JP2008185438A - Method and device for detecting defect on cylindrical surface - Google Patents

Method and device for detecting defect on cylindrical surface Download PDF

Info

Publication number
JP2008185438A
JP2008185438A JP2007018713A JP2007018713A JP2008185438A JP 2008185438 A JP2008185438 A JP 2008185438A JP 2007018713 A JP2007018713 A JP 2007018713A JP 2007018713 A JP2007018713 A JP 2007018713A JP 2008185438 A JP2008185438 A JP 2008185438A
Authority
JP
Japan
Prior art keywords
cylindrical surface
defect
sensor camera
line sensor
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007018713A
Other languages
Japanese (ja)
Other versions
JP5042649B2 (en
Inventor
Toshihiko Takahashi
俊彦 高橋
Takayuki Hatanaka
孝行 畑中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Chemicals Inc
Original Assignee
Canon Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Chemicals Inc filed Critical Canon Chemicals Inc
Priority to JP2007018713A priority Critical patent/JP5042649B2/en
Publication of JP2008185438A publication Critical patent/JP2008185438A/en
Application granted granted Critical
Publication of JP5042649B2 publication Critical patent/JP5042649B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect only a projecting defect, of the projecting defect and a recessed defect on a cylindrical surface of a measuring object. <P>SOLUTION: The columnar or cylindrical measuring object W is rotated, and parallel light 1a parallel to the center axis Wo of the measuring object W is radiated from the tangential direction on the cylindrical surface of the measuring object W. A part slightly shifted the shade side from the boundary line We between a part W<SB>a</SB>receiving light and a dark field section W<SB>b</SB>that does not receive light is imaged using a line sensor camera 2. The projecting defect Wi of the measuring object W is detected as a white defect image in the image of the dark field section W<SB>b</SB>imaged by the line sensor camera 2, but the recessed defect is not detected. The minimum height (h) of the detected projecting defect Wi can be set arbitrarily by changing the shift amount (x) of the imaged position (focal position) 2b of the line sensor camera 2 from the boundary line We. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子写真複写機やプリンタに使用される各種ゴムローラ用軸体等の、円柱または円筒体の表面欠陥を検出するための円筒状表面の欠陥検出方法および欠陥検出装置に関するものである。   The present invention relates to a defect detection method and a defect detection apparatus for a cylindrical surface for detecting surface defects of a cylinder or a cylinder, such as various rubber roller shafts used in electrophotographic copying machines and printers.

一般に電子写真複写機やプリンタ等のOA機器に使用される各種ゴムローラ用軸体は、複写機本体やトナーカートリッジの筐体の穴に直接挿入して使用される。あるいは、軸受や位置規制用コロ、ギアなどの部品が取り付けられて使用される。そのため、軸体表面に凸状欠陥があると軸体が筐体等の穴に挿入できなかったり、軸受等の部品が取り付けられないなどの問題が生じる。また、ゴムローラが回転する際にも、摺動面となる軸体表面に凸状欠陥があると、回転の抵抗となり回転ムラが生じたり、他の部品の摩耗を早めてしまう。軸体母材に起因する鬆(す)やピンホールなどの凹状欠陥は、問題にならないものの、凸状欠陥の方は、数μmの傷でも影響がでるため、ゴムローラを組み付ける前に軸体表面の凸状欠陥を検査する必要がある。   Generally, various rubber roller shafts used in OA equipment such as electrophotographic copying machines and printers are used by being directly inserted into holes of a copying machine main body or a housing of a toner cartridge. Alternatively, parts such as a bearing, a position regulating roller, and a gear are attached and used. Therefore, if there is a convex defect on the surface of the shaft body, there arises a problem that the shaft body cannot be inserted into a hole in the housing or the like, or a component such as a bearing cannot be attached. Also, when the rubber roller rotates, if there is a convex defect on the surface of the shaft serving as the sliding surface, it becomes a resistance to rotation and uneven rotation occurs, or wear of other parts is accelerated. Concave defects such as voids and pinholes caused by the shaft body base material do not become a problem, but convex defects can be affected even by scratches of several micrometers, so the surface of the shaft body before assembling the rubber roller. It is necessary to inspect the convex defects.

一般には、これら円柱または円筒体表面の欠陥検査は、目視または触診により行われてきたが、近年CCDカメラの解像度向上や画像処理をさせるコンピュータの高速化により自動化が可能となっている(特許文献1参照)。   In general, inspection of defects on the surfaces of these cylinders or cylinders has been carried out by visual inspection or palpation, but in recent years it has become possible to automate by improving the resolution of CCD cameras and increasing the speed of computers that perform image processing (Patent Documents). 1).

しかしながら従来の欠陥検出方法は、表面の凹凸欠陥を検出するものであるため、ゴムローラ用軸体の表面で問題となる凸状欠陥だけを検出することができない。そのため、表面に凹凸欠陥があるものをすべて不良として廃棄したり、凹凸欠陥があるものを目視または触診等で再検査し、凸状欠陥があるものだけを切り分ける必要があった。   However, since the conventional defect detection method detects surface irregularity defects, it is not possible to detect only convex defects that are problematic on the surface of the rubber roller shaft. For this reason, it is necessary to discard all those having irregularities on the surface as defective, or to reexamine those having irregularities by visual inspection or palpation, and to isolate only those having convex defects.

凸状の傷だけを検出する方法として、被測定物である円柱または円筒体を回転させてその稜線の位置の変化をレーザ測長器やエリアセンサカメラで読み取る方法がある。しかしこの方法では、被測定物の振れによる稜線の位置変化を拾ったり、また、軸方向の測定範囲が極端に狭く、軸方向に何度もスキャンしながら測定する必要があるために検査に時間がかかってしまう。   As a method of detecting only convex scratches, there is a method of rotating a cylinder or a cylindrical body, which is an object to be measured, and reading a change in the position of the ridge line with a laser length measuring device or an area sensor camera. However, with this method, it is necessary to pick up changes in the position of the ridge line due to the shake of the object to be measured, and the measurement range in the axial direction is extremely narrow, so it is necessary to perform measurements while scanning the axial direction many times, so inspection takes time. It will take.

そこで、被測定物である円柱または円筒体に規則的なパターンの光を照射しこのパターンの規則性を評価して円筒状表面の欠陥を検出する方法がある(特許文献2参照)。しかしながら、数μm程度の欠陥を検出するには、非常に高精度なパターン光を照射する必要がある。さらに、被測定物の円筒形状や回転させた際の振れを補正し、かつ欠陥が無い状態の画像と欠陥がある状態の画像とを比較する必要があり、画像処理が複雑となる。
特許第3469714号公報 特開平11−185040号公報
Therefore, there is a method of detecting defects on the cylindrical surface by irradiating a columnar or cylindrical body as an object to be measured with a regular pattern of light and evaluating the regularity of the pattern (see Patent Document 2). However, in order to detect a defect of about several μm, it is necessary to irradiate pattern light with very high accuracy. Furthermore, it is necessary to correct the cylindrical shape of the object to be measured and the shake when it is rotated, and to compare an image without a defect with an image with a defect, which complicates image processing.
Japanese Patent No. 3469714 JP 11-185040 A

本発明は上記従来の技術の有する未解決の課題に鑑みてなされたものであり、円柱または円筒体の表面の凸状欠陥のみを、高精度でしかも効率的に検出することができる円筒状表面の欠陥検出方法および欠陥検出装置を提供することを目的とするものである。   The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and a cylindrical surface capable of detecting only a convex defect on the surface of a columnar or cylindrical body with high accuracy and efficiency. It is an object of the present invention to provide a defect detection method and a defect detection apparatus.

本発明の円筒状表面の欠陥検出方法は、円筒状表面を有する被測定物を中心軸のまわりに回転させながら、前記中心軸に対して平行な平行光を前記円筒状表面の接線方向に照射し、前記円筒状表面の、前記平行光が当たらない非照射部を、前記中心軸に対して平行に配置されたラインセンサカメラによって撮像する工程と、撮像された画像に基づいて前記円筒状表面の凸状欠陥を検出する工程と、を有することを特徴とする。   The cylindrical surface defect detection method of the present invention irradiates parallel light parallel to the central axis in the tangential direction of the cylindrical surface while rotating the object having the cylindrical surface around the central axis. And imaging the non-irradiated portion of the cylindrical surface that is not exposed to the parallel light with a line sensor camera arranged parallel to the central axis, and the cylindrical surface based on the captured image. And a step of detecting a convex defect.

被測定物の、平行光が当たる照射部と平行光が当たらない非照射部との間の境界線の近傍で、前記非照射部を撮像することで、非照射部において平行光の当たる凸状欠陥だけを検出する。照射部と非照射部との間の境界線に対するラインセンサカメラの撮像位置のずれ量によって、検出可能な凸状欠陥の高さを任意に設定できる。   By projecting the non-irradiated part in the vicinity of the boundary line between the irradiated part to which the parallel light hits and the non-irradiated part to which the parallel light does not hit, the convex shape that the parallel light hits in the non-irradiated part. Only detect defects. The height of the convex defect that can be detected can be arbitrarily set according to the shift amount of the imaging position of the line sensor camera with respect to the boundary line between the irradiation part and the non-irradiation part.

本発明を実施するための最良の形態を図面に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1に示すように、光源1から発せられた平行光1aを、被測定物Wの表面(円筒状表面)の接線方向に照射する。そして、被測定物Wの、光が当たる部分(照射部)Wa と光が当たらない暗視野部(非照射部)Wb の境界線Weよりわずかに陰側(非照射側)にずれた部位を、被測定物Wの中心軸Woに対して平行に配置されたラインセンサカメラ2を用いて撮像する。 As shown in FIG. 1, the parallel light 1a emitted from the light source 1 is irradiated in the tangential direction of the surface (cylindrical surface) of the object W to be measured. Then, the measurement object W is slightly shifted to the negative side (non-irradiation side) from the boundary line We between the portion (irradiated portion) W a where the light hits and the dark field portion (non-irradiated portion) W b where the light does not hit. A part is imaged using the line sensor camera 2 arranged in parallel to the central axis Wo of the workpiece W.

光源1としては、市販のハロゲン光源装置やメラルハライド光源装置にライン型ライトガイドおよびライン集光レンズを取り付ける方法が挙げられる。また、LEDを使ったライン照明装置を使用してもよい。特に、被測定物Wの光が当たる部分Wa と光が当たらない暗視野部Wb の境界線Weがはっきりするように、回折の少ない短波長照明を用いるのが好ましい。短波長照明としては例えば、光源に青色フィルターを取り付けたり、青色LEDや紫外線光源を用いる方法が挙げられる。 Examples of the light source 1 include a method of attaching a line type light guide and a line condenser lens to a commercially available halogen light source device or meral halide light source device. Moreover, you may use the line illuminating device using LED. In particular, it is preferable to use short-wavelength illumination with little diffraction so that the boundary line We between the portion W a where the light to be measured W is irradiated and the dark field portion W b where the light is not irradiated is clear. Examples of short wavelength illumination include a method of attaching a blue filter to a light source or using a blue LED or an ultraviolet light source.

ラインセンサカメラ2のレンズ2aの焦点位置である撮像位置2bは、前述のように、被測定物Wの光が当たる部分Wa と光が当たらない暗視野部Wb の境界線Weよりわずかに陰側にずれた位置である。 Imaging position 2b is the focal position of the line sensor camera 2 lens 2a, as described above, slightly boundary line We of the dark field W b which is part W a and light the light of the workpiece W hits not hit The position is shifted to the negative side.

図2の(a)に示すように、暗視野部Wb に光源1と被測定物Wを結ぶ接線より突出した凸状欠陥Wiがある場合は、この凸状欠陥Wiに光が当たるため、図示しない画像処理装置において、同図の(b)に示すように、欠陥画像3として検出することができる。 As shown in (a) of FIG. 2, when there is a convex defect Wi protruding from the tangent connecting the light source 1 and the workpiece W in a dark field portion W b, because the light hits the convex defect Wi, In an image processing apparatus (not shown), the defect image 3 can be detected as shown in FIG.

一方、図3に示すように、凹状欠陥Wfに関しては、光源1と被測定物Wを結ぶ接線より突出しないため平行光1aが当たらず、ラインセンサカメラ2で撮像されない。従って、凸状欠陥Wiだけが検出可能となる。   On the other hand, as shown in FIG. 3, the concave defect Wf does not protrude from the tangent line connecting the light source 1 and the object W to be measured, so that the parallel light 1 a does not strike and is not captured by the line sensor camera 2. Therefore, only the convex defect Wi can be detected.

図1の(b)に示すように、陽側と陰側の境界線Weと撮像位置2bのずれ量をx(mm)、被測定物Wの半径をR(mm)、検出する凸状欠陥Wiの最小高さをh(mm)とすると、三角形の相似と、三平方の定理とにより、ずれ量xは以下のように求められる。   As shown in FIG. 1B, a convex defect is detected by detecting the amount of deviation between the positive and negative boundary line We and the imaging position 2b as x (mm), the radius of the object to be measured as R (mm), and so on. Assuming that the minimum height of Wi is h (mm), the shift amount x is obtained as follows by the similarity of triangles and the three-square theorem.

h:a=(h+R):(a+x) (1)
2 +(a+x)2 =(h+R)2 (2)
(1)式よりaを求め、(2)式へ代入してaを消去すると、
(1)式より、
h: a = (h + R): (a + x) (1)
R 2 + (a + x) 2 = (h + R) 2 (2)
Obtaining a from equation (1), substituting it into equation (2) and deleting a,
From equation (1)

Figure 2008185438
(2)式に代入し、
Figure 2008185438
Substituting into equation (2)

Figure 2008185438
(3)式から以下の計算によって(4)式を求める。
Figure 2008185438
Equation (4) is obtained from equation (3) by the following calculation.

Figure 2008185438
Figure 2008185438

ずれ量xを(4)式で求めた値以下に設定すれば、凸状欠陥Wiの頂点に光が当たり、画像処理によって検出できる。すなわち、ずれ量xを調整することにより、検出する凸状欠陥Wiの最小高さhを任意に設定できる。   If the shift amount x is set to be equal to or less than the value obtained by the equation (4), light hits the apex of the convex defect Wi and can be detected by image processing. That is, the minimum height h of the convex defect Wi to be detected can be arbitrarily set by adjusting the shift amount x.

ラインセンサカメラ2より得られた画像は、少なくとも1周分以上の展開画像として画像処理装置に取込み、画像処理を行って凸状欠陥Wiを検出する。画像処理の方法としては、例えば二値化処理をし、一定以上の明るい部分を凸状欠陥Wiとして検出する方法が挙げられる。   An image obtained from the line sensor camera 2 is taken into the image processing apparatus as a developed image of at least one round and is subjected to image processing to detect the convex defect Wi. Examples of the image processing method include a method of performing binarization processing and detecting a bright portion of a certain level or more as the convex defect Wi.

被測定物Wである円柱または円筒体を把持、回転させる機構としては、例えば先が尖ったセンタ軸またはすり鉢状に凹んだ逆センタ軸で被測定物Wの両端部を把持し、このセンタ軸を回転させて被測定物Wを回転させる方法が挙げられる。また、被測定物Wの外周面の2箇所をベアリング等の二つコロから成るガイドで受け、少なくとも一方のコロを回転させて被測定物Wを回転させたり、回転する円盤やベルトを被測定物Wの外周面に押し当てて被測定物Wを回転させる方法が挙げられる。   As a mechanism for gripping and rotating a columnar or cylindrical body that is the object to be measured W, for example, the center axis is gripped at both ends of the object to be measured with a pointed center axis or a reverse center axis recessed in a mortar shape. A method of rotating the workpiece W by rotating the. In addition, two places on the outer peripheral surface of the workpiece W are received by a guide composed of two rollers such as a bearing, and the workpiece W is rotated by rotating at least one roller, or a rotating disk or belt is measured. The method of rotating the to-be-measured object W by pressing on the outer peripheral surface of the thing W is mentioned.

被測定物Wの回転数(rpm)は、被測定物Wの半径をR(mm)、レンズ2a等の光学系を含めたラインセンサカメラ2の分解能をL(mm)、ラインセンサカメラ2の撮像間隔をf(Hz)としたとき、以下の式による回転数r0 以下に設定するのが好ましい。 The rotation speed (rpm) of the object W to be measured is R (mm) for the radius of the object W to be measured, L (mm) for the resolution of the line sensor camera 2 including the optical system such as the lens 2a, and the like. When the imaging interval is set to f (Hz), it is preferable to set the rotational speed r 0 or less according to the following equation.

Figure 2008185438
Figure 2008185438

ラインセンサカメラ2の分解能Lは、(ラインセンサカメラの撮像素子1画素当たりのサイズ)÷(レンズ倍率)で決まる。   The resolution L of the line sensor camera 2 is determined by (size per pixel of the image sensor of the line sensor camera) / (lens magnification).

図4は、電子写真用帯電ローラの金属製軸体の凸状欠陥を検出する欠陥検出装置を示す。被測定物Wである金属製軸体は、材質SUM24L快削鋼、外径φ6mm(半径R=3mm)、長さ250mmの軸体であり、この軸体の表面は、無電解ニッケルメッキ処理が施されている。光源1には、青色フィルター、ライン型ライトガイドおよびライン集光レンズを取り付けた市販の150Wのハロゲンランプ光源装置(モリテックス製MHF−G150LRC 商標名)を用いる。そして、被測定物表面の接線方向より照射されるように、被測定物Wの中心軸に対し平行に配置し、被測定物Wの法線に対して3mmオフセットさせた。   FIG. 4 shows a defect detection apparatus for detecting a convex defect of a metal shaft of an electrophotographic charging roller. The metal shaft body to be measured W is a shaft body of material SUM24L free-cutting steel, outer diameter φ6 mm (radius R = 3 mm), length 250 mm, and the surface of this shaft body is subjected to electroless nickel plating treatment. It has been subjected. As the light source 1, a commercially available 150 W halogen lamp light source device (trade name: MHF-G150LRC, manufactured by Moritex) equipped with a blue filter, a line-type light guide, and a line condenser lens is used. And it arrange | positioned in parallel with respect to the central axis of the to-be-measured object W so that it may irradiate from the tangential direction of the to-be-measured object surface, and was offset 3 mm with respect to the normal line of the to-be-measured object W.

画像を取り込むラインセンサカメラ2としては、市販のカメラ(竹中システム機器製TL−5150UFD 商標名)を用い、レンズ2aとして、焦点距離28mmの35mm判一眼レフ用レンズ(ニコン製 商標名)をリバースアダプタを介して逆付けした。この時、撮影倍率は約1.5倍となり、光学系を含むラインセンサカメラ2の分解能を約4.7μmとした。   As a line sensor camera 2 for capturing images, a commercially available camera (TL-5150UFD brand name, manufactured by Takenaka System Equipment) is used, and a lens for a 35 mm single-lens reflex camera (Nikon brand name) with a focal length of 28 mm is used as a lens 2a. Reversed through. At this time, the photographing magnification was about 1.5 times, and the resolution of the line sensor camera 2 including the optical system was about 4.7 μm.

ラインセンサカメラ2と光源1は、90°方向に配置し、ラインセンサカメラ2の撮像位置2bの、被測定物Wの、陰側と陽側の境界線に対するずれ量xは、凸状欠陥の最小高さh=10μmに対応するx=0.24mmに設定した。   The line sensor camera 2 and the light source 1 are arranged in a 90 ° direction, and the amount of deviation x of the imaging position 2b of the line sensor camera 2 with respect to the boundary line between the negative side and the positive side of the measured object W is a convex defect. X = 0.24 mm corresponding to the minimum height h = 10 μm was set.

被測定物Wを回転させる機構は、モータ16よりプーリー14、ベルト15およびギア13を介して回転する1対の駆動用コロ11と、1対の従動用コロ12を有する。これらのコロ11、12により、被測定物Wの両端部より20mmの位置を受けて、駆動用コロ11を回転させて被測定物Wを従動させた。この時、被測定物Wの回転数は、70rpmになるように設定し、欠陥検出を行った。   The mechanism for rotating the workpiece W includes a pair of driving rollers 11 and a pair of driven rollers 12 that are rotated by a motor 16 via a pulley 14, a belt 15, and a gear 13. The rollers 11 and 12 received positions of 20 mm from both ends of the object to be measured W, and the driving roller 11 was rotated to drive the object to be measured W. At this time, the rotation speed of the workpiece W was set to 70 rpm, and defect detection was performed.

実施例1と同じ被測定物を、凸状欠陥の最小高さh=5μmとなるように、陰側と陽側の境界線とラインセンサカメラの撮像位置とのずれ量xをx=0.17mmに設定した以外は、実施例1と同じ条件で欠陥検出を行った。   For the same object to be measured as in Example 1, the deviation amount x between the boundary line on the negative side and the positive side and the imaging position of the line sensor camera is set to x = 0.0 so that the minimum height h of the convex defect is 5 μm. Defect detection was performed under the same conditions as in Example 1 except that the thickness was set to 17 mm.

(比較例)
比較例として、図5に示すように、実施例1および実施例2と同じ光源1、ラインセンサカメラ2等を用いて、ラインセンサカメラ2を被測定物Wの法線方向に配置した。そして、光源中心をラインセンサカメラ2の撮像位置2bに合わせ、さらにラインセンサカメラ2に対して45°の位置に配置した。被測定物Wを回転させる機構および回転数は実施例1と同じに設定した。
(Comparative example)
As a comparative example, as shown in FIG. 5, the line sensor camera 2 is arranged in the normal direction of the object W to be measured using the same light source 1, line sensor camera 2, and the like as those of the first and second embodiments. Then, the center of the light source was aligned with the imaging position 2 b of the line sensor camera 2 and further arranged at a position of 45 ° with respect to the line sensor camera 2. The mechanism for rotating the workpiece W and the number of rotations were set to be the same as those in the first embodiment.

実施例1および実施例2、比較例ともに、ラインセンサカメラより得られた画像より被測定物の1周分よりわずかにオーバーラップさせた展開画像を合成し、これらの画像を観察した。この時、得られた画像のサイズは、被測定物の軸方向に5000ピクセル、周の展開方向に4000ピクセルの2000万画素である。また、得られた画像は市販のパーソナルコンピュータを使って二値化処理を行った。   In both Example 1, Example 2, and Comparative Example, developed images slightly overlapped by one round of the object to be measured were synthesized from the images obtained from the line sensor camera, and these images were observed. At this time, the size of the obtained image is 20 million pixels of 5000 pixels in the axial direction of the object to be measured and 4000 pixels in the circumferential development direction. The obtained image was binarized using a commercially available personal computer.

実施例1においては、正常部は被測定物自身の陰に入り光が当たらないため黒い画像となり、光源と被測定物を結ぶ接線より突出する10μm以上の凸状欠陥は、光が当たり図2の(b)に示すように白い欠陥画像となった。一方、高さが10μm未満の凸状欠陥や凹状欠陥は、被測定物自身の陰に入るため、検出されなかった。すなわち、10μm以上の凸状欠陥のみ検出することができた。   In Example 1, since the normal part enters the shadow of the object to be measured and does not receive light, it becomes a black image, and the convex defect of 10 μm or more protruding from the tangent line connecting the light source and the object to be measured is irradiated with light. As shown in (b), a white defect image was obtained. On the other hand, convex defects and concave defects having a height of less than 10 μm were not detected because they were behind the object to be measured. That is, only convex defects of 10 μm or more could be detected.

実施例2においては、実施例1では検出できなかった5〜10μmの凸状欠陥においても検出できたが、正常部や凹状欠陥は実施例1と同様に被測定物自身の陰に入り光が当たらないため黒い画像となって検出されなかった。   In Example 2, it was possible to detect even a convex defect of 5 to 10 μm that could not be detected in Example 1, but the normal part and the concave defect entered the shadow of the object to be measured as in Example 1, and light was emitted. Since it did not hit, it was detected as a black image.

比較例においては、正常部は光が当たるため白い画像となる。そして、図6の(a)に示すように、凸状欠陥Wiがあると光源1と反対側が陰となるため、(b)に示すように黒い欠陥画像4となって検出された。一方、図7の(a)に示すように、凹状欠陥Wfにおいても、その光源側が陰となるため、(b)に示すように黒い欠陥画像5となって検出された。このため比較例においては、得られた画像からは凸状欠陥なのか凹状欠陥なのかは、切り分けができなかった。   In the comparative example, the normal part is exposed to light and becomes a white image. Then, as shown in FIG. 6A, when there is a convex defect Wi, the opposite side to the light source 1 is shaded, so that a black defect image 4 is detected as shown in FIG. 6B. On the other hand, as shown in FIG. 7A, the concave defect Wf is also detected as a black defect image 5 as shown in FIG. For this reason, in the comparative example, it was not possible to determine whether the defect was a convex defect or a concave defect from the obtained image.

実施例1、実施例2および比較例による欠陥の検出結果をまとめて表1に示す。   Table 1 summarizes the detection results of defects according to Example 1, Example 2, and Comparative Example.

Figure 2008185438
Figure 2008185438

実施例1および実施例2では、円柱または円筒状の被測定物の円筒状表面の凸状欠陥だけを検出することができる。さらに、ラインセンサカメラの撮像位置を調整することにより、検出する凸状欠陥の最小高さを任意に設定することが可能である。   In Example 1 and Example 2, it is possible to detect only convex defects on the cylindrical surface of a cylindrical or cylindrical object to be measured. Furthermore, it is possible to arbitrarily set the minimum height of the convex defect to be detected by adjusting the imaging position of the line sensor camera.

一実施の形態による欠陥検出装置の概略構成を示すもので、(a)はその主要部を示す模式立面図、(b)は(a)の一部分を拡大して示す部分拡大立面図である。BRIEF DESCRIPTION OF THE DRAWINGS It shows schematic structure of the defect detection apparatus by one Embodiment, (a) is a model elevation which shows the principal part, (b) is the elements on larger scale which expand and show a part of (a). is there. 図1の装置による円筒状表面の欠陥検出方法を説明する図である。It is a figure explaining the defect detection method of the cylindrical surface by the apparatus of FIG. 凹状欠陥を検出しないことを説明する図である。It is a figure explaining not detecting a concave defect. 実施例1による欠陥検出装置を示すもので、(a)はその立面図、(b)は側面図である。BRIEF DESCRIPTION OF THE DRAWINGS The defect detection apparatus by Example 1 is shown, (a) is the elevation view, (b) is a side view. 比較例を説明する図である。It is a figure explaining a comparative example. 比較例において凸状欠陥を検出する場合を説明する図である。It is a figure explaining the case where a convex defect is detected in a comparative example. 比較例において凹状欠陥を検出する場合を説明する図である。It is a figure explaining the case where a concave defect is detected in a comparative example.

符号の説明Explanation of symbols

1 光源
1a 平行光
2 ラインセンサカメラ
2a レンズ
2b 撮像位置
11 駆動用コロ
12 従動用コロ
16 モータ
DESCRIPTION OF SYMBOLS 1 Light source 1a Parallel light 2 Line sensor camera 2a Lens 2b Image pick-up position 11 Roller for driving 12 Roller for follower 16 Motor

Claims (4)

円筒状表面を有する被測定物を中心軸のまわりに回転させながら、前記中心軸に対して平行な平行光を前記円筒状表面の接線方向に照射し、前記円筒状表面の、前記平行光が当たらない非照射部を、前記中心軸に対して平行に配置されたラインセンサカメラによって撮像する工程と、
撮像された画像に基づいて前記円筒状表面の凸状欠陥を検出する工程と、を有することを特徴とする円筒状表面の欠陥検出方法。
While rotating an object to be measured having a cylindrical surface around a central axis, parallel light parallel to the central axis is irradiated in a tangential direction of the cylindrical surface, and the parallel light on the cylindrical surface is irradiated. Imaging a non-irradiated portion not hit by a line sensor camera arranged parallel to the central axis;
And detecting a convex defect on the cylindrical surface based on a captured image. A method for detecting a defect on a cylindrical surface, comprising:
前記円筒状表面の半径をR(mm)、検出する凸状欠陥の最小高さをh(mm)としたとき、前記円筒状表面の前記非照射部と前記平行光が当たる照射部との間の境界線に対する、前記ラインセンサカメラの撮像位置のずれ量x(mm)が、以下の式で表わされる関係を満たすことを特徴とする請求項1記載の円筒状表面の欠陥検出方法。
Figure 2008185438
When the radius of the cylindrical surface is R (mm) and the minimum height of the convex defect to be detected is h (mm), the space between the non-irradiated part of the cylindrical surface and the irradiated part to which the parallel light hits. The cylindrical surface defect detection method according to claim 1, wherein a deviation amount x (mm) of the imaging position of the line sensor camera with respect to the boundary line satisfies a relationship represented by the following expression.
Figure 2008185438
円筒状表面を有する被測定物を把持して中心軸のまわりに回転させる機構と、前記中心軸に対して平行な平行光を前記円筒状表面の接線方向に照射する光源と、前記中心軸に対して平行に配置されたラインセンサカメラと、前記ラインセンサカメラから取り込まれた画像を処理する画像処理装置と、を有し、前記円筒状表面の、前記平行光が当たらない非照射部を、前記ラインセンサカメラによって撮像することを特徴とする欠陥検出装置。   A mechanism for gripping an object to be measured having a cylindrical surface and rotating it around a central axis; a light source that irradiates parallel light parallel to the central axis in a tangential direction of the cylindrical surface; A non-irradiated portion that is not exposed to the parallel light on the cylindrical surface, and has a line sensor camera arranged in parallel to the image sensor and an image processing device that processes an image captured from the line sensor camera. A defect detection apparatus, wherein an image is picked up by the line sensor camera. 前記円筒状表面の半径をR(mm)、検出する凸状欠陥の最小高さをh(mm)としたとき、前記円筒状表面の前記非照射部と前記平行光が当たる照射部との間の境界線に対する、前記ラインセンサカメラの撮像位置のずれ量x(mm)が、以下の式で表わされる関係を満たすことを特徴とする請求項3記載の欠陥検出装置。
Figure 2008185438
When the radius of the cylindrical surface is R (mm) and the minimum height of the convex defect to be detected is h (mm), the space between the non-irradiated part of the cylindrical surface and the irradiated part to which the parallel light hits. The defect detection apparatus according to claim 3, wherein a deviation amount x (mm) of the imaging position of the line sensor camera with respect to the boundary line satisfies a relationship represented by the following expression.
Figure 2008185438
JP2007018713A 2007-01-30 2007-01-30 Method and apparatus for detecting defects on cylindrical surface Expired - Fee Related JP5042649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007018713A JP5042649B2 (en) 2007-01-30 2007-01-30 Method and apparatus for detecting defects on cylindrical surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007018713A JP5042649B2 (en) 2007-01-30 2007-01-30 Method and apparatus for detecting defects on cylindrical surface

Publications (2)

Publication Number Publication Date
JP2008185438A true JP2008185438A (en) 2008-08-14
JP5042649B2 JP5042649B2 (en) 2012-10-03

Family

ID=39728593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007018713A Expired - Fee Related JP5042649B2 (en) 2007-01-30 2007-01-30 Method and apparatus for detecting defects on cylindrical surface

Country Status (1)

Country Link
JP (1) JP5042649B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048601A (en) * 2008-08-20 2010-03-04 Canon Chemicals Inc Method and apparatus for inspecting roller for electrophotographic apparatus
JP2014189385A (en) * 2013-03-28 2014-10-06 Nec Embedded Products Ltd Sheet conveyance device, printer, sheet conveyance method and program
CN111353974A (en) * 2020-02-20 2020-06-30 凌云光技术集团有限责任公司 Method and device for detecting image boundary defects
WO2021040986A1 (en) * 2019-08-30 2021-03-04 Corning Incorporated Systems and methods for honeycomb body inspection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120410A (en) * 1993-10-21 1995-05-12 Kirin Techno Syst:Kk Inspection device for coating substance of vessel
JPH08327558A (en) * 1995-06-02 1996-12-13 Canon Inc Surface state inspection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120410A (en) * 1993-10-21 1995-05-12 Kirin Techno Syst:Kk Inspection device for coating substance of vessel
JPH08327558A (en) * 1995-06-02 1996-12-13 Canon Inc Surface state inspection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048601A (en) * 2008-08-20 2010-03-04 Canon Chemicals Inc Method and apparatus for inspecting roller for electrophotographic apparatus
JP2014189385A (en) * 2013-03-28 2014-10-06 Nec Embedded Products Ltd Sheet conveyance device, printer, sheet conveyance method and program
WO2021040986A1 (en) * 2019-08-30 2021-03-04 Corning Incorporated Systems and methods for honeycomb body inspection
US11946876B2 (en) 2019-08-30 2024-04-02 Corning Incorporated Systems and methods for honeycomb body inspection
CN111353974A (en) * 2020-02-20 2020-06-30 凌云光技术集团有限责任公司 Method and device for detecting image boundary defects
CN111353974B (en) * 2020-02-20 2023-08-18 苏州凌云光工业智能技术有限公司 Method and device for detecting image boundary defects

Also Published As

Publication number Publication date
JP5042649B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP3754003B2 (en) Defect inspection apparatus and method
RU2735806C1 (en) Method of checking printing cylinder and corresponding installation
JP5014003B2 (en) Inspection apparatus and method
EP2158447A1 (en) A surface inspection device and an arrangement for inspecting a surface
CN107727665B (en) Appearance inspection device and appearance inspection method
JP5042649B2 (en) Method and apparatus for detecting defects on cylindrical surface
EP1703274B1 (en) Defect inspecting method
JP2012026858A (en) Device for inspecting inner peripheral surface of cylindrical container
CN110402386B (en) Cylindrical body surface inspection device and cylindrical body surface inspection method
JP5127781B2 (en) Internal inspection method for square cans
JP2009109243A (en) Device for inspecting resin sealing material
JP2007285869A (en) Surface inspection system and surface inspection method
JP3870140B2 (en) Driving transmission belt inspection method
KR101850336B1 (en) System of rotational vision inspection and method of the same
JP2020122738A (en) Defect inspection device and defect inspection method
JP2011106909A (en) Visual inspection apparatus of pipe
JP2021139630A (en) Surface inspection device and surface inspection method
JP2007132753A (en) Visual inspection mechanism
JP2012013658A (en) Visual inspection method and visual inspection device of tire
JP4135919B2 (en) Conductive roller surface discrimination method
JP2004354226A (en) Method and apparatus for inspecting surface defect
JP2009199036A (en) Device and method for detecting residual toner and device for evaluating toner wiping-out performance
JP2005308517A (en) Outside surface inspection method and outside surface inspection device
JP4260705B2 (en) Metal ring side edge inspection method
JP5123482B2 (en) Cylindrical inspection device and equipment state evaluation method for the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120711

R150 Certificate of patent or registration of utility model

Ref document number: 5042649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees