JP3870140B2 - Driving transmission belt inspection method - Google Patents

Driving transmission belt inspection method Download PDF

Info

Publication number
JP3870140B2
JP3870140B2 JP2002248489A JP2002248489A JP3870140B2 JP 3870140 B2 JP3870140 B2 JP 3870140B2 JP 2002248489 A JP2002248489 A JP 2002248489A JP 2002248489 A JP2002248489 A JP 2002248489A JP 3870140 B2 JP3870140 B2 JP 3870140B2
Authority
JP
Japan
Prior art keywords
belt
transmission belt
drive transmission
face
inspection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002248489A
Other languages
Japanese (ja)
Other versions
JP2004125396A (en
Inventor
清 島田
保志 栗田
均 森田
実 富樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Nippon Steel Corp
Original Assignee
Honda Motor Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Nippon Steel Corp filed Critical Honda Motor Co Ltd
Priority to JP2002248489A priority Critical patent/JP3870140B2/en
Publication of JP2004125396A publication Critical patent/JP2004125396A/en
Application granted granted Critical
Publication of JP3870140B2 publication Critical patent/JP3870140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、CVTベルト等の駆動伝達ベルトの製造工程において、ベルト端面に発生する欠陥を自動検出するための駆動伝達ベルトの検査方法に関するものである。
【0002】
【従来の技術】
自動車等の無段変速機に組み込まれるCVTベルトは、金属製のベルトを10枚程度積層したものである。これらの金属ベルトは予めバレル研磨により表面研磨されたうえで積層されるが、ベルト端面に磨耗疵、加工疵、打痕疵、スリ疵などが発生すると、使用中に疵を起点としてベルト破断に至ることがある。
【0003】
そこで従来は、単層のCVTベルトまたは積層されたCVTベルトを回転テーブルに載せて低速度で回転させながらベルト端面を拡大鏡により撮影し、モニタに表示された画像を見ながら検査員が検査を行なっていた。検査員は疵を発見すると回転テーブルを停止して該当箇所にマーキングを施し、片面の検査が終了したらベルトを反転して反対面についても同様に検査を行なう。そして両端面の検査が終了すると、マーキングされた箇所について実体顕微鏡を用いて疵の深さ情報を加味した二次検査を行ない、良否の判定を行なっていた。
【0004】
しかしこの従来方法は、検査員がモニターに表示された画像を目視して行なうために回転テーブルの回転速度を上げることができず、1本のベルトの検査に長時間を要するという問題があった。また、積層後のCVTベルトを検査する場合には、積層工程でベルト間に入り込んだゴミ等の異物を疵として誤検出することがあり、検査精度を低下させていた。
【0005】
【発明が解決しようとする課題】
本発明は上記した従来の問題点を解決し、ベルト端面に存在する磨耗疵、加工疵、打痕疵などを高速度で正確に検査することができる駆動伝達ベルトの検査方法を提供するためになされたものである。
【0006】
【課題を解決するための手段】
上記の課題を解決するためになされた請求項1の発明の駆動伝達ベルトの検査方法は、回転テーブルの外周に検査対象となる駆動伝達ベルトをセットし、押えロールにより回転テーブルの側面に密着させて回転させながら、ベルト端面を二次元カメラあるいはラインセンサカメラにより撮影し、その画像の輝度変化から先ずベルトの両端面を検出したうえ検出された両端面間の距離を演算して実厚みと比較し、一致しておれば真の端面とし、不一致であれば前のポイントを採用することによりベルトの蛇行の影響を補正したエッジ補正画像を得たうえ、ベルト端面プロフィルとベルト厚み方向の画像輝度との関係を利用した疵自動検出ロジックを用いて良否の判定を行なうことを特徴とするものである。なお、二次元カメラあるいはラインセンサカメラを、高輝度光源を備えた照明装置からの照明が駆動伝達ベルトの端面で正反射する位置に設置して撮影を行なうことが好ましい。また請求項3の発明の駆動伝達ベルトの検査方法は、請求項1または2記載の検査方法によって疵が検出された駆動伝達ベルトにつき、ベルト端面の高さ変位を厚み方向に計測したプロフィルをベルト周方向に自動測定し、より正確な検査を行なうことを特徴とするものである。
【0007】
以下に説明する実施形態に示すように、本発明の駆動伝達ベルトの検査方法によれば、光学的な検査技術によって単層の駆動伝達ベルトの端面疵を1本あたり1〜5秒程度の高速度で精度良く自動検査することができる。以下に示す実施形態では駆動伝達ベルトはCVTベルトであるが、本発明は、印刷機、複写機、ロボット、OAプリンターなどの精密機器駆動用ベルト、半導体部品、電子・電気部品などの精密部品搬送用ベルト、乾燥炉や加熱炉などの高温部での搬送用ベルト、焼成部品などの高温部品の搬送用ベルト、食品、化学薬品、医薬品などの衛生品搬送用ベルト、精密検査搬送用ベルトなどの各種の駆動伝達ベルトの検査に適用することができる。
【0008】
【発明の実施の形態】
以下に本発明をCVTベルトの検査に適用した実施形態を示す。
図1は請求項1の発明の実施形態を示すもので、1は外周長がCVTベルトの内周長にほぼ等しい回転テーブルであり、検査対象となるCVTベルトB(積層前の単層のCVTベルト)を図示のように端面が上側になるように外周にセットする。この実施形態ではCVTベルトBの長さは500〜700mmである。
【0009】
2は照明装置、3はこの照明装置2からの照明光がCVTベルトBの端面で正反射する位置に配置された撮像系である。照明装置2としてはハロゲンランプまたはメタルハライドランプを用いているが、照度が安定しチラツキのない光源であれば、任意のものを用いることができる。ただし照明装置2は高輝度光源を備えたものであることが好ましく、この実施形態では高輝度光源から照射された光線を光ファイバケーブル6により投光器7の凸レンズに導いてCVTベルトの端面上に集光させ、30万ルクスの高照度を得ている。このような高照度は、以下に述べるCVTベルトBの高速検査のために有効である。またCVTベルトBの端面を正確に検査するために、図1(A)中に示した角度αは0°〜30°程度、好ましくは10°程度とする。
【0010】
撮像系3は撮像素子として二次元CCD素子あるいはラインセンサ素子を備えた二次元カメラあるいはラインセンサカメラであり、CVTベルトBの端面を撮影する。撮像系3は拡大鏡により、ベルト厚み方向及びベルト長手方向に1〜50μmとなるようにする。この実施形態ではベルト厚み方向の分解能が3μmとなるようにレンズ倍率を設定しており、回転テーブル1の停止中はベルト長手方向の分解能も3μmとなる。しかし実際には回転テーブル1の回転速度によりベルト長手方向の分解能は低下する。
【0011】
ベルト長手方向の分解能の低下を防止するためには、撮像素子の走査周波数により決まる周期時間よりも回転速度を落とせばよいが、検査時間が長くかかることとなる。そこで検査対象となる疵の画像を劣化させることなく回転テーブル1を速く回転させるために、ここではベルト長手方向の分解能を10μmとした。また1024ビットのラインセンサ素子を使用し、走査周波数を40MHzとし、500〜700mmの長さのCVTベルトBの全周を1〜5秒程度で検査できるようにした。ただし検査対象となる疵のサイズが大きければ、分解能を50μmまで落とすことも可能である。
