JP2011220964A - Tire side face failure detection method and device - Google Patents

Tire side face failure detection method and device Download PDF

Info

Publication number
JP2011220964A
JP2011220964A JP2010093125A JP2010093125A JP2011220964A JP 2011220964 A JP2011220964 A JP 2011220964A JP 2010093125 A JP2010093125 A JP 2010093125A JP 2010093125 A JP2010093125 A JP 2010093125A JP 2011220964 A JP2011220964 A JP 2011220964A
Authority
JP
Japan
Prior art keywords
tire
failure detection
photographing
light source
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010093125A
Other languages
Japanese (ja)
Other versions
JP5414607B2 (en
Inventor
Katsuo Kofunai
克夫 小船井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2010093125A priority Critical patent/JP5414607B2/en
Publication of JP2011220964A publication Critical patent/JP2011220964A/en
Application granted granted Critical
Publication of JP5414607B2 publication Critical patent/JP5414607B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tire side face failure detection device capable of reducing examination preparation time even in a case a size of the tire to be examined is changed.SOLUTION: When taking a photograph of a side face of a tire 12 from the front using a video camera 20, an end 18A of fiber optic 18 is brought to a position close to the video camera 20 so that a specular reflection is within a photographing range on one end of the photographing range. Thereby, a specular reflection of a projected beam light is generated in a reference high luminance part, and a luminance in other high luminance part having a local slight swelling on a side face of the tire 12 becomes higher than that of a surrounding area. Thus, a failure in the side face of the tire 12 is detected by a personal computer 24 based on the distance from the reference high luminance part to the other high luminance part in a direction of a circumference of the tire, and the luminance of other high luminance parts.

Description

本発明は、タイヤ耐久試験において回転するタイヤの側面の故障を検出するためのタイヤ側面故障検出方法及び装置に関するものである。   The present invention relates to a tire side failure detection method and apparatus for detecting a failure on a side surface of a rotating tire in a tire durability test.

タイヤの耐久試験は、ドラムの外周上で試験用のタイヤを走行させながら耐久試験を実施し、タイヤに故障が発生した段階で、その故障を検出して試験を終了させる。従来、タイヤ耐久試験において、回転するタイヤの故障を検出する場合には、タイヤ側面のように故障を生じ易い部位にタッチセンサを設置することが行われている。また、このタッチセンサを改善した技術として、タイヤの故障により膨出したタイヤ表面が検知体に接触することでタイヤの故障を検出する装置(例えば、特許文献1参照)が提案されている。   In the tire durability test, a durability test is performed while running a test tire on the outer periphery of the drum. When a failure occurs in the tire, the failure is detected and the test is terminated. Conventionally, when detecting a failure of a rotating tire in a tire endurance test, a touch sensor has been installed at a portion where the failure is likely to occur, such as a side surface of the tire. Further, as a technique for improving the touch sensor, there has been proposed an apparatus (for example, refer to Patent Document 1) that detects a tire failure when a tire surface that has expanded due to a tire failure comes into contact with a detection body.

特開2005−55380号公報JP 2005-55380 A

しかしながら、特許文献1の装置では、タイヤの外縁に沿って一方のビード部側から他方のビード部側にかけて延在する曲げ変形可能なU字状の検知体を使用している。このため、試験するタイヤを変更した場合には、作業者が変更したタイヤの外縁に沿って検知体を変形させる必要がある。この結果、装置の設定が煩雑になり試験準備に時間がかかる。   However, the apparatus of Patent Document 1 uses a U-shaped detecting body that can be bent and deformed from one bead part side to the other bead part side along the outer edge of the tire. For this reason, when the tire to be tested is changed, the detector needs to be deformed along the outer edge of the tire changed by the operator. As a result, the setting of the apparatus becomes complicated and it takes time to prepare for the test.

本発明は、上記問題を解決すべく成されたもので、試験するタイヤのサイズを変更した場合にも、試験準備時間を短縮できるタイヤ側面故障検出装置を得ることを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a tire side surface failure detection device that can shorten the test preparation time even when the size of the tire to be tested is changed.

請求項1に記載の発明のタイヤ側面故障検出方法は、タイヤの側面を撮影し、光源からの投射光により前記タイヤの側面の周方向に沿った傾き無しの基準位置での正反射による輝度が所定値より高い基準高輝度部位と、該基準位置に対応する径方向位置で、且つ前記基準位置以外で輝度が前記所定値より高いその他の高輝度部位が在るか否かを確認し、前記その他の高輝度部位が在ると確認した場合には、前記撮影画像内での前記基準高輝度部位と前記その他の高輝度部位との前記タイヤ周方向の距離及び前記その他の高輝度部位の輝度から、前記側面の故障を検出する。   In the tire side surface failure detection method according to the first aspect of the present invention, the brightness due to regular reflection at a reference position without tilting along the circumferential direction of the tire side surface is photographed by projecting light from the light source of the tire. Check whether there is a reference high-intensity part higher than a predetermined value, and other high-intensity parts having a luminance higher than the predetermined value at a radial position corresponding to the reference position and other than the reference position, When it is confirmed that there is another high-luminance part, the distance in the tire circumferential direction between the reference high-luminance part and the other high-luminance part in the captured image and the luminance of the other high-luminance part From the above, a failure on the side surface is detected.

請求項1記載のタイヤ側面故障検出方法では、タイヤの側面を撮影する際に、光源からの投射光によりタイヤの側面の周方向に沿った傾き無しの基準位置での正反射による輝度が所定値より高い基準高輝度部位と、基準位置に対応する径方向位置で、且つ基準位置以外で輝度が所定値より高いその他の高輝度部位が在るか否かを確認する。そして、その他の高輝度部位が在ると確認した場合には、撮影画像内での基準高輝度部位とその他の高輝度部位とのタイヤ周方向の距離、及び前記その他の高輝度部位の輝度から、側面の故障を検出する。このため、試験するタイヤのサイズを変更した場合にも、タイヤの側面を撮影すればよいので、タイヤのサイズに対応して容易に設定できる。この結果、試験準備時間を短縮できる。   In the tire side surface failure detection method according to claim 1, when photographing the side surface of the tire, the brightness due to regular reflection at a reference position without inclination along the circumferential direction of the side surface of the tire by the light projected from the light source is a predetermined value. It is confirmed whether or not there is a higher reference high-luminance part and another high-luminance part having a higher luminance than a predetermined value at a radial position corresponding to the reference position and other than the reference position. And when it is confirmed that there is another high-luminance part, from the distance in the tire circumferential direction between the reference high-luminance part and the other high-luminance part in the captured image, and the luminance of the other high-luminance part , Detect side failure. For this reason, even if the size of the tire to be tested is changed, it is only necessary to photograph the side surface of the tire, so that it can be easily set according to the size of the tire. As a result, the test preparation time can be shortened.

請求項2に記載の発明は、請求項1に記載のタイヤ側面故障検出方法において、前記タイヤの側面の全周をN回に分割して撮影し、前記タイヤの回転周期をT、nを正整数とした場合に、その撮影間隔をnT±(T/N)とした。   According to a second aspect of the present invention, in the tire side surface failure detection method according to the first aspect of the present invention, the entire circumference of the side surface of the tire is photographed by dividing it into N times, and the rotation period of the tire is set to T and n. In the case of an integer, the photographing interval is nT ± (T / N).

請求項2記載のタイヤ側面故障検出方法では、タイヤの側面の全周をN回に分割して撮影し、タイヤの回転周期をT、nを正整数とした場合に、その撮影間隔をnT±(T/N)としたため、高速度対応の撮影装置でない一般的な撮影装置を用いて高速度対応の撮影装置と同様に、高速で回転するタイヤの側面を全周の撮影画像を得ることができる。   In the tire side surface failure detection method according to claim 2, when the entire circumference of the tire side surface is photographed by dividing it into N times, and the tire rotation cycle is T and n is a positive integer, the photographing interval is nT ±. (T / N), it is possible to obtain a photographed image of the entire circumference of the side surface of the tire that rotates at high speed using a general photographing apparatus that is not a high-speed compatible photographing apparatus as in the case of a high-speed compatible photographing apparatus. it can.

請求項3に記載の発明は、請求項2に記載のタイヤ側面故障検出方法において、前記光源を前記撮影間隔に同期して点灯させる。   According to a third aspect of the present invention, in the tire side surface failure detection method according to the second aspect, the light source is turned on in synchronization with the photographing interval.

請求項3記載のタイヤ側面故障検出方法では、光源を撮影間隔に同期して点灯させるため、光源の消費電力を抑制できる。   In the tire side surface failure detection method according to the third aspect, since the light source is turned on in synchronization with the photographing interval, the power consumption of the light source can be suppressed.

請求項4に記載の発明は、請求項1〜3の何れか1項に記載のタイヤ側面故障検出方法において、前記光源からの投射光を前記タイヤの側面の近傍に導く。   According to a fourth aspect of the present invention, in the tire side surface failure detecting method according to any one of the first to third aspects, the projection light from the light source is guided to the vicinity of the side surface of the tire.

請求項4記載のタイヤ側面故障検出方法では、光源からの投射光をタイヤの側面の近傍に導くため、タイヤが破裂した場合に、光源が損傷するのを防止できる。   In the tire side surface failure detection method according to the fourth aspect, since the projection light from the light source is guided to the vicinity of the side surface of the tire, it is possible to prevent the light source from being damaged when the tire bursts.

請求項5に記載の発明は、請求項1〜4の何れか1項に記載のタイヤ側面故障検出方法において、前記側面の故障検出時に、前記タイヤを停止する。   According to a fifth aspect of the present invention, in the tire side failure detection method according to any one of the first to fourth aspects, the tire is stopped when the side failure is detected.

請求項5に記載のタイヤ側面故障検出方法では、側面の故障検出時にタイヤを停止するため、タイヤの破裂を防止できる。   In the tire side surface failure detection method according to the fifth aspect, since the tire is stopped when the side surface failure is detected, the tire can be prevented from bursting.

請求項6に記載の発明のタイヤ側面故障検出装置は、タイヤを転動させる駆動装置と、前記タイヤの側面を撮影する少なくとも1台の撮影装置と、前記タイヤの側面に投射光を投射する光源と、前記撮影装置で撮影された前記側面の画像データから前記タイヤの側面の周方向に沿った傾き無しの基準位置での正反射による輝度が所定値より高い基準高輝度部位と、該基準位置に対応する径方向位置で、且つ前記基準位置以外で輝度が前記所定値より高いその他の高輝度部位が在るか否かを確認し、前記その他の高輝度部位が在ると確認した場合には、前記撮影画像内での前記基準高輝度部位と前記その他の高輝度部位との前記タイヤ周方向の距離及び前記その他の高輝度部位の輝度から、前記側面の故障を検出する画像処理手段と、を備えている。   The tire side surface failure detection device according to claim 6 is a drive device that rolls a tire, at least one imaging device that images the side surface of the tire, and a light source that projects projection light onto the side surface of the tire. A reference high-intensity part whose luminance by regular reflection at a reference position without inclination along the circumferential direction of the side surface of the tire from the image data of the side surface imaged by the imaging device is higher than a predetermined value, and the reference position When it is confirmed that there is another high-luminance part other than the reference position and having a brightness higher than the predetermined value, and it is confirmed that the other high-luminance part exists. Image processing means for detecting a failure on the side surface from the distance in the tire circumferential direction between the reference high-intensity part and the other high-intensity part in the captured image and the luminance of the other high-intensity part; With That.

請求項6に記載のタイヤ側面故障検出装置では、少なくとも1台の撮影装置によって、駆動装置よって転動するタイヤの側面を撮影する。この際、光源からの投射光をタイヤの側面に投射する。また、画像処理手段により、タイヤ側面の周方向に沿った傾き無しの基準位置での正反射による輝度が所定値より高い基準高輝度部位と、基準位置に対応する径方向位置で、且つ基準位置以外で輝度が所定値より高いその他の高輝度部位が在るか否かを確認する。そして、その他の高輝度部位が在ると確認した場合には、撮影画像内での基準高輝度部位とその他の高輝度部位とのタイヤ周方向の距離、及び前記その他の高輝度部位の輝度から、側面の故障を検出する。このため、試験するタイヤのサイズを変更した場合にも、タイヤの側面を撮影できる位置に撮影装置と光源とを配置すればよいので、タイヤのサイズに対応して容易に設定できる。この結果、試験準備時間を短縮できる。   In the tire side surface failure detection device according to the sixth aspect, the side surface of the tire rolling by the driving device is photographed by at least one photographing device. At this time, the projection light from the light source is projected onto the side surface of the tire. Further, by the image processing means, a reference high-intensity portion whose luminance by regular reflection at a reference position without inclination along the circumferential direction of the tire side surface is higher than a predetermined value, a radial position corresponding to the reference position, and a reference position It is checked whether there is any other high-luminance part whose luminance is higher than a predetermined value. And when it is confirmed that there is another high-luminance part, from the distance in the tire circumferential direction between the reference high-luminance part and the other high-luminance part in the captured image, and the luminance of the other high-luminance part , Detect side failure. For this reason, even when the size of the tire to be tested is changed, the photographing device and the light source need only be arranged at a position where the side surface of the tire can be photographed, so that it can be easily set according to the tire size. As a result, the test preparation time can be shortened.

請求項7に記載の発明は、請求項6に記載のタイヤ側面故障検出装置において、前記撮影装置は、前記タイヤの側面の全周をN回に分割して撮影し、前記タイヤの回転周期をT、nを正整数とした場合に、その撮影間隔をnT±(T/N)とした。   The invention according to claim 7 is the tire side failure detection device according to claim 6, wherein the imaging device shoots the entire circumference of the side surface of the tire in N times, and sets the rotation cycle of the tire. When T and n are positive integers, the photographing interval is nT ± (T / N).

請求項7記載のタイヤ側面故障検出装置では、撮影装置によってタイヤの側面の全周をN回に分割して撮影し、タイヤの回転周期をT、nを正整数とした場合に、その撮影間隔をnT±(T/N)としたため、高速度対応の撮影装置でない一般的な撮影装置を用いて高速度対応の撮影装置と同様に、高速で回転するタイヤの側面を全周の撮影画像を得ることができる。   In the tire side surface failure detection device according to claim 7, when the entire circumference of the tire side surface is divided into N times by the imaging device and the rotation period of the tire is T and n is a positive integer, the imaging interval is taken. Is set to nT ± (T / N), so that the image of the entire circumference of the side surface of the tire rotating at high speed is obtained using a general imaging device that is not a high-speed imaging device, as in a high-speed imaging device. Obtainable.

請求項8に記載の発明は、請求項7に記載のタイヤ側面故障検出装置において、前記光源は前記撮影間隔に同期して点灯する。   According to an eighth aspect of the present invention, in the tire side surface failure detection device according to the seventh aspect, the light source is turned on in synchronization with the photographing interval.

請求項8記載のタイヤ側面故障検出装置では、光源を撮影間隔に同期して点灯させるため、光源の消費電力を抑制できる。   In the tire side surface failure detection device according to the eighth aspect, since the light source is turned on in synchronization with the photographing interval, the power consumption of the light source can be suppressed.

請求項9に記載の発明は、請求項6〜8の何れか1項に記載のタイヤ側面故障検出装置において、前記光源の投射光を前記タイヤの近傍に導く光ガイド手段を有する。   A ninth aspect of the present invention is the tire side failure detection device according to any one of the sixth to eighth aspects, further comprising light guide means for guiding the projection light of the light source to the vicinity of the tire.

請求項9記載のタイヤ側面故障検出装置では、光ガイド手段によって、光源からの投射光をタイヤの側面の近傍に導くため、タイヤが破裂した場合に、光源が損傷するのを防止できる。   In the tire side surface failure detection device according to the ninth aspect, since the light guide means guides the light emitted from the light source to the vicinity of the side surface of the tire, it is possible to prevent the light source from being damaged when the tire bursts.

請求項10に記載の発明は、請求項6〜9の何れか1項に記載のタイヤ側面故障検出装置において、前記駆動装置は、前記画像処理手段による前記側面の故障検出時に停止する。   According to a tenth aspect of the present invention, in the tire side failure detection device according to any one of the sixth to ninth aspects, the driving device stops when the image processing means detects the side failure.

請求項10に記載のタイヤ側面故障検出装置では、画像処理手段が側面の故障を検出した時に駆動装置が停止する。このため、側面の故障検出時にタイヤが停止しタイヤの破裂を防止できる。   In the tire side failure detection apparatus according to the tenth aspect, the driving device stops when the image processing means detects a side failure. For this reason, when the failure of the side surface is detected, the tire is stopped and the tire can be prevented from bursting.

以上説明したように請求項1に記載の本発明のタイヤ側面故障検出方法は、試験するタイヤのサイズを変更した場合にも、試験準備時間を短縮できる。   As described above, the tire side surface failure detection method according to the first aspect of the present invention can shorten the test preparation time even when the size of the tire to be tested is changed.

請求項2に記載の本発明のタイヤ側面故障検出方法は、一般的な撮影装置を使用できる。   The tire side surface failure detection method of the present invention described in claim 2 can use a general photographing apparatus.

請求項3に記載の本発明のタイヤ側面故障検出方法は、光源の消費電力を抑制できる。   The tire side surface failure detection method according to the third aspect of the present invention can suppress the power consumption of the light source.

請求項4に記載の本発明のタイヤ側面故障検出方法は、光源が損傷するのを防止できる。   The tire side surface failure detection method of the present invention according to claim 4 can prevent the light source from being damaged.

請求項5に記載の本発明のタイヤ側面故障検出方法は、タイヤの破裂を防止できる。   The tire side surface failure detection method of the present invention according to claim 5 can prevent the tire from bursting.

請求項6に記載の本発明のタイヤ側面故障検出装置は、試験するタイヤのサイズを変更した場合にも、試験準備時間を短縮できる。   The tire side surface failure detection apparatus according to the sixth aspect of the present invention can shorten the test preparation time even when the size of the tire to be tested is changed.

請求項7に記載の本発明のタイヤ側面故障検出装置は、一般的な撮影装置を使用できる。   The tire side surface failure detection device of the present invention according to claim 7 can use a general photographing device.

請求項8に記載の本発明のタイヤ側面故障検出装置は、光源の消費電力を抑制できる。   The tire side surface failure detection apparatus of the present invention according to claim 8 can suppress the power consumption of the light source.

請求項9に記載の本発明のタイヤ側面故障検出装置は、光源が損傷するのを防止できる。   The tire side surface failure detection apparatus according to the ninth aspect of the present invention can prevent the light source from being damaged.

請求項10に記載の本発明のタイヤ側面故障検出装置は、タイヤの破裂を防止できる。   The tire side surface failure detection device of the present invention according to claim 10 can prevent the tire from bursting.

本発明の一実施形態に係るタイヤ側面故障検出装置を示すブロック図である。1 is a block diagram showing a tire side surface failure detection apparatus according to an embodiment of the present invention. 本発明の一実施形態に係るタイヤ側面故障検出装置で転動する空気タイヤを撮影している状態を示す説明図である。It is explanatory drawing which shows the state which is image | photographing the pneumatic tire which rolls with the tire side surface failure detection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るタイヤ側面故障検出装置の原理を示す模式図である。It is a mimetic diagram showing the principle of the tire side surface failure detection device concerning one embodiment of the present invention. 比較例の撮影画像を示す概略図である。It is the schematic which shows the picked-up image of a comparative example. 本発明の一実施形態に係るタイヤ側面故障検出装置の撮影画像を示す概略図である。It is the schematic which shows the picked-up image of the tire side surface fault detection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るタイヤ側面故障検出装置における基準高輝度部位とその他の高輝度部位との関係を示すグラフである。It is a graph which shows the relationship between the reference | standard high-intensity site | part and the other high-intensity site | part in the tire side surface failure detection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るタイヤ側面故障検出装置の撮影画像を示す概略図である。It is the schematic which shows the picked-up image of the tire side surface fault detection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るタイヤ側面故障検出装置の撮影画像を示す概略図である。It is the schematic which shows the picked-up image of the tire side surface fault detection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るタイヤ側面故障検出装置の撮影画像を示す概略図である。It is the schematic which shows the picked-up image of the tire side surface fault detection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係るタイヤ側面故障検出装置の撮影画像を示す概略図である。It is the schematic which shows the picked-up image of the tire side surface fault detection apparatus which concerns on one Embodiment of this invention.

以下、本発明の一実施形態に係るタイヤ側面故障検出装置を図面に従って説明する。   Hereinafter, a tire side surface failure detection apparatus according to an embodiment of the present invention will be described with reference to the drawings.

図1に示すように、本実施形態に係るタイヤ側面故障検出装置10は、タイヤ12を転動させるための駆動装置11と、転動するタイヤ12の側面としてのサイドウォール部12Sのビード部12Aにハレーションを発生させるための光源の一例としてのランプ16を備えている。このランプ16は電源17のオン・オフによって所定の間隔で点滅するストロボランプとなっている。また、ランプ16とタイヤ12との間には光ガイド手段の一例としての光ファイバー18が設けれている。このため、ランプ16からの投射光は、光ファイバー18を介してタイヤ12のサイドウォール部12Sの近傍に導かれ、光ファイバー18の先端18Aからサイドウォール部12Sに投射されるようになっている。例えば、ランプ16及び光ファイバー18としてNissinElectronic製のファイヤーストロボ(商品名:CF−15)を使用する。   As shown in FIG. 1, a tire side surface failure detection device 10 according to the present embodiment includes a drive device 11 for rolling a tire 12 and a bead portion 12A of a sidewall portion 12S as a side surface of the rolling tire 12. Are provided with a lamp 16 as an example of a light source for generating halation. The lamp 16 is a strobe lamp that blinks at predetermined intervals when the power supply 17 is turned on / off. Further, an optical fiber 18 as an example of a light guide means is provided between the lamp 16 and the tire 12. For this reason, the projection light from the lamp 16 is guided to the vicinity of the sidewall portion 12S of the tire 12 via the optical fiber 18, and is projected from the tip 18A of the optical fiber 18 to the sidewall portion 12S. For example, a fire strobe (trade name: CF-15) manufactured by Nissin Electronics is used as the lamp 16 and the optical fiber 18.

従って、ランプ16として所定の間隔で点滅するストロボランプを使用するため、ランプを常時点灯させる装置に比べて消費電力を抑制できるようになっている。また、光ファイバー18を使用することによって、タイヤ12から離れた位置にランプ16を配置することができる。このため、タイヤ12が破裂した場合に、タイヤ12の破片によってランプ16が損傷するのを防止できるようになっている。   Therefore, since a strobe lamp blinking at a predetermined interval is used as the lamp 16, power consumption can be suppressed as compared with a device that always lights the lamp. In addition, by using the optical fiber 18, the lamp 16 can be disposed at a position away from the tire 12. For this reason, when the tire 12 bursts, the lamp 16 can be prevented from being damaged by the fragments of the tire 12.

また、タイヤ12のサイドウォール部12Sを撮影できる位置には撮影装置の一例としてのビデオカメラ20が配置されている。例えば、ビデオカメラ20としてSony製のビデオカメラ(商品名:XCD−U100)を使用する。   Further, a video camera 20 as an example of a photographing device is disposed at a position where the sidewall portion 12S of the tire 12 can be photographed. For example, a Sony video camera (trade name: XCD-U100) is used as the video camera 20.

なお、このビデオカメラ20(商品名:XCD−U100)は最大撮影速度が毎秒15コマで、トリガーモードを使用するとそのトリガー信号の間隔で撮影ができ、最大8枚までビデオカメラ内蔵メモリに保存することが可能である。また、ビデオカメラ内蔵メモリを使用せず、撮影画像を画像処理手段の一例としてのパソコン24に直接転送し、この直接転送により撮影可能速度が低下した場合には、前記撮影加算するタイヤ回転周期の倍数を2倍以上に調整することが可能である。また、撮影時間短縮のために、撮影加算するタイヤ回転周期の倍数に1/2等の分数を用いる場合には、回転角に合わせて撮影画像の並べ替えが必要となる。   The video camera 20 (product name: XCD-U100) has a maximum shooting speed of 15 frames per second. If the trigger mode is used, shooting can be performed at intervals of the trigger signal, and up to 8 frames can be stored in the video camera built-in memory. It is possible. In addition, when the captured image is directly transferred to the personal computer 24 as an example of the image processing means without using the video camera built-in memory, and the shootable speed is reduced by this direct transfer, the tire rotation cycle to be added to the shoot is added. It is possible to adjust the multiple to twice or more. Further, in order to shorten the photographing time, when a fraction such as 1/2 is used as a multiple of the tire rotation cycle to be added, photographing images need to be rearranged in accordance with the rotation angle.

本実施形態では、ビデオカメラ20が、例えば、IEEE1394に準拠したケーブル22によって、画像処理手段の一例としてのパソコン24に接続されており、ビデオカメラ20とパソコン24との間で撮影条件の制御と撮影画像の転送が行われるようになっている。   In the present embodiment, the video camera 20 is connected to a personal computer 24 as an example of image processing means by a cable 22 compliant with, for example, IEEE1394, and control of shooting conditions between the video camera 20 and the personal computer 24 is performed. The captured image is transferred.

ビデオカメラ20はカメラケーブル26によってカメラアダプター28(例えば、ソニー製のCD−700)に接続されている。また、カメラアダプター28はBNCケーブル30によって電源17に接続されており、ランプ16がビデオカメラ20の撮影間隔に同期して点灯するようになっている。さらに、駆動装置11はパソコン24に接続されており、駆動装置11はパソコン24からの制御信号によって作動または停止するようになっている。   The video camera 20 is connected to a camera adapter 28 (for example, Sony CD-700) by a camera cable 26. The camera adapter 28 is connected to the power supply 17 by a BNC cable 30 so that the lamp 16 is lit in synchronization with the shooting interval of the video camera 20. Further, the driving device 11 is connected to a personal computer 24, and the driving device 11 is activated or stopped by a control signal from the personal computer 24.

図2に示すように、タイヤ12はリムを組み込んだ状態で駆動装置11の回転軸11Aに装着されており、図2の矢印A方向へ回転可能となっている。また、ビデオカメラ20は駆動装置11を覆うカバー34の下面34Aに固定されており、タイヤ12のサイドウォール部12Sを撮影できるようになっている。なお、ビデオカメラ20の撮影画像では矢印UP方向が画面上方となっている。また、タイヤ12の接地面12Bは試験用の無端ベルト36に当接しており、無端ベルト36はタイヤ12の回転によって図2の矢印B方向へ回転するようになっている。   As shown in FIG. 2, the tire 12 is mounted on the rotating shaft 11A of the driving device 11 with the rim incorporated therein, and is rotatable in the direction of arrow A in FIG. Further, the video camera 20 is fixed to the lower surface 34A of the cover 34 that covers the driving device 11, and the side wall portion 12S of the tire 12 can be photographed. Note that in the captured image of the video camera 20, the arrow UP direction is at the top of the screen. Further, the ground contact surface 12B of the tire 12 is in contact with a test endless belt 36, and the endless belt 36 is rotated in the direction of arrow B in FIG.

(タイヤ側面故障検出の原理)
図3に示すように、ビデオカメラ20の撮影範囲(撮影角度)をθ1(例えば、24度)とし、撮影距離をQ1(例えば、100mm)とした場合には、光ファイバー18の先端18Aをビデオカメラ20から距離M1(約42.5mm)離すことで、撮影範囲の一端で、タイヤ12の側面の一例としてのビード部12Aの周方向に沿った傾き無しの基準位置の入射角θ2と反射角θ3とが等しくなり(例えば、12度)正反射する(基準高輝度部位P1)。
(Principle of tire side failure detection)
As shown in FIG. 3, when the shooting range (shooting angle) of the video camera 20 is θ1 (for example, 24 degrees) and the shooting distance is Q1 (for example, 100 mm), the tip 18A of the optical fiber 18 is connected to the video camera. By separating the distance M1 from the distance M1 (about 42.5 mm), the incident angle θ2 and the reflection angle θ3 at the reference position without inclination along the circumferential direction of the bead portion 12A as an example of the side surface of the tire 12 at one end of the photographing range. Are equal (for example, 12 degrees) and regularly reflected (reference high-intensity part P1).

この時、光ファイバー18の先端18Aからの投射光が、画像中央部で正反射する(その他の基準高輝度部位P2)ためには、ビード部12Aの膨らみ等による表面の周方向に沿った傾き(α2)が約11.5度必要でる。また、光ファイバー18の先端18Aからの投射光が、他方の撮影範囲の他端で正反射(その他の基準高輝度部位P3)するためには、ビード部12Aの膨らみ等による表面の周方向に沿った傾き(α3)が約22.3(24/2+10.3)度必要になる。   At this time, in order for the projection light from the tip 18A of the optical fiber 18 to be specularly reflected at the center of the image (other reference high-intensity part P2), the inclination along the circumferential direction of the surface due to the bulging of the bead part 12A ( α2) needs about 11.5 degrees. In addition, in order for the projection light from the tip 18A of the optical fiber 18 to be regularly reflected (other reference high-intensity part P3) at the other end of the other imaging range, along the circumferential direction of the surface due to the swelling of the bead portion 12A or the like. An inclination (α3) of about 22.3 (24/2 + 10.3) degrees is required.

即ち、タイヤ12のビード部12Aの局所的な膨らみ等によるビード部12Aの表面の周方向に沿った傾きの増加に伴い、傾き無しの基準高輝度部位(P1)からより離れた(距離が長い)位置で正反射する。   That is, with the increase in the inclination along the circumferential direction of the surface of the bead part 12A due to the local swelling of the bead part 12A of the tire 12, the distance from the reference high-intensity part (P1) without inclination is longer (the distance is longer). ) Regular reflection at the position.

なお、ビデオカメラ20によって正面からタイヤ12のサイドウォール部12Sを撮影する場合に、光ファイバー18の先端18Aを、正反射光が撮影範囲に入らない位置までビデオカメラ20から離して配置すると、図4に示すように、破線四角で示した局所的な微小な膨らみ(F1)で、斜めからの照射光による薄い陰影があるのみで明確でない。   When the video camera 20 is used to photograph the sidewall portion 12S of the tire 12 from the front, if the tip 18A of the optical fiber 18 is arranged away from the video camera 20 to a position where the regular reflection light does not enter the photographing range, FIG. As shown in FIG. 4, the local minute bulge (F1) indicated by the broken-line square is not clear because there is only a thin shadow caused by the obliquely irradiated light.

これに対して、本実施形態では、ビデオカメラ20によって正面からタイヤ12のサイドウォール部12Sを撮影する際に、図5に示すように、撮影範囲の一方の端で正反射光が撮影範囲に入る位置(基準高輝度部位P1)となるように光ファイバー18の先端18Aをビデオカメラ20に近づける。これにより、光ファイバー18の先端18Aから投射された正反射光は、図3に示すように、撮影面(基準高輝度部位P1)に対する垂直軸(H)に対称で入射角(θ2)と反射角(θ3)が等しい方向に発生する。一方、タイヤ12のビード部12Aの側面は黒色で表面が滑らかなため、局所的な微小な膨らみ(その他の高輝度部位P2、P3)の周辺では拡散反射となる。この結果、局所的な微小な膨らみ(その他の高輝度部位P2、P3)の輝度が、周辺の輝度に比べて高くなる。   On the other hand, in this embodiment, when the video camera 20 captures the sidewall portion 12S of the tire 12 from the front, as shown in FIG. 5, the specularly reflected light enters the imaging range at one end of the imaging range. The tip 18A of the optical fiber 18 is brought close to the video camera 20 so that the position (reference high luminance part P1) enters. As a result, the specularly reflected light projected from the tip 18A of the optical fiber 18 is symmetric with respect to the vertical axis (H) with respect to the imaging surface (reference high luminance part P1) and the incident angle (θ2) and reflection angle as shown in FIG. (Θ3) occurs in the same direction. On the other hand, the side surface of the bead portion 12A of the tire 12 is black and has a smooth surface, and therefore diffuse reflection occurs in the vicinity of a local minute bulge (the other high-luminance portions P2 and P3). As a result, the brightness of the local minute bulge (the other high brightness portions P2 and P3) is higher than the brightness of the surrounding area.

即ち、タイヤ耐久試験における局所的は微小な膨らみ(その他の高輝度部位P2、P3)においては、傾き無しの(平らな)基準高輝度部位(P1)から膨らみ(その他の高輝度部位P2、P3)に向かって徐々に傾きが増加し、膨らみの中腹から頂点に向かい傾きが減少する。このため、その他の高輝度部位(P2、P3)の輝度は、図6に示すようになる。   That is, in a local minute bulge in the tire durability test (other high-luminance parts P2, P3), the bulge (other high-luminance parts P2, P3) from the reference high-luminance part (P1) without inclination (flat). ) Gradually increases toward), and decreases from the middle of the bulge toward the top. For this reason, the brightness | luminance of other high-intensity parts (P2, P3) becomes as shown in FIG.

この結果、図6に示すように、ビード部12Aの基準高輝度部位(P1)の輝度(K1)と、例えば、その他の高輝度部位(P2)の輝度(K2)とが閾値(K0)より高くなり、基準高輝度部位(P1)での正反射光の光量(S1)と、その他の高輝度部位(P2)での正反射光の光量(S2)が大きくなる。   As a result, as shown in FIG. 6, the luminance (K1) of the reference high luminance portion (P1) of the bead portion 12A and the luminance (K2) of other high luminance portions (P2), for example, from the threshold (K0). The light amount (S1) of specular reflection light at the reference high luminance part (P1) and the light quantity (S2) of specular reflection light at the other high luminance part (P2) increase.

このため、パソコン24では、基準高輝度部位(P1)に対してその他の高輝度部位(P2)が在るか否かを確認し、その他の高輝度部位(P2)が在ると確認した場合には、撮影画像内での基準高輝度部位(P1)とその他の高輝度部位(P2)とのタイヤ周方向の距離(L1)、及びその他の高輝度部位(P2)の輝度(S2)から、タイヤ12のビード部12Aの故障を検出することができる。   For this reason, the personal computer 24 checks whether or not there is another high-luminance part (P2) with respect to the reference high-luminance part (P1), and confirms that there is another high-luminance part (P2). Includes the distance (L1) in the tire circumferential direction between the reference high-intensity part (P1) and the other high-intensity part (P2) in the captured image, and the luminance (S2) of the other high-intensity part (P2). The failure of the bead portion 12A of the tire 12 can be detected.

(タイヤ回転中の同期及遅延撮影)
タイヤの耐久試験中の回転数は、例えば、時速80km/hの条件では約400rpmとなる。このため、図3に示すように、撮影範囲を角度θ1(例えば、24度)としたビデオカメラ20で、タイヤ12のサイドウォール部12Sの全域を撮影するためには、タイヤ12の1回転に24枚撮影することになる。このため、撮影間隔が約0.00625=(60/400)×(1/24)秒となり、高速度ビデオカメラが必要となる。
(Synchronous and delayed shooting during tire rotation)
The rotational speed during the tire durability test is, for example, about 400 rpm under the condition of 80 km / h. Therefore, as shown in FIG. 3, in order to photograph the entire region of the sidewall portion 12 </ b> S of the tire 12 with the video camera 20 in which the photographing range is an angle θ <b> 1 (for example, 24 degrees), the tire 12 is rotated once. 24 pictures will be taken. Therefore, the shooting interval is about 0.00625 = (60/400) × (1/24) seconds, and a high-speed video camera is required.

これに対して、本実施形態では、タイヤ12の1回転で1枚撮影し、タイヤ12が24回転することで、サイドウォール部12Sの全域を撮影する。これは、タイヤの耐久試は長時間であるため、タイヤ12を24回転させて、サイドウォール部12Sの全域を撮影しても検出精度に大きな問題はないためである。   On the other hand, in the present embodiment, one image is taken with one rotation of the tire 12, and the entire region of the sidewall portion 12S is taken with the tire 12 rotating 24 times. This is because the tire endurance test takes a long time, so there is no significant problem in detection accuracy even if the tire 12 is rotated 24 times and the entire area of the sidewall portion 12S is photographed.

即ち、本実施形態では、タイヤ12の回転周期をT、nを正整数とした場合に、その撮影間隔をT±(T/N)とする。具体的には、撮影間隔をタイヤ12の回転周期Tの1倍となる約0.015秒を加え約0.15625秒≒(60/400)×(1+1/24)とする。これによって、撮影間隔が毎秒6.4コマとなる。   That is, in this embodiment, when the rotation period of the tire 12 is T and n is a positive integer, the shooting interval is T ± (T / N). Specifically, the imaging interval is set to about 0.15625 seconds≈ (60/400) × (1 + 1/24) by adding about 0.015 seconds, which is one time the rotation period T of the tire 12. As a result, the shooting interval becomes 6.4 frames per second.

このため、図7に示す1枚目の画像に対し、図8に示す2枚目の画像は1+1/24回転後の画像であり、図9に示す3枚目の画像は2+2/24回転後の画像である。このように、試験時間の長いタイヤの耐久試験では、1+1/24回転後や2+2/24回転後となってもタイヤの変化に大きな違いはない。なお、図7〜図9の矢印Aは画像上でのタイヤ12の回転方向を示している。   Therefore, with respect to the first image shown in FIG. 7, the second image shown in FIG. 8 is an image after 1 + 1/24 rotation, and the third image shown in FIG. 9 is an image after 2 + 2/24 rotation. It is an image. Thus, in a tire durability test with a long test time, there is no significant difference in tire changes even after 1 + 1/24 rotations or after 2 + 2/24 rotations. In addition, the arrow A of FIGS. 7-9 has shown the rotation direction of the tire 12 on an image.

従って、本実施形態では、タイヤ12のサイドウォール部12Sの全域を撮影するために、高速度ビデオカメラを必要としない。   Therefore, in the present embodiment, a high-speed video camera is not required for photographing the entire region of the sidewall portion 12S of the tire 12.

(試験例)
試験用のタイヤ12として、空気入りトラックバス用タイヤ295/75R22.5を使用し、タイヤ12に正規リムを組み込んで正規内圧とし、タイヤ12を回転させる試験装置に取付け、正規荷重を負荷した。ここで、「正規リム」とは、例えばJATMAが発行する2009年版のYEAR BOOKに定められた適用サイズにおける標準リムを指し、「正規荷重」及び「正規内圧」とは、同様に、JATMAが発行する2009年版のYEAR BOOKに定められた適用サイズ・プライレーティングにおける最大荷重及び該最大荷重に対する空気圧を指す。使用地又は製造地において、TRA規格、ETRTO規格が適用される場合は、各々の規格に従う。
(Test example)
A pneumatic truck bus tire 295 / 75R22.5 was used as the test tire 12, and a normal rim was incorporated into the tire 12 to obtain a normal internal pressure. The tire 12 was attached to a test apparatus that rotates the tire 12, and a normal load was applied. Here, “regular rim” refers to the standard rim in the applicable size specified in the 2009 edition YEAR BOOK issued by JATMA, and “regular load” and “regular internal pressure” are similarly issued by JATMA. The maximum load in the applicable size and ply rating defined in the 2009 YEAR BOOK and the air pressure with respect to the maximum load. When the TRA standard or ETRTO standard is applied at the place of use or manufacturing, the respective standards are followed.

そして、このタイヤ12を時速80km/hの走行となるように転動させた。この時、回転数は430rpm前後となる。また、光ファイバー18の先端18Aからの投射光をタイヤ12のサイドウォール部12Sに投射し、ビデオカメラ20で撮影した。この撮影画像を図5に示す。また、ビデオカメラ20で撮影された録画データをパソコン24で演算処理する。そして、図6に示す輝度の変化に基づいて、タイヤ12のビード部12Aの膨らみ、例えば、その他の高輝度部位(P2)が在るか否かを確認し、その他の高輝度部位(P2)が在ると確認した場合には、撮影画像内での基準高輝度部位(P1)とその他の高輝度部位(P2)とのタイヤ周方向の距離(L1)、及びその他の高輝度部位(P2)の輝度(S2)から、L1とS2の両者が予め定めた値の範囲外となった場合に、タイヤ12のビード部12Aの故障を検出し、駆動装置11を停止させた。これは、タイヤの表面には、タイヤ円周方向にも微細な凹凸が存在しており、高輝度部位が現れたとしても、あまりに基準高輝度部位に近い場合には、そもそものタイヤの凹凸が影響している場合の可能性が高い。そのため、S2に加えてL1についても所定の値を超えた場合に故障だと判定することで、故障ではない箇所を故障だと判定するような場合の割合を低減し、検査の工程速度を速めることを可能とするためである。   The tire 12 was rolled so as to travel at a speed of 80 km / h. At this time, the rotation speed is around 430 rpm. Further, the projection light from the tip 18 </ b> A of the optical fiber 18 was projected onto the sidewall portion 12 </ b> S of the tire 12 and photographed with the video camera 20. This captured image is shown in FIG. In addition, the recording data captured by the video camera 20 is processed by the personal computer 24. Then, based on the change in luminance shown in FIG. 6, it is confirmed whether or not the bead portion 12A of the tire 12 swells, for example, whether there is another high-luminance part (P2), and other high-luminance parts (P2). When it is confirmed that there is a tire, the distance (L1) in the tire circumferential direction between the reference high-intensity part (P1) and the other high-intensity part (P2) in the captured image, and the other high-intensity part (P2) ) (S2), when both L1 and S2 are out of the range of the predetermined value, a failure of the bead portion 12A of the tire 12 is detected, and the driving device 11 is stopped. This is because there are fine irregularities in the tire circumferential direction on the surface of the tire, and even if a high luminance part appears, if it is too close to the reference high luminance part, the original tire irregularity The possibility of being affected is high. Therefore, in addition to S2, L1 also determines that it is a failure when it exceeds a predetermined value, thereby reducing the proportion of cases where a portion that is not a failure is determined to be a failure and increasing the inspection process speed. This is to make it possible.

(作用・効果)
このように、本実施形態では、試験するタイヤ12のサイズを変更した場合にも、タイヤ12のサイドウォール部12Sを撮影できる位置にビデオカメラ20と光ファイバー18の先端18Aとを配置すればよいので、タイヤ12のサイズに対応して容易に設定できる。この結果、試験準備時間を短縮できる。
(Action / Effect)
As described above, in this embodiment, even when the size of the tire 12 to be tested is changed, the video camera 20 and the tip 18A of the optical fiber 18 may be disposed at a position where the sidewall portion 12S of the tire 12 can be photographed. It can be easily set according to the size of the tire 12. As a result, the test preparation time can be shortened.

また、本実施形態では、タイヤ12のサイドウォール部12Sの全域を撮影するために、ビデオカメラ20の撮影間隔を、タイヤの回転周期をT、nを正整数とした場合にT±(T/N)としたため、撮影間隔が長い。この結果、高速度対応の高速ビデオカメラでない一般的なビデオカメラを用いて高速度対応の撮影装置と同様なタイヤ12の1回転分の撮影画像を得ることができる。この結果、タイヤサイドウォール部故障検出装置10のコストを低減できる。   Further, in the present embodiment, in order to photograph the entire region of the sidewall portion 12S of the tire 12, the photographing interval of the video camera 20 is set to T ± (T / T when the tire rotation period is T and n is a positive integer. N), the shooting interval is long. As a result, it is possible to obtain a photographed image of one rotation of the tire 12 similar to that of a high-speed imaging device using a general video camera that is not a high-speed video camera. As a result, the cost of the tire sidewall failure detection device 10 can be reduced.

また、本実施形態では、ランプ16がビデオカメラ20の撮影間隔に同期して点灯するため、ランプ16の消費電力や温度上昇を抑制できる。   In this embodiment, since the lamp 16 is lit in synchronization with the shooting interval of the video camera 20, power consumption and temperature rise of the lamp 16 can be suppressed.

また、本実施形態では、ランプ16とタイヤ12との間に、ランプ16の投射光をタイヤ12のサイドウォール部12Sに導く光ファイバー18を設けた。このため、タイヤ12から離れ位置にランプ16を配置できる。この結果、タイヤ12が破裂した場合にランプ16が損傷するのを防止できる。   In the present embodiment, the optical fiber 18 that guides the projection light of the lamp 16 to the sidewall portion 12 </ b> S of the tire 12 is provided between the lamp 16 and the tire 12. For this reason, the lamp 16 can be disposed at a position away from the tire 12. As a result, it is possible to prevent the lamp 16 from being damaged when the tire 12 bursts.

また、本実施形態では、図10に示す画像のように、タイヤ12のサイドウォール部12Sに亀裂Y1が発生した場合に、亀裂K1が発生した部位の輝度が正常な部位の輝度と比較して下がる。このため、この輝度の変化からサイドウォール部12Sの亀裂の発生も検出できる。   Further, in the present embodiment, as shown in the image shown in FIG. 10, when a crack Y1 occurs in the sidewall portion 12S of the tire 12, the brightness of the part where the crack K1 occurs is compared with the brightness of the normal part. Go down. For this reason, the occurrence of cracks in the sidewall portion 12S can also be detected from the change in luminance.

[その他の実施形態]
以上に於いては、本発明を特定の実施形態について詳細に説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかである。例えば、本発明はタイヤ12の側面におけるビード部12A以外の他の部位の故障検出にも適用できる。
[Other Embodiments]
Although the present invention has been described in detail with respect to specific embodiments, the present invention is not limited to such embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art. For example, the present invention can also be applied to failure detection of parts other than the bead part 12 </ b> A on the side surface of the tire 12.

10 タイヤサイドウォール部故障検出装置
11 駆動装置
12 タイヤ
12A タイヤのビード部
12S タイヤのサイドウォール部(タイヤの側面)
16 ランプ(光源)
18 光ファイバー(光ガイド手段)
20 ビデオカメラ(撮影装置)
24 パソコン(画像処理手段)
26 カメラケーブル
28 カメラアダプター
30 ケーブル
DESCRIPTION OF SYMBOLS 10 Tire side wall part failure detection apparatus 11 Drive apparatus 12 Tire 12A Tire bead part 12S Tire side wall part (side surface of tire)
16 lamp (light source)
18 Optical fiber (light guide means)
20 Video camera (photographing device)
24 PC (image processing means)
26 Camera cable 28 Camera adapter 30 Cable

Claims (10)

タイヤの側面を撮影し、光源からの投射光により前記タイヤの側面の周方向に沿った傾き無しの基準位置での正反射による輝度が所定値より高い基準高輝度部位と、該基準位置に対応する径方向位置で、且つ前記基準位置以外で輝度が前記所定値より高いその他の高輝度部位が在るか否かを確認し、前記その他の高輝度部位が在ると確認した場合には、前記撮影画像内での前記基準高輝度部位と前記その他の高輝度部位との前記タイヤ周方向の距離及び前記その他の高輝度部位の輝度から、前記側面の故障を検出するタイヤ側面故障検出方法。   The side of the tire is photographed, and the reference high-intensity part where the brightness due to regular reflection at the reference position without inclination along the circumferential direction of the side of the tire by the light projected from the light source is higher than a predetermined value, and corresponds to the reference position When checking whether there is another high-intensity part having a brightness higher than the predetermined value at a radial position other than the reference position, and confirming that there is the other high-intensity part, A tire side surface failure detection method for detecting a failure of the side surface from a distance in the tire circumferential direction between the reference high brightness portion and the other high brightness portion in the captured image and the brightness of the other high brightness portion. 前記タイヤの側面の全周をN回に分割して撮影し、前記タイヤの回転周期をT、nを正整数とした場合に、その撮影間隔をnT±(T/N)とした請求項1に記載のタイヤ側面故障検出方法。   2. The photographing interval is set to nT ± (T / N) when the entire circumference of the side surface of the tire is photographed by dividing it into N times, and the tire rotation period is T and n is a positive integer. The tire side surface failure detection method described in 1. 前記光源を前記撮影間隔に同期して点灯させる請求項2に記載のタイヤ側面故障検出方法。   The tire side surface failure detection method according to claim 2, wherein the light source is turned on in synchronization with the photographing interval. 前記光源からの投射光を前記タイヤの側面の近傍に導く請求項1〜3の何れか1項に記載のタイヤ側面故障検出方法。   The tire side surface failure detection method according to any one of claims 1 to 3, wherein projection light from the light source is guided to the vicinity of the side surface of the tire. 前記側面の故障検出時に、前記タイヤを停止する請求項1〜4の何れか1項に記載のタイヤ側面故障検出方法。   The tire side surface failure detection method according to claim 1, wherein the tire is stopped when the side surface failure is detected. タイヤを転動させる駆動装置と、
前記タイヤの側面を撮影する少なくとも1台の撮影装置と、
前記タイヤの側面に投射光を投射する光源と、
前記撮影装置で撮影された前記側面の画像データから前記タイヤの側面の周方向に沿った傾き無しの基準位置での正反射による輝度が所定値より高い基準高輝度部位と、該基準位置に対応する径方向位置で、且つ前記基準位置以外で輝度が前記所定値より高いその他の高輝度部位が在るか否かを確認し、前記その他の高輝度部位が在ると確認した場合には、前記撮影画像内での前記基準高輝度部位と前記その他の高輝度部位との前記タイヤ周方向の距離及び前記その他の高輝度部位の輝度から、前記側面の故障を検出する画像処理手段と、
を備えたタイヤ側面故障検出装置。
A driving device for rolling the tire;
At least one photographing device for photographing a side surface of the tire;
A light source that projects projection light onto a side surface of the tire;
Corresponding to a reference high-intensity part where the luminance by regular reflection at a reference position without inclination along the circumferential direction of the side surface of the tire is higher than a predetermined value from the image data of the side surface photographed by the photographing device, and the reference position When checking whether there is another high-intensity part having a brightness higher than the predetermined value at a radial position other than the reference position, and confirming that there is the other high-intensity part, Image processing means for detecting a failure of the side surface from the distance in the tire circumferential direction between the reference high-intensity part and the other high-intensity part in the captured image and the luminance of the other high-intensity part;
A tire side failure detection device.
前記撮影装置は、前記タイヤの側面の全周をN回に分割して撮影し、前記タイヤの回転周期をT、nを正整数とした場合に、その撮影間隔をnT±(T/N)とした請求項6に記載のタイヤ側面故障検出装置。   The photographing device shoots by dividing the entire circumference of the side surface of the tire into N times, and when the rotation period of the tire is T and n is a positive integer, the photographing interval is nT ± (T / N) The tire side surface failure detection device according to claim 6. 前記光源は前記撮影間隔に同期して点灯する請求項7に記載のタイヤ側面故障検出装置。   The tire side failure detection device according to claim 7, wherein the light source is turned on in synchronization with the photographing interval. 前記光源の投射光を前記タイヤの近傍に導く光ガイド手段を有する請求項6〜8の何れか1項に記載のタイヤ側面故障検出装置。   The tire side surface failure detection device according to any one of claims 6 to 8, further comprising light guide means for guiding the projection light of the light source to the vicinity of the tire. 前記駆動装置は、前記画像処理手段による前記側面の故障検出時に停止する請求項6〜9の何れか1項に記載のタイヤ側面故障検出装置。   The tire side surface failure detection device according to any one of claims 6 to 9, wherein the driving device stops when the image processing means detects the side surface failure.
JP2010093125A 2010-04-14 2010-04-14 Tire side failure detection method and apparatus Expired - Fee Related JP5414607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010093125A JP5414607B2 (en) 2010-04-14 2010-04-14 Tire side failure detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010093125A JP5414607B2 (en) 2010-04-14 2010-04-14 Tire side failure detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2011220964A true JP2011220964A (en) 2011-11-04
JP5414607B2 JP5414607B2 (en) 2014-02-12

Family

ID=45038111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010093125A Expired - Fee Related JP5414607B2 (en) 2010-04-14 2010-04-14 Tire side failure detection method and apparatus

Country Status (1)

Country Link
JP (1) JP5414607B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017160356A1 (en) * 2016-03-16 2017-09-21 Google Inc. Systems and methods for enhancing object visibility for overhead imaging
JP7519880B2 (en) 2020-10-30 2024-07-22 株式会社デンソーテン TIRE CONDITION DETECTION DEVICE AND TIRE CONDITION DETECTION METHOD

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04213041A (en) * 1990-02-02 1992-08-04 Fmc Corp Optical scanning apparatus for measuring arrangement and physical characteristic of product
JPH07174528A (en) * 1993-12-20 1995-07-14 Yokohama Rubber Co Ltd:The Measurement method for cross sectional shape of tire
JPH1096611A (en) * 1996-07-31 1998-04-14 N S D Kk Shape measuring device
JPH10160437A (en) * 1996-12-03 1998-06-19 Bridgestone Corp Method and device for judging external shape of tire
JPH11138654A (en) * 1997-11-06 1999-05-25 Bridgestone Corp Tire shape deciding apparatus and method for selecting tire
JPH11230912A (en) * 1998-02-09 1999-08-27 Hokkei Kogyo:Kk Apparatus and method for detection of surface defect
JP2005055380A (en) * 2003-08-07 2005-03-03 Yokohama Rubber Co Ltd:The Tire failure detector
JP2008185511A (en) * 2007-01-31 2008-08-14 Bridgestone Corp Tire rro measurement method and its device
JP2008221896A (en) * 2007-03-08 2008-09-25 Kobe Steel Ltd Apparatus and method for detecting tire shape
JP2009041934A (en) * 2007-08-06 2009-02-26 Kobe Steel Ltd Apparatus and method for shape measurement
JP2009139297A (en) * 2007-12-10 2009-06-25 Bridgestone Corp Tire shape inspection method, and its device
JP2010014698A (en) * 2008-06-04 2010-01-21 Kobe Steel Ltd Tire shape inspection method and tire shape inspection device
JP2011180107A (en) * 2010-03-04 2011-09-15 Hitachi Ltd Vehicle inspection device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04213041A (en) * 1990-02-02 1992-08-04 Fmc Corp Optical scanning apparatus for measuring arrangement and physical characteristic of product
JPH07174528A (en) * 1993-12-20 1995-07-14 Yokohama Rubber Co Ltd:The Measurement method for cross sectional shape of tire
JPH1096611A (en) * 1996-07-31 1998-04-14 N S D Kk Shape measuring device
JPH10160437A (en) * 1996-12-03 1998-06-19 Bridgestone Corp Method and device for judging external shape of tire
JPH11138654A (en) * 1997-11-06 1999-05-25 Bridgestone Corp Tire shape deciding apparatus and method for selecting tire
JPH11230912A (en) * 1998-02-09 1999-08-27 Hokkei Kogyo:Kk Apparatus and method for detection of surface defect
JP2005055380A (en) * 2003-08-07 2005-03-03 Yokohama Rubber Co Ltd:The Tire failure detector
JP2008185511A (en) * 2007-01-31 2008-08-14 Bridgestone Corp Tire rro measurement method and its device
JP2008221896A (en) * 2007-03-08 2008-09-25 Kobe Steel Ltd Apparatus and method for detecting tire shape
JP2009041934A (en) * 2007-08-06 2009-02-26 Kobe Steel Ltd Apparatus and method for shape measurement
JP2009139297A (en) * 2007-12-10 2009-06-25 Bridgestone Corp Tire shape inspection method, and its device
JP2010014698A (en) * 2008-06-04 2010-01-21 Kobe Steel Ltd Tire shape inspection method and tire shape inspection device
JP2011180107A (en) * 2010-03-04 2011-09-15 Hitachi Ltd Vehicle inspection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017160356A1 (en) * 2016-03-16 2017-09-21 Google Inc. Systems and methods for enhancing object visibility for overhead imaging
US9996905B2 (en) 2016-03-16 2018-06-12 Planet Labs, Inc. Systems and methods for enhancing object visibility for overhead imaging
US10249024B2 (en) 2016-03-16 2019-04-02 Plant Labs, Inc. Systems and methods for enhancing object visibility for overhead imaging
EP3663714A1 (en) * 2016-03-16 2020-06-10 Planet Labs Inc. Systems and methods for enhancing object visibility for overhead imaging
JP7519880B2 (en) 2020-10-30 2024-07-22 株式会社デンソーテン TIRE CONDITION DETECTION DEVICE AND TIRE CONDITION DETECTION METHOD

Also Published As

Publication number Publication date
JP5414607B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
US7724377B2 (en) Apparatus and method for detecting tire shape
US7924418B2 (en) Inspection apparatus and method
JP3754003B2 (en) Defect inspection apparatus and method
TWI471542B (en) Tire shape inspection device and tire shape inspection method
JP2007192660A (en) Surface flaw detecting method and detector of film
JP2017203734A (en) Visual inspection method and visual inspection device
JP5414607B2 (en) Tire side failure detection method and apparatus
JP2009092474A (en) Flash detection method for molded article
JP2003222597A (en) Copper foil surface inspection device and copper foil surface inspection method
JP5312182B2 (en) Tire inner surface inspection device
JP7317286B2 (en) Defect detection device with rubber on topping rubber sheet
JP2003156453A (en) Method of inspecting side face
JP2004125396A (en) Inspection method of drive transmission belt
JPH1144652A (en) Method and apparatus for inspection of flaw on glass, and lamp-manufacturing apparatus
JP6750303B2 (en) Tire defect detection method
JP2008185438A (en) Method and device for detecting defect on cylindrical surface
JP2001041726A (en) Defect detecting device and defect detecting method of rolled film
JP4132031B2 (en) Defect detection device
JP4815637B2 (en) Resin cap illumination imaging device
WO2023181668A1 (en) Image formation device, image formation method, and inspection method
JP4225951B2 (en) Metal ring side edge inspection method
JP2001041896A (en) Method and apparatus for detecting flaw of roll-shaped film
JP3482127B2 (en) Optical member inspection device and holder
JPH1139651A (en) Hard disk surface inspecting device
JPH07140089A (en) Device for detecting scratch flaw on magnetic disc

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131112

R150 Certificate of patent or registration of utility model

Ref document number: 5414607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees