光位置の変移量に基づいて、タイヤ側
面の表面凹凸変移量を求め、 この表面変移量に基づいて、欠陥凹凸部を抽出し、 この抽出された欠陥凹凸部の位置、大きさ、形状に基づ
いて、欠陥度合いを判定する、ことを特徴とするタイヤ
の外形状判定方法。1. A measuring point is defined on a side surface of a tire, and a constant amount of light beam is radiated toward the measuring point over the entire circumference of the tire while maintaining a radius of the measuring point. By receiving the reflected light of the light beam at a position at a predetermined angle θ with respect to the direction, the amount of displacement of the surface unevenness of the tire side surface is determined based on the amount of displacement of the light receiving position at each measurement point. A method for determining the outer shape of a tire, comprising: extracting a defect uneven portion based on an amount; and determining a defect degree based on a position, a size, and a shape of the extracted defect uneven portion.
対的に低い位置で反射した場合に受光量が小さく、高い
位置で反射した場合に受光量が大きいことを特徴とする
請求項1記載のタイヤの外形状判定方法。2. The tire according to claim 1, wherein the light receiving amount is small when the light beam is reflected at a relatively low position on the tire side surface, and the light receiving amount is large when the light beam is reflected at a high position. Outer shape determination method.
と、 固定手段に固定されたタイヤを回転させる回転駆動手段
と、 前記回転駆動手段によるタイヤの回転時に、タイヤ側面
の同芯円上となる測定点に一定光量の光ビームを照射す
る発光手段と、 前記光源部に対応して配置され、前記光ビームの照射方
向に対して、所定角度θの位置でタイヤからの反射光を
受光する受光手段と、 前記受光手段で受光した同芯円上の複数の受光位置の変
移量をタイヤ側面の表面凹凸変移量に変換する受光変移
量−凹凸変移量変換手段と、 前記受光変移量−凹凸変移量変換手段で得られたタイヤ
の表面凹凸変移量に基づいて、欠陥凹凸部を抽出する抽
出手段と、 前記抽出手段で抽出された欠陥凹凸部の位置、大きさ、
形状に基づいて、前記タイヤの欠陥度合いを判定する判
定手段と、を有するタイヤの外形状判定装置。3. A fixing means for fixing at least the tire, a rotation driving means for rotating the tire fixed to the fixing means, and a measurement point which is on a concentric circle on the side surface of the tire when the rotation driving means rotates the tire. A light-emitting means for irradiating a light beam of a constant amount to the light-receiving means, and a light-receiving means arranged to correspond to the light source unit and receiving reflected light from the tire at a position at a predetermined angle θ with respect to the irradiation direction of the light beam. A light-receiving displacement-concavity-conversion displacement converting means for converting displacements of a plurality of light-receiving positions on a concentric circle received by the light-receiving means into a surface irregularity displacement on a tire side surface; Extraction means for extracting a concave and convex portion based on the amount of change in the surface irregularities of the tire obtained by the means, The position and size of the concave and convex portion extracted by the extracting means,
Determining means for determining the degree of defect of the tire based on the shape;
つ複数の異なる半径寸法の測定点に同時期に照射すると
共に、前記受光手段は、半径方向が共通する複数の測定
点からの反射光を同時期に受光することを特徴とする請
求項3記載のタイヤの外形状判定装置。4. The light emitting means simultaneously irradiates a plurality of measurement points having a common radial direction and different radial dimensions, and the light receiving means reflects light from a plurality of measurement points having a common radial direction. The tire outer shape judging device according to claim 3, wherein light is received at the same time.
る線状光源であり、前記受光手段が、少なくとも前記線
状光源に沿って受光素子が配列されたラインセンサ又は
エリアセンサであることを特徴とする請求項4記載のタ
イヤの外形状判定装置。5. The light-emitting unit is a linear light source extending in a tire radial direction, and the light-receiving unit is a line sensor or an area sensor in which light-receiving elements are arranged at least along the linear light source. The tire outer shape determining device according to claim 4, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8322876A JPH10160437A (en) | 1996-12-03 | 1996-12-03 | Method and device for judging external shape of tire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8322876A JPH10160437A (en) | 1996-12-03 | 1996-12-03 | Method and device for judging external shape of tire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10160437A true JPH10160437A (en) | 1998-06-19 |
Family
ID=18148606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8322876A Pending JPH10160437A (en) | 1996-12-03 | 1996-12-03 | Method and device for judging external shape of tire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10160437A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11138654A (en) * | 1997-11-06 | 1999-05-25 | Bridgestone Corp | Tire shape deciding apparatus and method for selecting tire |
JP2007011462A (en) * | 2005-06-28 | 2007-01-18 | Bridgestone Corp | Master data generation method for inspecting uneven figure |
JP2007101346A (en) * | 2005-10-04 | 2007-04-19 | Jatco Ltd | Shape display, and shape display for torque converter cover blade |
WO2009148095A1 (en) * | 2008-06-04 | 2009-12-10 | 株式会社神戸製鋼所 | Tire shape inspection method and tire shape inspection device |
JP2010014698A (en) * | 2008-06-04 | 2010-01-21 | Kobe Steel Ltd | Tire shape inspection method and tire shape inspection device |
JP2010018003A (en) * | 2008-07-14 | 2010-01-28 | Yokohama Rubber Co Ltd:The | Management method of tire manufacturing process |
JP2010018009A (en) * | 2008-07-14 | 2010-01-28 | Yokohama Rubber Co Ltd:The | Management method of tire manufacturing process |
JP2010181320A (en) * | 2009-02-06 | 2010-08-19 | Kobe Steel Ltd | Method and device for inspecting tire shape |
KR101031891B1 (en) | 2010-08-02 | 2011-05-04 | 주식회사 네스앤텍 | Method and device for compensating error of tire measurement |
JP2011220687A (en) * | 2010-04-02 | 2011-11-04 | Bridgestone Corp | Visual inspection method and visual inspection device of tire |
JP2011220964A (en) * | 2010-04-14 | 2011-11-04 | Bridgestone Corp | Tire side face failure detection method and device |
JP2016109644A (en) * | 2014-12-10 | 2016-06-20 | 横浜ゴム株式会社 | Tire abrasion evaluation method |
CN107735646A (en) * | 2015-04-22 | 2018-02-23 | 新日铁住金株式会社 | Shape measuring device and shape measuring method |
-
1996
- 1996-12-03 JP JP8322876A patent/JPH10160437A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11138654A (en) * | 1997-11-06 | 1999-05-25 | Bridgestone Corp | Tire shape deciding apparatus and method for selecting tire |
JP2007011462A (en) * | 2005-06-28 | 2007-01-18 | Bridgestone Corp | Master data generation method for inspecting uneven figure |
JP2007101346A (en) * | 2005-10-04 | 2007-04-19 | Jatco Ltd | Shape display, and shape display for torque converter cover blade |
WO2009148095A1 (en) * | 2008-06-04 | 2009-12-10 | 株式会社神戸製鋼所 | Tire shape inspection method and tire shape inspection device |
JP2010014698A (en) * | 2008-06-04 | 2010-01-21 | Kobe Steel Ltd | Tire shape inspection method and tire shape inspection device |
CN102084213A (en) * | 2008-06-04 | 2011-06-01 | 株式会社神户制钢所 | Tire shape inspection method and tire shape inspection device |
JP2010018003A (en) * | 2008-07-14 | 2010-01-28 | Yokohama Rubber Co Ltd:The | Management method of tire manufacturing process |
JP2010018009A (en) * | 2008-07-14 | 2010-01-28 | Yokohama Rubber Co Ltd:The | Management method of tire manufacturing process |
JP2010181320A (en) * | 2009-02-06 | 2010-08-19 | Kobe Steel Ltd | Method and device for inspecting tire shape |
JP2011220687A (en) * | 2010-04-02 | 2011-11-04 | Bridgestone Corp | Visual inspection method and visual inspection device of tire |
JP2011220964A (en) * | 2010-04-14 | 2011-11-04 | Bridgestone Corp | Tire side face failure detection method and device |
KR101031891B1 (en) | 2010-08-02 | 2011-05-04 | 주식회사 네스앤텍 | Method and device for compensating error of tire measurement |
JP2016109644A (en) * | 2014-12-10 | 2016-06-20 | 横浜ゴム株式会社 | Tire abrasion evaluation method |
CN107735646A (en) * | 2015-04-22 | 2018-02-23 | 新日铁住金株式会社 | Shape measuring device and shape measuring method |
US10451410B2 (en) | 2015-04-22 | 2019-10-22 | Nippon Steel Corporation | Shape measurement apparatus and shape measurement method |
CN107735646B (en) * | 2015-04-22 | 2019-12-17 | 日本制铁株式会社 | Shape measuring device and shape measuring method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7805987B1 (en) | System and method for pneumatic tire defect detection | |
KR102298826B1 (en) | Method and tool to determine a brake disk deterioration state | |
JPH10160437A (en) | Method and device for judging external shape of tire | |
US7681453B2 (en) | System and method to calibrate multiple sensors | |
KR101287644B1 (en) | Method and apparatus for inspecting a container sidewall contour | |
US4634273A (en) | O-ring inspection method | |
JPH03267745A (en) | Surface property detecting method | |
JP2000514555A (en) | Apparatus and method for evaluating tire condition | |
JP4445215B2 (en) | Method for inspecting unevenness of tire side | |
CN116978809B (en) | Wafer detection device and detection method | |
JP3768625B2 (en) | Tire outer shape determination method and apparatus | |
JP2008122349A (en) | Measuring instrument | |
JP2002005903A (en) | Ultrasonic inspection device and flaw detection method | |
JPH10160453A (en) | Method and device for judging external shape of tire | |
JP2008008689A (en) | Surface inspection device and surface inspection method | |
US8547547B2 (en) | Optical surface defect inspection apparatus and optical surface defect inspection method | |
JP2008164532A (en) | Apparatus and method for surface inspection | |
US12117418B2 (en) | Ultrasonic inspection device and inspection method | |
JP4710347B2 (en) | Analysis device and analysis disk used for the same | |
JP3618545B2 (en) | Defect inspection method | |
JPH1194750A (en) | Method and apparatus for inspecting photoreceptor drum | |
JP5367292B2 (en) | Surface inspection apparatus and surface inspection method | |
JPH10170238A (en) | Identifying method for abnormal outline of object and its device | |
JP3724162B2 (en) | Laser scanning device and shape measuring device | |
JP2002214155A (en) | Flaw inspecting device for test object |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050701 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050809 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051206 |