【0012】
撮像系の画像は、画像処理ボード4によりエッジ補正処理したうえ、ベルト端面プロフィルと画像輝度との関係を利用した疵自動検出ロジックを用いて良否の判定を行なう。そこで先ず、画像補正の内容を説明する。
【0013】
図1に示すように、回転テーブル1の側方には押えロール5が設けられ、CVTベルトBを回転テーブル1の側面に密着させているが、回転テーブル1の偏心や遠心力による隙間変化などによって図2(A)に示すように厚み方向に数μmの蛇行が発生する。これを補正するため、矢印で示すように先ずベルトの両端面を検出する。この検出を確実に行なうためには、CVTベルトBの外側が白く映るように照明装置2と撮像系3との位置を調整することが好ましい。
【0014】
図3に示すようにCVTベルトBの両端面には傾斜があり、照明光が正反射しないので黒く映る。そこで両端面外側から一定輝度以下となるポイントを端面として検出する。しかし図2(B)に示すように端面の疵や凹凸により、そのポイントが真の端面でないことがある。そこで検出された両端面間の距離を演算して実厚みと比較し、一致しておれば真の端面とし、不一致であればそれらのポイントを採用せずに前のポイントを採用する。このようにして、ベルトの蛇行の影響を補正したエッジ補正画像を得ることができる。
【0015】
次にベルト端面プロフィルと画像輝度との関係について説明する。図3、図4、図5、図6は左側が画像、右側がその厚み方向の断面プロフィルである。図3は正常品の画像であり、両端面から内側の輝度が低く、中心部の輝度が高くなっている。これは両端面部は傾斜しているために正反射光が受光されず、中心部は平坦であるため正反射光が受光されるからである。
【0016】
図4は加工疵がある場合の画像及び断面プロフィルである。この場合には端面から内側の斜面が荒らされて平坦面になることが特徴で、正反射光が端面近くまで受光されて輝度の高い部分が広がっている。図5は磨耗疵がある場合の画像及び断面プロフィルである。この場合には中心部が削られて斜面になり、正反射光が受光されない輝度の低い部分が発生する。図6は打痕疵がある場合の画像及び断面プロフィルである。これは磨耗疵の範囲が更に広がったもので、中心部の輝度の低い部分が拡大している。
【0017】
次に、上記のような端面プロフィルと画像輝度との関係を利用した疵自動検出ロジックを説明する。図7に示すように、ベルト端面の画像を厚み方向に分割し、それぞれの一定輝度以上、一定輝度以下の部分の連続長さを計算する。この実施形態では画像を厚み方向に7分割し、しかも中心の高輝度部分を細かく調査するため、図示のように中心部を5分割するように不均等に分割した。
【0018】
磨耗疵については、中心の高輝度部分の一部が欠落することが特徴であるため、中心部を5分割した線上の輝度が一定値より低下した箇所が一定区間続けば磨耗疵であると判断する。この場合、5分割した線上の全てでこの条件が満足されたときに磨耗疵であると判断させれば、過検出はなくなる反面、多少の未検出を許容するロジックとすることができる。また、隣接する3本の線上では連続区間の設定を長くし、残りの2本の線上では短くすれば、未検出をなくし若干の過検出を許容するロジックとすることができる。
【0019】
打痕疵は上記した磨耗疵がより深く大きくなったものであるから、磨耗疵における低輝度レベルをより低く設定し、かつ低輝度区間をより長く設定すれば、同様のロジックにより検出できる。加工疵は端面から中心部への斜面が削られて平坦化し、照明の正反射光が受光されて高輝度となることが特徴であるため、端面近傍の分割線上の一定輝度以上の区間の長さを求めることにより検出できる。なお以上の説明では輝度の大小を利用したが、輝度の変化を利用しても同様に疵の検出が可能である。
【0020】
上記した方法により疵が検出されたCVTベルトBについてはマーキングが施され、二次検査が行なわれる。二次検査は従来法により行なうこともできるが、ベルト端面の高さ変位を厚み方向に計測したプロフィルをベルト周方向に自動測定し、より正確な検査を行なう方法を取ることができる。
【0021】
図8はその説明図であり、先ず正常なプロフィルを記憶させておき、マーキングが施された部分のプロフィルを端面開始点と端面終点とを合わせて対比する。各位置について両者の差の二乗を積算して一定値に達したときに疵として検出するか、あるいは両者の差の絶対値が一定値を越えたときに疵として検出するロジックを用いれば、自動検出が可能である。
【0022】
なお本発明の駆動伝達ベルトの検査方法は、回転テーブルへの駆動伝達ベルトの着脱を行うロボット等を用いることにより完全時自動化することができ、例えばCVTベルトの積層装置の前段に組み込んで用いることができる。
【0023】
【発明の効果】
以上に説明したように、本発明によれば駆動伝達ベルトの両端面に存在する磨耗疵、加工疵、打痕疵などを高速度で正確に自動検査することができ、従来のように長時間をかけて多数の検査員による検査を行なう必要がない。また、疵が検出された駆動伝達ベルトのみをプロフィル測定により二次検査することにより、検査工程の生産性を高めることができる。
【図面の簡単な説明】
【図1】請求項1の発明の実施形態を示す正面図(A)と、要部の左側面図 (B) である。
【図2】画像補正の説明図である。
【図3】正常なベルトの画像と断面プルフィルである。
【図4】加工疵のあるベルトの画像と断面プルフィルである。
【図5】磨耗疵のあるベルトの画像と断面プルフィルである。
【図6】打痕疵のあるベルトの画像と断面プルフィルである。
【図7】疵自動検出ロジックのためのベルト端面の画像の分割説明図である。
【図8】請求項3の発明の実施形態を示す断面プルフィルの図である。
【符号の説明】
B CVTベルト(駆動伝達ベルト)
1 回転テーブル
2 照明装置
3 撮像系
4 画像処理ボード
5 押えロール
6 光ファイバケーブル
7 投光器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a driving transmission belt inspection method for automatically detecting defects generated on a belt end face in a manufacturing process of a driving transmission belt such as a CVT belt.
[0002]
[Prior art]
The CVT belt incorporated in a continuously variable transmission such as an automobile is a laminate of about 10 metal belts. These metal belts are laminated after being polished by barrel polishing in advance, but if wear flaws, processing flaws, dent marks, three wrinkles, etc. occur on the belt end surface, the belt breaks starting from wrinkles during use. Sometimes.
[0003]
Therefore, conventionally, a single layer CVT belt or a stacked CVT belt is placed on a rotary table and rotated at a low speed, and the belt end surface is photographed with a magnifying glass, and an inspector performs an inspection while viewing an image displayed on a monitor. I was doing it. When the inspector finds a wrinkle, the rotary table is stopped and the corresponding portion is marked, and when the inspection on one side is completed, the belt is reversed and the opposite surface is inspected in the same manner. When the inspection of both end faces is completed, a secondary inspection is performed on the marked portion using the stereoscopic microscope in consideration of the depth information of the wrinkles, and the quality is determined.
[0004]
However, this conventional method has a problem that the rotation speed of the rotary table cannot be increased because the inspector visually observes the image displayed on the monitor, and it takes a long time to inspect one belt. . Further, when inspecting a CVT belt after lamination, foreign matters such as dust that have entered between the belts in the lamination process may be erroneously detected as wrinkles, and the inspection accuracy is lowered.
[0005]
[Problems to be solved by the invention]
In order to solve the above-described conventional problems, the present invention provides a drive transmission belt inspection method capable of accurately inspecting wear flaws, processing flaws, dent flaws, and the like existing on the belt end surface at a high speed. It was made.
[0006]
[Means for Solving the Problems]
The drive transmission belt inspection method according to the first aspect of the present invention, which has been made to solve the above-mentioned problems, sets the drive transmission belt to be inspected on the outer periphery of the rotary table and makes it closely contact the side surface of the rotary table by a presser roll. The belt end face is photographed with a two-dimensional camera or line sensor camera while rotating, and the both end faces of the belt are first detected from the brightness change of the image, and the distance between the detected end faces is calculated and compared with the actual thickness. If they match, a true end face is obtained. If they do not match, the previous point is used to obtain an edge-corrected image in which the influence of the meandering of the belt is corrected, and the belt end face profile and the image brightness in the belt thickness direction are obtained. It is characterized in that pass / fail judgment is performed using an automatic wrinkle detection logic using the relationship between Note that it is preferable to take a picture by installing a two-dimensional camera or a line sensor camera at a position where the illumination from the illuminating device including the high-intensity light source is regularly reflected by the end face of the drive transmission belt. According to a third aspect of the present invention, there is provided a drive transmission belt inspection method in which a profile obtained by measuring the height displacement of the belt end face in the thickness direction is measured for the drive transmission belt in which wrinkles are detected by the inspection method according to the first or second aspect. It is characterized by automatically measuring in the circumferential direction and performing a more accurate inspection.
[0007]
As shown in the embodiments described below, according to the drive transmission belt inspection method of the present invention, the end surface wrinkles of a single-layer drive transmission belt are increased to about 1 to 5 seconds per one optical inspection technique. Automatic inspection with high accuracy at speed. In the embodiment shown below, the drive transmission belt is a CVT belt, but the present invention conveys precision parts such as printing machines, copiers, robots, OA printers, precision equipment drive belts, semiconductor parts, electronic / electric parts, etc. Belts for high temperature parts such as drying furnaces and heating furnaces, belts for high temperature parts such as fired parts, belts for transporting sanitary products such as food, chemicals and pharmaceuticals, belts for precision inspection It can be applied to inspection of various drive transmission belts.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments in which the present invention is applied to inspection of a CVT belt will be described below.
FIG. 1 shows an embodiment of the invention of claim 1, wherein 1 is a rotary table having an outer peripheral length substantially equal to the inner peripheral length of the CVT belt, and CVT belt B (single layer CVT before lamination) to be inspected. The belt is set on the outer periphery so that the end surface is on the upper side as shown in the figure. In this embodiment, the length of the CVT belt B is 500 to 700 mm.
[0009]
Reference numeral 2 denotes an illuminating device, and 3 denotes an imaging system arranged at a position where the illumination light from the illuminating device 2 is regularly reflected by the end face of the CVT belt B. Although a halogen lamp or a metal halide lamp is used as the illuminating device 2, any light source can be used as long as the illuminance is stable and the flicker does not occur. However, the illumination device 2 is preferably provided with a high-intensity light source. In this embodiment, the light emitted from the high-intensity light source is guided to the convex lens of the projector 7 by the optical fiber cable 6 and collected on the end face of the CVT belt. It is illuminated and has a high illuminance of 300,000 lux. Such high illuminance is effective for high-speed inspection of the CVT belt B described below. In order to accurately inspect the end face of the CVT belt B, the angle α shown in FIG. 1 (A) is about 0 ° to 30 °, preferably about 10 °.
[0010]
The imaging system 3 is a two-dimensional camera or a line sensor camera provided with a two-dimensional CCD element or a line sensor element as an imaging element, and photographs the end face of the CVT belt B. The imaging system 3 is 1 to 50 μm in the belt thickness direction and the belt longitudinal direction by a magnifying glass. In this embodiment, the lens magnification is set so that the resolution in the belt thickness direction is 3 μm, and the resolution in the belt longitudinal direction is also 3 μm while the rotary table 1 is stopped. However, the resolution in the longitudinal direction of the belt is actually lowered due to the rotational speed of the rotary table 1.
[0011]
In order to prevent a decrease in resolution in the belt longitudinal direction, the rotational speed may be lowered than the cycle time determined by the scanning frequency of the image sensor, but the inspection time will be longer. Therefore, in order to rotate the turntable 1 quickly without deteriorating the wrinkle image to be inspected, the resolution in the longitudinal direction of the belt is set to 10 μm here. Further, a line sensor element of 1024 bits was used, the scanning frequency was set to 40 MHz, and the entire circumference of the CVT belt B having a length of 500 to 700 mm could be inspected in about 1 to 5 seconds. However, if the size of the eyelid to be inspected is large, the resolution can be reduced to 50 μm.
[0012]
The image of the imaging system is subjected to edge correction processing by the image processing board 4, and quality is determined using a wrinkle automatic detection logic using the relationship between the belt end face profile and the image luminance. First, the contents of image correction will be described.
[0013]
As shown in FIG. 1, a presser roll 5 is provided on the side of the rotary table 1, and the CVT belt B is brought into close contact with the side surface of the rotary table 1. As a result, meandering of several μm occurs in the thickness direction as shown in FIG. In order to correct this, first, both end faces of the belt are detected as indicated by arrows. In order to reliably perform this detection, it is preferable to adjust the positions of the illumination device 2 and the imaging system 3 so that the outside of the CVT belt B appears white.
[0014]
As shown in FIG. 3, both end faces of the CVT belt B are inclined, and the illumination light does not reflect regularly, so that it appears black. Therefore, a point having a certain luminance or less from the outside of both end faces is detected as an end face. However, as shown in FIG. 2B, the point may not be a true end surface due to wrinkles or irregularities on the end surface. Therefore, the detected distance between both end faces is calculated and compared with the actual thickness. If they match, the true end face is obtained. If they do not match, the previous point is adopted without adopting those points. In this manner, an edge corrected image in which the influence of the meandering of the belt is corrected can be obtained.
[0015]
Next, the relationship between the belt end face profile and the image luminance will be described. In FIGS. 3, 4, 5, and 6, the left side is an image, and the right side is a cross-sectional profile in the thickness direction. FIG. 3 shows an image of a normal product, in which the luminance on the inner side from both end faces is low and the luminance at the center is high. This is because regular reflection light is not received because both end portions are inclined, and regular reflection light is received because the central portion is flat.
[0016]
FIG. 4 is an image and a cross-sectional profile when there is a processing flaw. In this case, the inner slope from the end surface is roughened to become a flat surface, and the specularly reflected light is received to the vicinity of the end surface, and the portion with high luminance spreads. FIG. 5 is an image and a cross-sectional profile when there is a wear flaw. In this case, the central portion is cut to form a slope, and a low-luminance portion where regular reflection light is not received occurs. FIG. 6 is an image and a cross-sectional profile when there is a dent mark. This is a further expansion of the range of wear sores, and the low-luminance portion at the center is enlarged.
[0017]
Next, the wrinkle automatic detection logic using the relationship between the end face profile and the image luminance as described above will be described. As shown in FIG. 7, the image of the belt end face is divided in the thickness direction, and the continuous lengths of the respective portions with a certain luminance above and below the certain luminance are calculated. In this embodiment, the image is divided into seven in the thickness direction, and in addition, in order to investigate the central high-luminance portion in detail, the central portion is divided unevenly so as to be divided into five as shown in the figure.
[0018]
As for wear soot, it is characterized that a part of the central high-luminance part is missing. Therefore, if the part where the brightness on the line obtained by dividing the center part into 5 parts falls below a certain value, it is determined that the wear soot is a sore. To do. In this case, if this condition is satisfied for all of the five divided lines, it is possible to make a logic that allows some non-detection while over-detection is eliminated if it is determined that there is an abrasion flaw. Further, if the setting of the continuous section is lengthened on the three adjacent lines and shortened on the remaining two lines, the logic that allows the slight overdetection can be obtained by eliminating undetection.
[0019]
Since the above-mentioned wear marks are deeper and larger than the wear marks described above, they can be detected by the same logic if the low brightness level in the wear marks is set lower and the low brightness section is set longer. The feature of the processing ridge is that the slope from the end face to the center is flattened, and the regular reflected light of the illumination is received to increase the brightness, so the length of the section above a certain brightness on the dividing line near the end face It can detect by calculating | requiring thickness. In the above description, the magnitude of the luminance is used. However, it is possible to detect wrinkles in the same manner using the change in luminance.
[0020]
The CVT belt B in which wrinkles are detected by the above method is marked and subjected to a secondary inspection. Although the secondary inspection can be performed by a conventional method, a method in which a profile obtained by measuring the height displacement of the belt end surface in the thickness direction is automatically measured in the belt circumferential direction to perform a more accurate inspection can be taken.
[0021]
FIG. 8 is an explanatory diagram. First, a normal profile is stored, and the profile of the marked portion is compared with the end face start point and the end face end point. If a logic that detects whether the absolute value of the difference between the two points exceeds a certain value by adding the squares of the differences between the two points is detected, Detection is possible.
[0022]
The drive transmission belt inspection method of the present invention can be fully automated by using a robot or the like that attaches / detaches the drive transmission belt to / from the rotary table. For example, the drive transmission belt inspection method is incorporated in the preceding stage of the CVT belt laminating apparatus. Can do.
[0023]
【The invention's effect】
As described above, according to the present invention, it is possible to automatically inspect wear wrinkles, processing flaws, dent flaws, etc. existing on both end faces of the drive transmission belt at a high speed and for a long time as in the past. It is not necessary to perform inspections by a large number of inspectors. In addition, the secondary inspection of only the drive transmission belt in which wrinkles are detected by the profile measurement can increase the productivity of the inspection process.
[Brief description of the drawings]
FIG. 1 is a front view (A) showing an embodiment of the invention of claim 1 and a left side view (B) of a main part.
FIG. 2 is an explanatory diagram of image correction.
FIG. 3 is a normal belt image and cross-sectional pull fill.
FIG. 4 is an image of a belt with a processing flaw and a cross-sectional pull fill.
FIG. 5 is an image of a belt with a wear flaw and a cross-sectional pull fill.
FIG. 6 is an image of a belt with a dent flaw and a cross-sectional pull fill.
FIG. 7 is an explanatory diagram of division of an image of a belt end surface for the wrinkle automatic detection logic.
8 is a cross-sectional pull-fill diagram showing an embodiment of the invention of claim 3; FIG.
[Explanation of symbols]
B CVT belt (drive transmission belt)
DESCRIPTION OF SYMBOLS 1 Rotating table 2 Illuminating device 3 Imaging system 4 Image processing board 5 Presser roll 6 Optical fiber cable 7 Floodlight

Claims (4)

回転テーブルの外周に検査対象となる駆動伝達ベルトをセットし、押えロールにより回転テーブルの側面に密着させて回転させながら、ベルト端面を二次元カメラあるいはラインセンサカメラにより撮影し、その画像の輝度変化から先ずベルトの両端面を検出したうえ検出された両端面間の距離を演算して実厚みと比較し、一致しておれば真の端面とし、不一致であれば前のポイントを採用することによりベルトの蛇行の影響を補正したエッジ補正画像を得たうえ、ベルト端面プロフィルとベルト厚み方向の画像輝度との関係を利用した疵自動検出ロジックを用いて良否の判定を行なうことを特徴とする駆動伝達ベルトの検査方法。The drive transmission belt to be inspected is set on the outer periphery of the rotary table, and the belt end surface is photographed with a two-dimensional camera or line sensor camera while rotating in close contact with the side surface of the rotary table with a presser roll , and the brightness change of the image First, by detecting the both end faces of the belt and calculating the distance between the detected end faces and comparing with the actual thickness, if they match, the true end face is obtained, and if they do not match, the previous point is adopted. An edge correction image obtained by correcting the influence of the meandering of the belt is obtained, and pass / fail judgment is performed using an automatic detection logic that uses the relationship between the belt end face profile and the image brightness in the belt thickness direction. Inspection method of transmission belt. 二次元カメラあるいはラインセンサカメラを、高輝度光源を備えた照明装置からの照明が駆動伝達ベルトの端面で正反射する位置に設置して撮影を行なう請求項1記載の駆動伝達ベルトの検査方法。  2. The drive transmission belt inspection method according to claim 1, wherein the two-dimensional camera or the line sensor camera is installed at a position where the illumination from the illuminating device having a high-intensity light source is regularly reflected on the end face of the drive transmission belt. 請求項1または2に記載の検査方法によって疵が検出された駆動伝達ベルトにつき、ベルト端面の高さ変位を厚み方向に計測したプロフィルをベルト周方向に自動測定し、より正確な検査を行なうことを特徴とする駆動伝達ベルトの検査方法。  For a drive transmission belt in which wrinkles are detected by the inspection method according to claim 1 or 2, a profile obtained by measuring the height displacement of the belt end face in the thickness direction is automatically measured in the belt circumferential direction, and a more accurate inspection is performed. A method for inspecting a drive transmission belt. 駆動伝達ベルトがCVTベルトである請求項1〜3の何れかに記載の駆動伝達ベルトの検査方法。  The drive transmission belt inspection method according to claim 1, wherein the drive transmission belt is a CVT belt.
JP2002248489A 2002-08-02 2002-08-28 Driving transmission belt inspection method Expired - Fee Related JP3870140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002248489A JP3870140B2 (en) 2002-08-02 2002-08-28 Driving transmission belt inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002225603 2002-08-02
JP2002248489A JP3870140B2 (en) 2002-08-02 2002-08-28 Driving transmission belt inspection method

Publications (2)

Publication Number Publication Date
JP2004125396A JP2004125396A (en) 2004-04-22
JP3870140B2 true JP3870140B2 (en) 2007-01-17

Family

ID=32300765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002248489A Expired - Fee Related JP3870140B2 (en) 2002-08-02 2002-08-28 Driving transmission belt inspection method

Country Status (1)

Country Link
JP (1) JP3870140B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108645869A (en) * 2018-08-20 2018-10-12 中国印刷科学技术研究院有限公司 The non-defective method for removing and its device of gravure printing roller surface defect intelligent measurement

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4063790B2 (en) * 2004-04-27 2008-03-19 ジヤトコ株式会社 Metal ring inspection method and metal ring inspection device
JP4481094B2 (en) * 2004-06-28 2010-06-16 本田技研工業株式会社 Metal ring side edge inspection device
JP4201197B2 (en) * 2004-08-05 2008-12-24 ジヤトコ株式会社 Inspection method for continuously variable transmission belt and inspection device for continuously variable transmission belt
JP4640181B2 (en) * 2006-01-12 2011-03-02 トヨタ自動車株式会社 Method and apparatus for detecting scratches on the R end face of an endless metal belt
DE102008057131B4 (en) * 2007-12-06 2013-05-29 Honda Motor Co., Ltd. Riemenprüfvorrichtung
US8755589B2 (en) * 2011-09-06 2014-06-17 The Gates Corporation Measurement of belt wear through edge detection of a raster image
US9098914B2 (en) * 2013-03-11 2015-08-04 Gates Corporation Enhanced analysis for image-based serpentine belt wear evaluation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108645869A (en) * 2018-08-20 2018-10-12 中国印刷科学技术研究院有限公司 The non-defective method for removing and its device of gravure printing roller surface defect intelligent measurement

Also Published As

Publication number Publication date
JP2004125396A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP3754003B2 (en) Defect inspection apparatus and method
US6011620A (en) Method and apparatus for the automatic inspection of optically transmissive planar objects
JP6834174B2 (en) Visual inspection method and visual inspection equipment
JP4511978B2 (en) Surface flaw inspection device
TWI648534B (en) Inspection method for back surface of epitaxial wafer, inspection device for back surface of epitaxial wafer, lift pin management method for epitaxial growth device, and manufacturing method for epitaxial wafer
JP4930748B2 (en) Film inspection apparatus and method
JP6772084B2 (en) Surface defect inspection equipment and surface defect inspection method
JP4739044B2 (en) Appearance inspection device
TW201241420A (en) Tire shape testing device and tire shape testing method
TW201719150A (en) Epitaxial wafer back-surface inspection device and epitaxial wafer back-surface inspection method using the same
JP3870140B2 (en) Driving transmission belt inspection method
JP6859628B2 (en) Visual inspection method and visual inspection equipment
JP2018025439A (en) Appearance inspection method and appearance inspection apparatus
JP2009092474A (en) Flash detection method for molded article
JP2004077425A (en) Inspecting apparatus for drive transmission belt
JP2009287980A (en) Visual inspection device
WO2022224636A1 (en) Inspection device
JP5959430B2 (en) Bottle cap appearance inspection device and appearance inspection method
KR101015808B1 (en) Apparatus and method for measuring line width of bonding electrode
JP4023295B2 (en) Surface inspection method and surface inspection apparatus
JP2018040792A (en) Inspection system, inspection method, method of manufacturing films
JP4225951B2 (en) Metal ring side edge inspection method
JP2011007498A (en) Surface inspection device for cylindrical body
WO2011101893A1 (en) Method and device for detecting flaw on surface of flexible object to be tested
JP7444171B2 (en) Surface defect discrimination device, appearance inspection device and program

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040804

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040804

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees