JP2008185511A - Tire rro measurement method and its device - Google Patents

Tire rro measurement method and its device Download PDF

Info

Publication number
JP2008185511A
JP2008185511A JP2007020666A JP2007020666A JP2008185511A JP 2008185511 A JP2008185511 A JP 2008185511A JP 2007020666 A JP2007020666 A JP 2007020666A JP 2007020666 A JP2007020666 A JP 2007020666A JP 2008185511 A JP2008185511 A JP 2008185511A
Authority
JP
Japan
Prior art keywords
tire
image
rro
slit
photographed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007020666A
Other languages
Japanese (ja)
Inventor
Tomohiro Mizuno
智宏 水野
Tomoyuki Kaneko
智之 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2007020666A priority Critical patent/JP2008185511A/en
Publication of JP2008185511A publication Critical patent/JP2008185511A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of accurately and easily measuring RRO of a tire crown part by applying the conventional light cutting method, and to provide its device. <P>SOLUTION: The method includes: photographing each slit image of a tire center part 10a, an upper pump part 10b, and a lower pump part 10c by three cameras 14A-14C while irradiating the tire crown part 10A of a rotating tire 10 with slit light; calculating a three-dimensional coordinate of the crown part 10A of the tire 10 by transmitting image data of the photographed slit image to a coordinate calculation means 15; preparing the development figure of the tire crown part 10A by composing images photographed with the first camera 14A and images photographed with the second and third cameras 14B, 14C by an image composition means 16; and measuring a RRO value in a measurement frame designated in a measuring position input means 17 by a RRO value measurement means 18. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、画像処理方法を用いてタイヤクラウン部のRROを計測する方法とその装置に関するものである。   The present invention relates to a method and apparatus for measuring RRO of a tire crown using an image processing method.

一般に、タイヤの周方向に沿った形状が中心軸から一定の距離にない場合には、転動時にタイヤに不要な振動が入力するため、車輌の乗り心地性能が低下するといった問題点があった。このようなタイヤ振動を防止するため、製品タイヤについて、タイヤ周方向形状の中心軸からのずれの大きさであるRROをタイヤ中心部の1周分について計測し、タイヤを選別する検査が行なわれている。図5はその一例を示す図で、支持アーム51に回転可能に取付けられたローラ52を、押圧機構53を用いて、図示しない回転装置に取付けられたタイヤTの測定する部位(ここでは、トレッド中心)に所定の圧力で押し付けながら、上記タイヤTを回転させるとともに、上記支持アーム51に変位計54を接触させて、上記ローラ52の変位量を検出し、この変位量を当該タイヤTのRROとしていた。(例えば、特許文献1参照)。
一方、タイヤ形状の良否を検査する方法として、図6に示すような、光切断法を用いた検査方法が知られている。この検査方法は、検査するタイヤ60を回転装置71に搭載して回転させるとともに、半導体レーザなどを用いた投光装置72により上記タイヤ60の表面61にスリット光を照射して、上記表面61のスリット像をCCDカメラなどの撮像手段73により撮影した後、このスリット像Sの画像データ(輝度データ)から上記表面61の形状を求め、これを基準となる画像と比較してその形状の良否を判定する。詳細には、上記画像データのうち、光を受けて明るくなっている画素の重心座標を算出して上記スリット像Sの2次元座標を算出した後、上記スリット光の照射角度と上記スリット像Sの撮影角度の位置関係と、タイヤ60の回転角度とから、上記2次元座標を3次元座標に変換して上記表面61の形状を検出する(例えば、特許文献2参照)。
特開2002−175468号公報 特開平11−138654号公報
Generally, when the shape along the circumferential direction of the tire is not at a certain distance from the central axis, unnecessary vibration is input to the tire during rolling, which causes a problem that the riding comfort performance of the vehicle deteriorates. . In order to prevent such tire vibration, the product tire is inspected by measuring RRO, which is the magnitude of the deviation from the central axis of the tire circumferential shape, for one round of the tire center, and selecting the tire. ing. FIG. 5 is a diagram showing an example of this. A roller 52 rotatably attached to a support arm 51 is used to measure a tire T attached to a rotating device (not shown) using a pressing mechanism 53 (here, a tread). The tire T is rotated while being pressed against the center) with a predetermined pressure, and a displacement gauge 54 is brought into contact with the support arm 51 to detect the displacement amount of the roller 52, and this displacement amount is detected as RRO of the tire T. I was trying. (For example, refer to Patent Document 1).
On the other hand, as a method for inspecting the quality of a tire shape, an inspection method using a light cutting method as shown in FIG. 6 is known. In this inspection method, the tire 60 to be inspected is mounted on the rotating device 71 and rotated, and the surface 61 of the tire 60 is irradiated with slit light by the light projecting device 72 using a semiconductor laser or the like. After the slit image is photographed by the imaging means 73 such as a CCD camera, the shape of the surface 61 is obtained from the image data (luminance data) of the slit image S, and the shape is compared with a reference image to determine whether the shape is good or bad. judge. Specifically, after calculating the barycentric coordinates of the pixels that are brightened by receiving light in the image data to calculate the two-dimensional coordinates of the slit image S, the irradiation angle of the slit light and the slit image S are calculated. The two-dimensional coordinates are converted into three-dimensional coordinates from the positional relationship between the photographing angles and the rotation angle of the tire 60, and the shape of the surface 61 is detected (see, for example, Patent Document 2).
JP 2002-175468 A Japanese Patent Laid-Open No. 11-138654

ところで、従来は、タイヤトレッド中心部の1周分のデータから当該タイヤTのRROを計測していたが、タイヤの構造によっては、ショルダー部やハンプ部のRROが要求される場合がある。
しかしながら、上記ローラ52を用いた方法では、複数の部位のRROを測定する場合には、その都度ローラ52の位置を移動させて計測する必要があるため、計測に時間がかかってしまうだけでなく、タイヤによっては、その計測位置にスピューなどの局所的な凹凸がある場合に、得られたデータにその影響が現れてしまうといった問題点がある。
Conventionally, the RRO of the tire T is measured from the data for one round of the tire tread center portion. However, depending on the tire structure, the RRO of the shoulder portion or the hump portion may be required.
However, in the method using the roller 52, when measuring RRO of a plurality of parts, it is necessary to move and measure the position of the roller 52 each time. Depending on the tire, there is a problem that when there is local unevenness such as spew at the measurement position, the effect appears in the obtained data.

本発明は、従来の問題点に鑑みてなされたもので、従来の光切断法を応用して、タイヤクラウン部のRROを精度よくかつ容易に計測することのできる方法とその装置を提供することを目的とする。   The present invention has been made in view of the conventional problems, and provides a method and an apparatus capable of accurately and easily measuring RRO of a tire crown portion by applying a conventional light cutting method. With the goal.

本願の請求項1に記載の発明は、タイヤクラウン部のRROを計測する方法であって、タイヤクラウン部にスリット光を照射する投光手段と上記スリット光の照射部を撮影する撮像手段とを備えた撮影手段と上記タイヤとを相対的に移動させながら上記タイヤクラウン部のスリット像を撮影するとともに、この撮影されたタイヤクラウン部の凹凸に起因する上記スリット像の輝度データを用いて算出されたタイヤクラウン部の形状データを用いて、当該タイヤの周方向形状の中心軸からのずれの大きさであるRROを算出するようにしたことを特徴とするものである。
請求項2に記載の発明は、請求項1に記載のタイヤのRRO計測方法において、タイヤトレッドの幅方向の異なる位置に複数の撮像手段を配置して、複数の角度からタイヤクラウン部のスリット像を撮影するようにしたものである。
請求項3に記載の発明は、請求項2に記載のタイヤのRRO計測方法において、上記複数の撮像手段で撮影した画像データを合成してタイヤクラウン部の幅方向全体の画像を生成するとともに、この生成された画像を用いて、タイヤ幅方向の位置の異なる複数箇所のRROを同時に計測するようにしたものである。
Invention of Claim 1 of this application is a method of measuring RRO of a tire crown part, Comprising: The light projection means to irradiate a slit light to a tire crown part, and the imaging means to image | photograph the said irradiation part of the slit light A slit image of the tire crown portion is photographed while relatively moving the photographing means provided and the tire, and is calculated using luminance data of the slit image due to the unevenness of the photographed tire crown portion. Further, RRO, which is the magnitude of deviation from the central axis of the circumferential shape of the tire, is calculated using the shape data of the tire crown portion.
According to a second aspect of the present invention, in the tire RRO measurement method according to the first aspect, a plurality of image pickup means are arranged at different positions in the width direction of the tire tread, and a slit image of the tire crown portion from a plurality of angles. Is to shoot.
According to a third aspect of the present invention, in the tire RRO measurement method according to the second aspect, the image data photographed by the plurality of imaging means is combined to generate an image of the entire width direction of the tire crown portion, Using this generated image, RROs at a plurality of locations having different positions in the tire width direction are simultaneously measured.

また、請求項4に記載の発明は、タイヤクラウン部のRROを計測する装置であって、タイヤクラウン部にスリット光を照射する投光手段と上記スリット光の照射部を撮影する撮像手段とを備えた撮影手段と、この撮影手段とタイヤとを相対的に移動させる手段と、上記撮像手段で得られた各スリット像の画素データからタイヤクラウン部の所定の位置の形状を算出する手段と、上記形状データを用いて上記タイヤのRROを演算する手段と備えたことを特徴とするものである。
請求項5に記載の発明は、請求項4に記載のタイヤのRRO計測装置において、タイヤトレッドの幅方向の異なる位置に複数の撮像手段を配置するとともに、上記複数の撮像手段で撮影した画像データを合成してタイヤクラウン部の幅方向全体の画像を生成する画像合成手段を設けたものである。
According to a fourth aspect of the present invention, there is provided an apparatus for measuring RRO of a tire crown portion, comprising: a light projecting means for irradiating the tire crown portion with slit light; and an imaging means for photographing the slit light irradiation portion. Photographing means provided, means for relatively moving the photographing means and the tire, means for calculating the shape of a predetermined position of the tire crown portion from pixel data of each slit image obtained by the imaging means, A means for calculating the RRO of the tire using the shape data is provided.
According to a fifth aspect of the present invention, in the tire RRO measuring device according to the fourth aspect, a plurality of imaging means are arranged at different positions in the width direction of the tire tread, and image data taken by the plurality of imaging means. Are combined to generate an image of the entire width direction of the tire crown portion.

本発明によれば、タイヤクラウン部にスリット光を照射する投光手段と上記スリット光の照射部を撮影する撮像手段とを備えた撮影手段と上記タイヤとを相対的に移動させながら上記タイヤクラウン部のスリット像を撮影するとともに、この撮影されたタイヤクラウン部の凹凸に起因する上記スリット像の形状データを用いて、当該タイヤの周方向形状の中心軸からのずれの大きさであるRROを算出するようにしたので、タイヤクラウン部のRROを精度よくかつ容易に計測することができる。
このとき、タイヤトレッドの幅方向の異なる位置に複数の撮像手段を配置して、複数の角度からタイヤクラウン部のスリット像を撮影するとともに、上記複数の撮像手段で撮影した画像データを合成してタイヤクラウン部の幅方向全体の画像を生成するようにすれば、1枚の画像にてタイヤ幅方向の位置の異なる複数箇所のRROを同時に計測することができる。
According to the present invention, the tire crown is moved while relatively moving the photographing means having the light projecting means for irradiating the tire crown portion with slit light and the imaging means for photographing the slit light irradiation portion and the tire. RRO, which is the magnitude of the deviation from the central axis of the circumferential shape of the tire, using the shape data of the slit image due to the unevenness of the photographed tire crown portion. Since the calculation is performed, the RRO of the tire crown portion can be accurately and easily measured.
At this time, a plurality of imaging means are arranged at different positions in the width direction of the tire tread, and a slit image of the tire crown portion is photographed from a plurality of angles, and image data photographed by the plurality of imaging means is synthesized. If an image of the entire width direction of the tire crown portion is generated, it is possible to simultaneously measure RROs at a plurality of locations having different positions in the tire width direction with one image.

以下、本発明の最良の形態について、図面に基づき説明する。
図1は、本最良の形態に係るタイヤのRRO計測装置の概要を示す図で、同図において、11は検査対象であるタイヤ10をタイヤ軸周りに回転させる回転装置、12は上記回転するタイヤ10の回転角を検出する回転角検出手段、13A〜13Cは上記タイヤ10のタイヤクラウン部10Aに当該タイヤ10の幅方向に平行な方向に延長するスリット光を照射する投光手段、14A〜14Cは上記スリット光の照射部を撮影する撮影手段であるCCDカメラで、第1のカメラ14Aはタイヤセンター部10aを撮影し、第2及び第3のカメラ14B,14Cはそれぞれ、タイヤの上パンプ部10bと下パンプ部10cをそれぞれ撮影する。また、15は上記カメラ14A〜14Cで撮影されたスリット像と上記回転角検出手段12で検出したタイヤ回転角とから、上記タイヤ10の3次元形状を演算する座標演算手段、16は上記上記カメラ14A〜14Cで撮影されたタイヤセンター部10aと上パンプ部10bと下パンプ部10cの画像を、形状データに基づいて合成し、タイヤクラウン部10A全体の画像(以下、クラウン部画像という)を生成する画像合成手段、17はRRO値を測定する箇所のタイヤ幅方向の座標を入力する計測位置入力手段、18はこの計測位置入力手段17から入力されたRRO計測位置と上記座標演算手段15とで求められたタイヤクラウン部10Aの3次元座標とに基づいて、上計測位置におけるタイヤのRRO値を計測するRRO値計測手段である。
Hereinafter, the best mode of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing an outline of a tire RRO measuring apparatus according to the best mode. In FIG. 1, 11 is a rotating device that rotates a tire 10 to be inspected around a tire axis, and 12 is the rotating tire. Rotation angle detection means for detecting 10 rotation angles, 13A to 13C are light projection means for irradiating the tire crown portion 10A of the tire 10 with slit light extending in a direction parallel to the width direction of the tire 10, and 14A to 14C. Is a CCD camera which is a photographing means for photographing the slit light irradiation part, the first camera 14A photographs the tire center part 10a, and the second and third cameras 14B and 14C respectively represent the upper pump parts of the tire. 10b and the lower pump part 10c are each photographed. Reference numeral 15 denotes coordinate calculation means for calculating the three-dimensional shape of the tire 10 from the slit images taken by the cameras 14A to 14C and the tire rotation angle detected by the rotation angle detection means 12, and 16 denotes the camera. The images of the tire center portion 10a, the upper pump portion 10b, and the lower pump portion 10c photographed at 14A to 14C are synthesized based on the shape data to generate an image of the entire tire crown portion 10A (hereinafter referred to as a crown portion image). The image synthesizing means 17, a measurement position input means 17 for inputting coordinates in the tire width direction of the portion where the RRO value is measured, and 18 an RRO measurement position inputted from the measurement position input means 17 and the coordinate calculation means 15. RRO value measuring means for measuring the RRO value of the tire at the upper measurement position based on the obtained three-dimensional coordinates of the tire crown portion 10A. A.

次に、上記RRO計測装置を用いて、タイヤクラウン部の所定の位置のRRO値を計測する方法について説明する。
まず、回転装置11により計測するタイヤ10を回転させる。そして、各投光手段13A〜13Cから、上記タイヤ10のタイヤクラウン部10Aのセンター部10a、上パンプ部10b、及び、下パンプ部10cにそれぞれスリット光を照射しながら、上記3台のカメラ14A〜14Cにより、上記タイヤクラウン部10Aの各部10a,10b,10cの各スリット像を撮影し、その撮影されたスリット像の画像データ(表面の稜線の画像データ)を座標演算手段15と画像合成手段16とに送る。
座標演算手段15では、従来の光切断法と同様の手法により、上記各スリット像と上記回転角検出手段12で検出したタイヤ回転角とから、上記タイヤ10の3次元形状を演算する。具体的には、スリット像を構成する画素のうち光を受けて明るくなっっている画素の重心座標を算出して上記スリット像の2次元座標を求め、この求められた2次元座標をを、上記検出したタイヤ回転角を用いて3次元座標に変換する。これにより、タイヤ10のクラウン部10Aの3次元座標を得ることができる。
本例では、図2に示すように、タイヤセンター部10aを撮影する第1のカメラ14Aをそのレンズ光軸がタイヤ表面に対して直交するように配置し、タイヤの上下のパンプ部10b、10cと下パンプ部をそれぞれ撮影する第2及び第3のカメラ14B,14Cをそれぞれのレンズ光軸がタイヤ表面に対して略30度傾けて配置して、上記第1のカメラ14Aと上記第2のカメラ14Bとがともに第1の陸部10Mとこの第1の陸部10Mを区画する外側の周方向溝10mがその撮影範囲に入るようにするとともに、上記第1のカメラ14Aと上記第3のカメラ14Cとがともに第2の陸部10Nとこの第2の陸部10Nを区画する外側の周方向溝10nがその撮影範囲に入るようにしている。これにより、図2に示すような、各カメラ14A〜14Cで撮影したスリット像から算出した3次元座標に基づいて作成したタイヤクラウン部10Aの幅方向の断面形状を、タイヤ10の1周分にわたって得ることができる。
Next, a method for measuring the RRO value at a predetermined position of the tire crown using the RRO measuring device will be described.
First, the tire 10 measured by the rotating device 11 is rotated. The three cameras 14A are irradiated with slit light from the light projecting means 13A to 13C to the center portion 10a, the upper pump portion 10b, and the lower pump portion 10c of the tire crown portion 10A of the tire 10, respectively. To 14C, the respective slit images of the respective portions 10a, 10b, 10c of the tire crown portion 10A are photographed, and the image data of the photographed slit images (image data of the ridge lines on the surface) are coordinate calculating means 15 and image synthesizing means. Send to 16.
The coordinate calculation means 15 calculates the three-dimensional shape of the tire 10 from each slit image and the tire rotation angle detected by the rotation angle detection means 12 by a method similar to the conventional light cutting method. Specifically, the center-of-gravity coordinates of the pixels that receive light among the pixels constituting the slit image are calculated to obtain the two-dimensional coordinates of the slit image, and the obtained two-dimensional coordinates are calculated as follows: Using the detected tire rotation angle, it is converted into three-dimensional coordinates. Thereby, the three-dimensional coordinates of the crown portion 10A of the tire 10 can be obtained.
In this example, as shown in FIG. 2, the first camera 14A for photographing the tire center portion 10a is arranged so that the lens optical axis thereof is orthogonal to the tire surface, and the upper and lower pump portions 10b, 10c of the tire are arranged. And the second and third cameras 14B and 14C that respectively photograph the lower pump portion are arranged so that the lens optical axes thereof are inclined by approximately 30 degrees with respect to the tire surface, and the first camera 14A and the second camera 14C are arranged. Both the first land portion 10M and the outer circumferential groove 10m that divides the first land portion 10M are included in the photographing range, and the first camera 14A and the third camera 14B together. Both the camera 14C and the outer circumferential groove 10n that divides the second land portion 10N and the second land portion 10N enter the photographing range. Thereby, the cross-sectional shape in the width direction of the tire crown portion 10A created based on the three-dimensional coordinates calculated from the slit images photographed by the cameras 14A to 14C as shown in FIG. Obtainable.

一方、画像合成手段16では、上記撮影された形状データを256階調の画像データに変換し、上記第1及び第2の陸部10M,10Nとそれに隣接する周方向溝10m,10nとの濃淡差を利用して、上記第1のカメラ14Aで撮影した画像と上記第2及び第3のカメラ14B,14Cで撮影した画像とを合成する。具体的には、図3の実線で示す第1のカメラ14Aで撮影した周方向溝10mとが第2のカメラ14Bで撮影した周方向溝10mとが一致するように、上記第2のカメラ14Bで撮影した画像から得られる3次元データを座標変換し、この座標変換された画像データと上記第1のカメラ14Aで撮影した画像の画像データとを合成して、タイヤセンター部10aと上パンプ10bとが連続したトレッドの展開画像を作成する。同様に、上記第1のカメラ14Aで撮影した画像の画像データと上記第3のカメラ14Cで撮影した画像の画像データとを合成して、タイヤセンター部10aと下パンプ10cとが連続したトレッドの展開画像を作成すれば、図2に示すような、タイヤクラウン部10Aの展開図を得ることができる。
RRO値を計測する場合には、計測位置入力手段17にて、上記画像合成手段16で作成したタイヤクラウン部10Aの展開図に計測位置を指定する計測枠を入力し、RRO値計測手段18にて、上記枠内のRRO値を計測する。このとき、画像処理により上記第1及び第2の周方向溝10m,10nを検出し、その凹部分をキャンセルすることにより、図4に示すような、タイヤセンター部10aと上下の下パンプ10b,10cの各RRO波形を得ることができる。
On the other hand, the image composition means 16 converts the photographed shape data into image data of 256 gradations, and the density of the first and second land portions 10M, 10N and the circumferential grooves 10m, 10n adjacent to the first and second land portions 10M, 10N. Using the difference, the image captured by the first camera 14A and the image captured by the second and third cameras 14B and 14C are combined. Specifically, the second camera 14B is arranged such that the circumferential groove 10m photographed by the first camera 14A shown by the solid line in FIG. 3 matches the circumferential groove 10m photographed by the second camera 14B. The coordinates of the three-dimensional data obtained from the image photographed in step S3 are coordinate-converted, and the coordinate-converted image data and the image data of the image photographed by the first camera 14A are combined to produce the tire center portion 10a and the upper pump 10b. A tread unfolded image is created. Similarly, the image data of the image photographed by the first camera 14A and the image data of the image photographed by the third camera 14C are combined to form a tread in which the tire center portion 10a and the lower pump 10c are continuous. If a developed image is created, a developed view of the tire crown portion 10A as shown in FIG. 2 can be obtained.
When measuring the RRO value, the measurement position input means 17 inputs a measurement frame for designating the measurement position in the development view of the tire crown portion 10A created by the image synthesizing means 16, and the RRO value measurement means 18 Then, the RRO value within the frame is measured. At this time, the first and second circumferential grooves 10m and 10n are detected by image processing, and the concave portions are canceled, whereby the tire center portion 10a and the upper and lower lower pumps 10b, as shown in FIG. Each RRO waveform of 10c can be obtained.

このように本最良の形態では、回転するタイヤ10のタイヤクラウン部10Aにスリット光を照射しながら、3台のカメラ14A〜14Cにより、タイヤセンター部10aと上パンプ部10bと下パンプ部10cの各スリット像を撮影し、その撮影されたスリット像の画像データを座標演算手段15に送って上記タイヤ10のクラウン部10Aの3次元座標を演算するとともに、画像合成手段16にて、上記第1のカメラ14Aで撮影した画像と上記第2及び第3のカメラ14B,14Cで撮影した画像とを合成してタイヤクラウン部10Aの展開図を作成し、RRO値計測手段18にて、計測位置入力手段17で指定した計測枠内のRRO値計測するようにしたので、タイヤクラウン部10Aの複数箇所のRROを精度よくかつ容易に計測することができる。   As described above, in this best mode, the slits are applied to the tire crown portion 10A of the rotating tire 10 and the three cameras 14A to 14C are used for the tire center portion 10a, the upper pump portion 10b, and the lower pump portion 10c. Each slit image is photographed, and the image data of the photographed slit image is sent to the coordinate computing means 15 to compute the three-dimensional coordinates of the crown portion 10A of the tire 10, and the image synthesizing means 16 uses the first image. The image taken by the camera 14A and the images taken by the second and third cameras 14B and 14C are combined to create a development view of the tire crown 10A, and the RRO value measuring means 18 inputs the measurement position. Since the RRO value in the measurement frame designated by the means 17 is measured, the RRO at a plurality of locations in the tire crown portion 10A can be measured accurately and easily. Rukoto can.

なお、上記最良の形態では、3台のカメラ14A〜14Cを用いた場合について説明したが、1台の場合でも、タイヤクラウン部全幅のスリット像を得ることができ、かつ、このスリット像から算出される形状データを用いれば、RRO値を容易に計測することができる。   In the above-described best mode, the case where three cameras 14A to 14C are used has been described. However, even in the case where only one camera is used, a slit image of the full width of the tire crown can be obtained and calculated from the slit images. If the shape data to be used is used, the RRO value can be easily measured.

以上説明したように、本発明によれば、タイヤクラウン部の複数箇所のRROを精度よくかつ容易に計測することのできるで、RRO計測を効率よく行うことができる。   As described above, according to the present invention, RRO at a plurality of locations in the tire crown portion can be measured accurately and easily, so that RRO measurement can be performed efficiently.

本発明の最良の形態に係るRRO計測装置の概要を示す図である。It is a figure which shows the outline | summary of the RRO measuring device which concerns on the best form of this invention. 各カメラで撮影したタイヤクラウン部の画像とその合成画像とを示す図である。It is a figure which shows the image of the tire crown part image | photographed with each camera, and its synthesized image. カメラ位置とその撮影領域の一例を示す図である。It is a figure which shows an example of a camera position and its imaging | photography area | region. RROの測定結果を示す図である。It is a figure which shows the measurement result of RRO. 従来のRRO計測装置の概要を示す図である。It is a figure which shows the outline | summary of the conventional RRO measuring device. 従来のタイヤ形状判定装置の概要を示す図である。It is a figure which shows the outline | summary of the conventional tire shape determination apparatus.

符号の説明Explanation of symbols

10 タイヤ、10a タイヤクラウン部、11 回転装置、12 回転角検出手段、13A〜13C 投光手段、14A〜14C CCDカメラ、15 座標演算手段、
16 画像合成手段、17 計測位置入力手段、18 RRO値計測手段。
DESCRIPTION OF SYMBOLS 10 tire, 10a tire crown part, 11 rotation apparatus, 12 rotation angle detection means, 13A-13C light projection means, 14A-14C CCD camera, 15 coordinate calculation means,
16 image composition means, 17 measurement position input means, 18 RRO value measurement means.

Claims (5)

タイヤクラウン部にスリット光を照射する投光手段と上記スリット光の照射部を撮影する撮像手段とを備えた撮影手段と上記タイヤとを相対的に移動させながら上記タイヤクラウン部のスリット像を撮影するとともに、この撮影されたタイヤクラウン部の凹凸に起因する上記スリット像の輝度データを用いて算出されたタイヤクラウン部の形状データを用いて、当該タイヤの周方向形状の中心軸からのずれの大きさであるRROを算出するようにしたことを特徴とするタイヤのRRO計測方法。   Taking a slit image of the tire crown portion while relatively moving the photographing means having a light projecting means for irradiating the tire crown portion with slit light and an imaging means for photographing the irradiation portion of the slit light and the tire. At the same time, using the shape data of the tire crown calculated by using the brightness data of the slit image due to the unevenness of the photographed tire crown, the deviation of the circumferential shape of the tire from the central axis is determined. A method for measuring RRO of a tire, wherein RRO which is a size is calculated. タイヤトレッドの幅方向の異なる位置に複数の撮像手段を配置して、複数の角度からタイヤクラウン部のスリット像を撮影するようにしたことを特徴とする請求項1に記載のタイヤのRRO計測方法。   2. The tire RRO measuring method according to claim 1, wherein a plurality of imaging means are arranged at different positions in the width direction of the tire tread, and a slit image of the tire crown portion is photographed from a plurality of angles. . 上記複数の撮像手段で撮影した画像データを合成してタイヤクラウン部の幅方向全体の画像を生成するとともに、この生成された画像を用いて、タイヤ幅方向の位置の異なる複数箇所のRROを同時に計測するようにしたことを特徴とする請求項2に記載のタイヤのRRO計測方法。   The image data captured by the plurality of imaging means is combined to generate an entire image in the width direction of the tire crown, and the generated image is used to simultaneously perform RROs at a plurality of locations having different positions in the tire width direction. 3. The tire RRO measurement method according to claim 2, wherein measurement is performed. タイヤクラウン部にスリット光を照射する投光手段と上記スリット光の照射部を撮影する撮像手段とを備えた撮影手段と、この撮影手段とタイヤとを相対的に移動させる手段と、上記撮像手段で得られた各スリット像の画素データからタイヤクラウン部の所定の位置の形状を算出する手段と、上記形状データを用いて上記タイヤのRROを演算する手段と備えたことを特徴とするタイヤのRRO計測装置。   An imaging means comprising a light projecting means for irradiating the tire crown with slit light, an imaging means for photographing the slit light irradiation part, a means for relatively moving the imaging means and the tire, and the imaging means The tire comprises: means for calculating a shape of a predetermined position of the tire crown portion from pixel data of each slit image obtained in step 1; and means for calculating RRO of the tire using the shape data. RRO measuring device. タイヤトレッドの幅方向の異なる位置に複数の撮像手段を配置するとともに、上記複数の撮像手段で撮影した画像データを合成してタイヤクラウン部の幅方向全体の画像を生成する画像合成手段を設けたことを特徴とする請求項4に記載のタイヤのRRO計測装置。   A plurality of image pickup means are arranged at different positions in the width direction of the tire tread, and an image composition means for generating an entire image in the width direction of the tire crown by combining image data photographed by the plurality of image pickup means is provided. The tire RRO measuring device according to claim 4.
JP2007020666A 2007-01-31 2007-01-31 Tire rro measurement method and its device Pending JP2008185511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007020666A JP2008185511A (en) 2007-01-31 2007-01-31 Tire rro measurement method and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007020666A JP2008185511A (en) 2007-01-31 2007-01-31 Tire rro measurement method and its device

Publications (1)

Publication Number Publication Date
JP2008185511A true JP2008185511A (en) 2008-08-14

Family

ID=39728658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007020666A Pending JP2008185511A (en) 2007-01-31 2007-01-31 Tire rro measurement method and its device

Country Status (1)

Country Link
JP (1) JP2008185511A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221896A (en) * 2007-03-08 2008-09-25 Kobe Steel Ltd Apparatus and method for detecting tire shape
JP2009250740A (en) * 2008-04-04 2009-10-29 Bridgestone Corp Image synthesizing method and visual inspecting device of tire
CN101672627A (en) * 2008-09-08 2010-03-17 株式会社神户制钢所 Tyre shape detecting device and tyre shape detecting method
WO2010131698A1 (en) * 2009-05-13 2010-11-18 株式会社ブリヂストン Tire inspection device
JP2011059022A (en) * 2009-09-11 2011-03-24 Bridgestone Corp Tire visual inspection device
JP2011220964A (en) * 2010-04-14 2011-11-04 Bridgestone Corp Tire side face failure detection method and device
WO2012124553A1 (en) 2011-03-15 2012-09-20 株式会社神戸製鋼所 Tire shape testing device and tire shape testing method
WO2012157716A1 (en) * 2011-05-17 2012-11-22 シャープ株式会社 Method of detecting defect in tire
WO2014078500A1 (en) * 2012-11-15 2014-05-22 Android Industries Llc System and method for determining uniformity of a tire
WO2014095142A1 (en) * 2012-12-21 2014-06-26 Robert Bosch Gmbh Apparatus and method for measuring the profile depth of a tire
WO2014114403A1 (en) * 2013-01-22 2014-07-31 Robert Bosch Gmbh Device and method for monitoring and calibrating a device for measuring the profile depth of a tyre
CN104634248A (en) * 2015-02-04 2015-05-20 西安理工大学 Revolving shaft calibration method under binocular vision
CN105849524A (en) * 2013-10-24 2016-08-10 维奥赖特有限公司 Method and device for tyre condition analysis
CN106289097A (en) * 2015-06-24 2017-01-04 住友橡胶工业株式会社 Tire tread process for measuring shape and tire tread shape measuring apparatus
CN110398214A (en) * 2019-08-01 2019-11-01 桂林梵玛科机械有限公司 Carcass outer profile size method for fast measuring

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131706A (en) * 1989-10-18 1991-06-05 Mitsubishi Heavy Ind Ltd Three-dimensional position measuring instrument
JPH06182903A (en) * 1992-12-21 1994-07-05 Bridgestone Corp Manufacture of radial tire
JPH1096611A (en) * 1996-07-31 1998-04-14 N S D Kk Shape measuring device
JPH11138654A (en) * 1997-11-06 1999-05-25 Bridgestone Corp Tire shape deciding apparatus and method for selecting tire
JP2002181729A (en) * 2000-12-12 2002-06-26 Saki Corp:Kk Apparatus and method for visual inspection
JP2004239747A (en) * 2003-02-06 2004-08-26 Pulstec Industrial Co Ltd Three-dimensional image data generation method
JP2006142783A (en) * 2004-11-24 2006-06-08 Bridgestone Corp Post-cure inflation apparatus and method for correcting uniformity using it
JP2006258531A (en) * 2005-03-16 2006-09-28 Act Denshi Kk Method of measuring rail section and device for measuring rail section used therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131706A (en) * 1989-10-18 1991-06-05 Mitsubishi Heavy Ind Ltd Three-dimensional position measuring instrument
JPH06182903A (en) * 1992-12-21 1994-07-05 Bridgestone Corp Manufacture of radial tire
JPH1096611A (en) * 1996-07-31 1998-04-14 N S D Kk Shape measuring device
JPH11138654A (en) * 1997-11-06 1999-05-25 Bridgestone Corp Tire shape deciding apparatus and method for selecting tire
JP2002181729A (en) * 2000-12-12 2002-06-26 Saki Corp:Kk Apparatus and method for visual inspection
JP2004239747A (en) * 2003-02-06 2004-08-26 Pulstec Industrial Co Ltd Three-dimensional image data generation method
JP2006142783A (en) * 2004-11-24 2006-06-08 Bridgestone Corp Post-cure inflation apparatus and method for correcting uniformity using it
JP2006258531A (en) * 2005-03-16 2006-09-28 Act Denshi Kk Method of measuring rail section and device for measuring rail section used therefor

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221896A (en) * 2007-03-08 2008-09-25 Kobe Steel Ltd Apparatus and method for detecting tire shape
JP2009250740A (en) * 2008-04-04 2009-10-29 Bridgestone Corp Image synthesizing method and visual inspecting device of tire
CN101672627A (en) * 2008-09-08 2010-03-17 株式会社神户制钢所 Tyre shape detecting device and tyre shape detecting method
US8618924B2 (en) 2009-05-13 2013-12-31 Kabushiki Kaisha Bridgestone Tire inspection apparatus
WO2010131698A1 (en) * 2009-05-13 2010-11-18 株式会社ブリヂストン Tire inspection device
JP2010266259A (en) * 2009-05-13 2010-11-25 Bridgestone Corp Tire inspection device
EP2431734A4 (en) * 2009-05-13 2015-11-11 Bridgestone Corp Tire inspection device
JP2011059022A (en) * 2009-09-11 2011-03-24 Bridgestone Corp Tire visual inspection device
JP2011220964A (en) * 2010-04-14 2011-11-04 Bridgestone Corp Tire side face failure detection method and device
JP2012193990A (en) * 2011-03-15 2012-10-11 Kobe Steel Ltd Device and method for inspecting tyre shape
US9948841B2 (en) 2011-03-15 2018-04-17 Kobe Steel, Ltd. Tire shape testing device and tire shape testing method
WO2012124553A1 (en) 2011-03-15 2012-09-20 株式会社神戸製鋼所 Tire shape testing device and tire shape testing method
JP2012242186A (en) * 2011-05-17 2012-12-10 Sharp Corp Method for detecting defect in tire
WO2012157716A1 (en) * 2011-05-17 2012-11-22 シャープ株式会社 Method of detecting defect in tire
CN103534583A (en) * 2011-05-17 2014-01-22 夏普株式会社 Method of detecting defect in tire
US20140086453A1 (en) * 2011-05-17 2014-03-27 Toyo Tire & Rubber Co. Ltd. Tire defect detection method
CN103534583B (en) * 2011-05-17 2015-11-25 夏普株式会社 The defect inspection method of tire
US9036893B2 (en) 2011-05-17 2015-05-19 Sharp Kabushiki Kaisha Tire defect detection method
EP2920566A4 (en) * 2012-11-15 2016-07-13 Android Ind Llc System and method for determining uniformity of a tire
JP2016505815A (en) * 2012-11-15 2016-02-25 アンドロイド インダストリーズ エルエルシー System and method for determining tire uniformity
CN104981685A (en) * 2012-11-15 2015-10-14 安德罗伊德工业有限公司 System and method for determining uniformity of tire
WO2014078500A1 (en) * 2012-11-15 2014-05-22 Android Industries Llc System and method for determining uniformity of a tire
US9618425B2 (en) 2012-11-15 2017-04-11 Android Industries Llc System and method for determining uniformity of a tire
US10352688B2 (en) 2012-12-21 2019-07-16 Beissbarth Gmbh Device and method for measuring the tread depth of a tire
WO2014095142A1 (en) * 2012-12-21 2014-06-26 Robert Bosch Gmbh Apparatus and method for measuring the profile depth of a tire
CN104870934A (en) * 2012-12-21 2015-08-26 罗伯特·博世有限公司 Apparatus and method for measuring the profile depth of a tire
US9476801B2 (en) 2013-01-22 2016-10-25 Robert Bosch Gmbh Device and method for monitoring and calibrating a device for measuring the profile depth of a tyre
WO2014114403A1 (en) * 2013-01-22 2014-07-31 Robert Bosch Gmbh Device and method for monitoring and calibrating a device for measuring the profile depth of a tyre
CN105849524A (en) * 2013-10-24 2016-08-10 维奥赖特有限公司 Method and device for tyre condition analysis
US10859468B2 (en) 2013-10-24 2020-12-08 Wheelright Limited Method and device for tyre condition analysis
CN104634248A (en) * 2015-02-04 2015-05-20 西安理工大学 Revolving shaft calibration method under binocular vision
CN106289097A (en) * 2015-06-24 2017-01-04 住友橡胶工业株式会社 Tire tread process for measuring shape and tire tread shape measuring apparatus
JP2017009483A (en) * 2015-06-24 2017-01-12 住友ゴム工業株式会社 Method and device for measuring shape of tread
CN106289097B (en) * 2015-06-24 2020-04-21 住友橡胶工业株式会社 Method and apparatus for measuring tire surface shape
CN110398214A (en) * 2019-08-01 2019-11-01 桂林梵玛科机械有限公司 Carcass outer profile size method for fast measuring

Similar Documents

Publication Publication Date Title
JP2008185511A (en) Tire rro measurement method and its device
JP5116537B2 (en) Tire appearance inspection device
US9672630B2 (en) Contour line measurement apparatus and robot system
JP5745178B2 (en) Three-dimensional measurement method, apparatus and system, and image processing apparatus
US10113867B2 (en) Device and method for three-dimensional reconstruction of a scene by image analysis
TWI471542B (en) Tire shape inspection device and tire shape inspection method
US20030160970A1 (en) Method and apparatus for high resolution 3D scanning
JP5373676B2 (en) Tire shape measuring method and shape measuring apparatus
TW201250201A (en) Tire surface shape measuring device and tire surface shape measuring method
JP2003240521A (en) Method and apparatus for inspection of external appearance and shape of specimen
WO2017146202A1 (en) Three-dimensional shape data and texture information generation system, photographing control program, and three-dimensional shape data and texture information generation method
JP6848385B2 (en) 3D shape measuring device
TWI521471B (en) 3 - dimensional distance measuring device and method thereof
JPWO2014002725A1 (en) Three-dimensional measurement method, apparatus and system, and image processing apparatus
JP2008241643A (en) Three-dimensional shape measuring device
JP2009115512A (en) Article inspection method
JP4419570B2 (en) 3D image photographing apparatus and method
JP2005148010A (en) Method and device for detecting shape and darkness of analyte
JPH1038533A (en) Instrument and method for measuring shape of tire
JP2007093412A (en) Three-dimensional shape measuring device
JP5555049B2 (en) Tire inspection device
JP2009229439A (en) System and method for measuring three-dimensional geometry
JP2019032600A (en) Three-dimensional image generation device, three-dimensional image generation method, and three-dimensional image generation program
JP2011158386A (en) Non-contact three-dimensional measuring apparatus and method
JP2007240197A (en) Three-dimensional shape measuring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091210

A131 Notification of reasons for refusal

Effective date: 20110823

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20111024

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206