JPH03131706A - Three-dimensional position measuring instrument - Google Patents

Three-dimensional position measuring instrument

Info

Publication number
JPH03131706A
JPH03131706A JP27123789A JP27123789A JPH03131706A JP H03131706 A JPH03131706 A JP H03131706A JP 27123789 A JP27123789 A JP 27123789A JP 27123789 A JP27123789 A JP 27123789A JP H03131706 A JPH03131706 A JP H03131706A
Authority
JP
Japan
Prior art keywords
slit
image
light
point
slit light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27123789A
Other languages
Japanese (ja)
Other versions
JP2809348B2 (en
Inventor
Keiichi Kenmochi
圭一 見持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1271237A priority Critical patent/JP2809348B2/en
Publication of JPH03131706A publication Critical patent/JPH03131706A/en
Application granted granted Critical
Publication of JP2809348B2 publication Critical patent/JP2809348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To speed up processing by providing a slit light projection device which projects slit light in a space wherein an object is present and measuring the three-dimensional position of the object according to images obtained from two image pickup devices. CONSTITUTION:Images of the object 3 are picked up by TV cameras 1 and 2 and the slit projection device 6 projects the horizontal slit light 7 to irradiate a part 8 on the object 3 with the light. In a slit-light OFF state, images are picked up by the TV cameras 1 and 2 and in a slit-light ON state, an image is picked up by the TV camera 1. A difference circuit 21 extracts a slit image and a maximum and minimum value detecting circuit 23 finds the maximum value ymax and minimum value ymin of the depth (y) of the slit image. A correspondence retrieval circuit 16 determines the range of a corresponding search on a horizontal scanning line from data on the depth ymax and ymin and a three-dimensional coordinate calculating circuit 17 calculates the coordinates.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば、移動ロボット用の視覚センサや無人
搬送車の障害物検出センサ等に適用される両眼立体視法
により物体の3次元位置を計測する3次元位置計測装置
Jこ関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is a method for detecting objects in three dimensions using binocular stereoscopic viewing, which is applied to, for example, visual sensors for mobile robots and obstacle detection sensors for automatic guided vehicles. This relates to a three-dimensional position measuring device J that measures position.

〔従来の技術〕[Conventional technology]

物体の3次元位置を非接触で計測する装置として、両眼
立体視法が知られている。これは、第4図に示すように
、2台のテレビカメラ1.2をそれぞれ光軸がxy平面
上にあり、かつy軸と平行になるように設置して対象物
3を撮像し、これらのテレビカメラ1.2から得られる
画像信号に基づいて対象物3の3次元位置を求める装置
である。
Binocular stereopsis is known as a device for measuring the three-dimensional position of an object in a non-contact manner. As shown in Fig. 4, two television cameras 1.2 are installed so that their optical axes are on the xy plane and parallel to the y axis, and the object 3 is imaged. This is a device that determines the three-dimensional position of an object 3 based on an image signal obtained from a television camera 1.2.

即ち、第4図の構成で、対象物3を撮像すると、第5図
に示すように対象物3上の点Pは、それぞれのテレビカ
メラ1.2で得られる画像IL e IR上では、点p
L(xL、yl)、点pR(χn e yR)に結像さ
れる。従って、点Pの座標のうち、y座標、つまり奥行
きLA=dは次式で与えられる。
That is, when the object 3 is imaged with the configuration shown in FIG. 4, the point P on the object 3 becomes a point P on the image IL e IR obtained by each television camera 1. p
L(xL, yl), the image is formed on the point pR(χn e yR). Therefore, among the coordinates of point P, the y coordinate, that is, the depth LA=d, is given by the following equation.

さらに必要ならばx、z座標も単純な幾何学的性質ζこ
より計算できる。ここに4はy軸であり、かつテレビカ
メラlの光軸であり、5はテレビカメラ2の光軸、L、
Rはテレビカメラ1.2の撮像レンズ中心であり、fは
、それらのレンズの焦点距離である。又、CRICLは
テレビカメラ1.2で得られる画像’L*工Rの中心位
置であり(xL * yt、)1(xn + yn )
  はそれらの画像上ζことうた座標軸である。
Furthermore, if necessary, the x and z coordinates can also be calculated from simple geometric properties ζ. Here, 4 is the y-axis and the optical axis of the television camera l, and 5 is the optical axis of the television camera 2, L,
R is the center of the imaging lenses of the television camera 1.2, and f is the focal length of those lenses. In addition, CRICL is the center position of the image 'L * R obtained by the TV camera 1.2 (xL * yt,) 1 (xn + yn)
is the coordinate axis ζ on those images.

テレビカメラIから得られる画像IL上の点Pの像J)
LJこ対応するテレビカメラ2から得られる画像IR上
の像pRを探すための方法として、相関法、粗密探索、
弛緩法や動的計画法などが用いられているが、何れの方
法においても、第6図に示すように画像IL上の特徴点
a、を含む水平走査線ノLに対応する画像IR上の水平
走査線IL上で、点a。
Image J) of point P on image IL obtained from television camera I
As a method for searching for the image pR on the image IR obtained from the television camera 2 corresponding to LJ, there are correlation methods, coarse-grained search,
Relaxation methods, dynamic programming methods, etc. are used, but in either method, as shown in FIG. Point a on the horizontal scanning line IL.

1こ対応する点を探索するようにしている。I try to search for one corresponding point.

従って第6図で点町に対応する点はその点a。Therefore, the point corresponding to Dotcho in Figure 6 is point a.

が存在するエツジの特徴が良く似ているエツジ上の点と
して、点す、が選ばれる。ここでエツジとは画像上で明
るさが急変する部分であり、対象物の輪郭や稜に対応す
る部分であり、対応付けのための特徴点となる。
A point is selected as a point on an edge that has similar characteristics to the edge on which it exists. Here, an edge is a part on an image where the brightness changes suddenly, and corresponds to the outline or ridge of an object, and serves as a feature point for association.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第4図〜第6図で説明した従来の3次元位置計測装置で
問題きなるのは、第6図で点amに対応する点を画像I
R上で探すとき、水平走査線ノRの左端から右端才でに
含まれるすべての特徴点を調べる必要があることである
The problem with the conventional three-dimensional position measuring device explained in FIGS. 4 to 6 is that the point corresponding to point am in FIG.
When searching on R, it is necessary to examine all feature points included from the left end to the right end of the horizontal scanning line R.

これは、対象物からテレビカメラまでの距離が不明であ
ることに起因する。
This is due to the fact that the distance from the object to the television camera is unknown.

このように、従来は、水平走査線IL上のすべての特徴
点を調べる必要があるので、処理時間が極めて大きくな
り、実用性に乏しい。
As described above, in the conventional method, it is necessary to check all the feature points on the horizontal scanning line IL, which results in an extremely long processing time and is impractical.

本発明は、上述した問題点を解決すべくなされたもので
あり、本発明の課題は、あらかじめ、対象物が存在する
空間を、別の手段を用いて限定することにより、点a、
に対応する点を水平走査線IR上で探すとき、その探索
範囲が限定でき、その結果、処理の高速化が図れる3次
元位置計測装置を提供することができる。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to limit the space in which the object exists using another means, so that the point a,
When searching for a point corresponding to the horizontal scanning line IR on the horizontal scanning line IR, the search range can be limited, and as a result, it is possible to provide a three-dimensional position measuring device that can speed up the processing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による3次元位置計測装置は、対象物を撮像する
第1と第2の2つの撮像装置を有し、前記2つの撮像装
置から得られる2枚の画像に基づいて前記対象物の3次
元位置を計測する装置において、前記対象物を含む空間
1こ向けてスリット光を投光するスリット光投光装置を
具備してなることを特徴とする。
A three-dimensional position measuring device according to the present invention includes two imaging devices, a first and a second imaging device, that capture images of a target object, and calculates the three-dimensional position of the target object based on two images obtained from the two imaging devices. The apparatus for measuring a position is characterized in that it includes a slit light projecting device that projects a slit light toward a space 1 containing the object.

即ち、本発明においては、スリット光を対象物を含む空
間に投光することにより、前記2枚の画像間で互いに対
応する特徴点を対応付けるための探索範囲を限定するよ
うになされている。
That is, in the present invention, the search range for associating mutually corresponding feature points between the two images is limited by projecting slit light into a space containing the object.

〔作用〕[Effect]

本発明によれば、スリット光投光装置力Sら対象物を含
む空間に投光されたスリット光をいづれか一方のテレビ
カメラでとらえると、3角測量の原理で、対象物面上の
スリット像の各点の位置の奥行きが求められる。この奥
行きの中で、テレビカメラに対して最も近い奥行きと最
も遠い奥行きを調べることlとよって、両眼立体視で対
応探索における水平走査線上の探索範囲を制限すること
ができる。
According to the present invention, when the slit light projected from the slit light projector S into the space containing the object is captured by one of the television cameras, the slit image on the object surface is captured by the principle of triangulation. The depth of each point is determined. Among these depths, by checking the closest depth and the farthest depth to the television camera, it is possible to limit the search range on the horizontal scanning line in the correspondence search using binocular stereoscopic vision.

〔実施例〕〔Example〕

第1図は本発明の一実施例に係る3次元位置計測装置の
構成図であり、対象物3は撮像手段であるテレビカメラ
1.2によって撮像され、さらにスリット光投光装置6
から水平スリット光7が投影され、対象物3上にそのス
リット光の照射部分8が生じる。
FIG. 1 is a configuration diagram of a three-dimensional position measuring device according to an embodiment of the present invention, in which an object 3 is imaged by a television camera 1.2 which is an imaging means, and a slit light projector 6.
A horizontal slit light 7 is projected from the horizontal slit light 7, and an irradiation portion 8 of the slit light is generated on the object 3.

尚、ここでは、テレビカメラ1.2は、従来の技術とし
て第4,5図で説明したように、各々の光軸は、同一水
平面上にあり、かつ、平行ζこなるように設けているが
、IP!flこ、このように配置しない場合でも、撮像
して得られた画像を補正することにより、同一の結果が
得られるので、配置lこついての制限はない。又、水平
スリット光7についても、同様のことが言える。
Here, the television cameras 1.2 are arranged so that their respective optical axes are on the same horizontal plane and parallel to each other, as explained in FIGS. 4 and 5 as a conventional technique. But, IP! Even if the elements are not arranged in this way, the same result can be obtained by correcting the captured image, so there is no particular restriction on the arrangement. Moreover, the same can be said about the horizontal slit light 7.

スリット光投光装#6は、ホストコンピュータ18の指
令により、スリット光0N10 F F回路I9を通し
てオン−オフ可能である。
The slit light projector #6 can be turned on and off through the slit light 0N10FF circuit I9 according to commands from the host computer 18.

テレビカメラ1.2から得られる画像信号は、〜Φ変換
回路10i11によりディジタル信号(ζ変換され画像
メモリI O、11に格納される。
The image signal obtained from the television camera 1.2 is converted into a digital signal (ζ) by the ~Φ conversion circuit 10i11 and stored in the image memory IO,11.

特徴抽出回路12.13は画像信号から明るさの変化を
検出し、対象物3の輪郭や稜1ζ当たるエツジを特徴点
として抽出するものである。
The feature extraction circuits 12 and 13 detect changes in brightness from the image signal, and extract edges that correspond to the outline and edge 1ζ of the object 3 as feature points.

対応探索回路z6は、特徴抽出回路14.15によって
得られる各々の画像上の特徴点同志を各水平走査線毎に
対応付ける回路であり、I7は、対応付けされた特徴点
から(1)式により奥行きを計算する3次元座標計算回
路である。
The correspondence search circuit z6 is a circuit that associates the feature points on each image obtained by the feature extraction circuits 14 and 15 for each horizontal scanning line, and the correspondence search circuit I7 searches the matched feature points using equation (1). This is a three-dimensional coordinate calculation circuit that calculates depth.

これらの処理はスリット光投光装置6がオフのときに行
われる。一方、スリット光がオンの時は、んの変換器I
Qの出力であるディジタル化された画像信号は画像メモ
リ20に格納され、そのデータは画像メモリ12に格納
されているスリット光がオフの時に得られた画像と、差
分回路2!で両者の差がとられる。
These processes are performed when the slit light projection device 6 is off. On the other hand, when the slit light is on, the converter I
The digitized image signal which is the output of Q is stored in the image memory 20, and the data is stored in the image memory 12 and the image obtained when the slit light is off, and the difference circuit 2! The difference between the two is calculated.

中心検出回路22は、差分回路2Iの出力であるスリッ
ト像だけが残った画像において、各垂直走査線毎にスリ
ット像の中心位置を計算するものである。
The center detection circuit 22 calculates the center position of the slit image for each vertical scanning line in the image in which only the slit image remains, which is the output of the difference circuit 2I.

さらに23は、各垂直走査線毎の中心位置から3角測量
の原理に基づき、スリット像の各点の奥行きを求めた後
、奥行きの最大値と最小値を求め、対応探索回路I6に
、水平走査線上における探索範囲を出力する最大値・最
小値検出回路である。
Furthermore, 23 calculates the depth of each point of the slit image from the center position of each vertical scanning line based on the principle of triangulation, then calculates the maximum and minimum values of the depth, and sends the horizontal This is a maximum value/minimum value detection circuit that outputs a search range on a scanning line.

次Iここのように構成された3次元計測装置の作用につ
いて述べる◇ まず、スリット光オフの状態でテレビカメラl。
Next I will describe the operation of the three-dimensional measuring device configured as shown below. First, with the slit light turned off, a television camera is set.

2で画像を撮像する。次に、スリット光をオンにしてテ
レビカメラlで画像を撮像し、画像メモリ20を経由し
て差分回路2Iに送られる。そこで画像メモリI2に格
納されているスリット光オフの時の画像との差がとられ
る。すると、第2図jζ示すようにスリット像だけが残
る。
2 to capture an image. Next, the slit light is turned on and an image is captured by the television camera l, which is sent to the differential circuit 2I via the image memory 20. Therefore, the difference between the image and the image stored in the image memory I2 when the slit light is off is taken. Then, only the slit image remains as shown in FIG. 2jζ.

ここに、スリット光はz=−h  の平面と同一平面上
にある。
Here, the slit light is on the same plane as the plane of z=-h.

中心検出回路22において、この画像のスリット像と交
叉する各垂直走査線JV上で、そのスリット像の中心位
置q(xL、yJを計算する。ここに、点Qは点qに対
応する対象物上の点である。
The center detection circuit 22 calculates the center position q (xL, yJ) of the slit image on each vertical scanning line JV that intersects with the slit image of this image. Here, the point Q is the object corresponding to the point q. This is the point above.

点Qの奥行き(y座標)yは次式で求まる。The depth (y coordinate) y of point Q is determined by the following equation.

y= −f−一        ・・・・・・・・・(
2)L スリット像の各点で奥行きyを求め、その中の最大値Y
maxと最小値’!minを最大値・最小値検出回路2
3で求める。
y= −f−1 ・・・・・・・・・(
2) Find the depth y at each point of the L slit image, and find the maximum value Y
max and minimum value'! Maximum value/minimum value detection circuit 2
Find it in 3.

これらのデータは対応探索回路I6に送られる。These data are sent to the correspondence search circuit I6.

一方、スリット光オフの時に得た画像メモリ12.13
4こ格納された画像は、特徴抽出回路14.15で明る
さの変化する部分を特徴点として検出して対応探索回路
16に送られる。
On the other hand, image memory 12.13 obtained when the slit light was off.
In the four stored images, feature extraction circuits 14 and 15 detect portions where brightness changes as feature points, and the detected portions are sent to a correspondence search circuit 16.

対応探索回路16で奥行きYmaxとymloのデータ
から水平走査線上での対応探索の範囲が決定される。
The correspondence search circuit 16 determines the range of correspondence search on the horizontal scanning line from the depth Ymax and ymlo data.

この方法は、第3図において、画像IL 上の特徴点p
L  に対応する点を画僧工R上で探す場合、考慮すべ
き奥行き方向の空間はymin≦y≦3’maxである
から、点P、から点P、までの間に対象物上の点Pがあ
ると判断され、従って、画像IR上ではpRl(XH≦
p4  のどこかlこ対応する点J)Rが存在するであ
る。
In this method, the feature point p on the image IL is shown in FIG.
When searching for the point corresponding to L on the artist R, the space in the depth direction to be considered is ymin≦y≦3'max, so there are points on the object between point P and point P. Therefore, on the image IR, pRl(XH≦
Somewhere in p4, there exists a corresponding point J)R.

C(7)式でjp * f/ymin 、ノb−f/y
maxは点pLの位置に不変であり、すべての水平走査
線上の対応探索に共通である◇ このようlこ点pLに対して探索範囲はpH1≦XH≦
pR2に限定されるので水平走査線!R上のすべての範
囲を探す必要がなくなる。
In C(7) formula, jp * f/ymin, no b-f/y
max is unchanged at the position of point pL and is common to all correspondence searches on horizontal scanning lines ◇ In this way, the search range for point pL is pH1≦XH≦
Horizontal scanning line because it is limited to pR2! There is no need to search all ranges on R.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明1こよれば、対象物を撮像す
る第1、第2の撮像手段と、これらの撮像手段により得
られたそれぞれの画像信号に基づいて、前記対象物の3
次元位置を計測する装置において、対象物を含む空間に
スリット光を投光する装置を設ける構成にしたので、従
来の両眼立体視法だけでは、2枚の画像の各々の特徴点
同志の対応付けにおいて、水平走査線上の探索範囲が広
く処理時間が極めて大であったが、スリット光を用いた
計測により、対象物を含む空間の奥行き方向の最小値と
最大値が分かるので、その結果、探M範囲を小さく制限
でき、処理時間が大@IC短縮された3次元位置計測装
置が提供できる。
As described above, according to the present invention, three images of the object are obtained based on the first and second imaging means for imaging the object and the respective image signals obtained by these imaging means.
Since the device for measuring dimensional position is equipped with a device that projects slit light into the space containing the object, conventional binocular stereopsis alone cannot match the feature points of each of the two images. Although the processing time was extremely long due to the wide search range on the horizontal scanning line, measurement using slit light allows the minimum and maximum values in the depth direction of the space containing the object to be determined. A three-dimensional position measuring device can be provided in which the search M range can be limited to a small size and the processing time can be greatly shortened @IC.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る全体の構成図、第2
図は同実施例におけるスリット光を用いた計測の説明図
、M3図は同実施例における探索範囲の制限の作用説明
図、第4図は従来の3次元計測装置の構成図、第5図お
よび第6図は、それぞれ従来の3次元計測装習の作用説
明図である1、2・・・テレビカメラ、3・・・対象物
、6・・・スリット光投光装置。
FIG. 1 is an overall configuration diagram according to an embodiment of the present invention, and FIG.
The figure is an explanatory diagram of measurement using slit light in the same embodiment, Figure M3 is an explanatory diagram of the effect of limiting the search range in the same embodiment, Fig. 4 is a configuration diagram of a conventional three-dimensional measuring device, and Figs. FIG. 6 is an explanatory diagram of the operation of conventional three-dimensional measurement training, respectively. 1, 2...TV camera, 3...Object, 6...Slit light projector.

Claims (1)

【特許請求の範囲】[Claims] 対象物を撮像する第1と第2の2つの撮像装置を有し、
前記2つの撮像装置から得られる2枚の画像に基づいて
前記対象物の3次元位置を計測する装置において、前記
対象物を含む空間に向けてスリット光を投光するスリッ
ト光投光装置を具備してなることを特徴とする3次元位
置計測装置。
It has two imaging devices, a first and a second imaging device, for imaging a target object,
A device for measuring a three-dimensional position of the object based on two images obtained from the two imaging devices, comprising a slit light projection device that projects a slit light toward a space including the object. A three-dimensional position measuring device characterized by:
JP1271237A 1989-10-18 1989-10-18 3D position measuring device Expired - Fee Related JP2809348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1271237A JP2809348B2 (en) 1989-10-18 1989-10-18 3D position measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1271237A JP2809348B2 (en) 1989-10-18 1989-10-18 3D position measuring device

Publications (2)

Publication Number Publication Date
JPH03131706A true JPH03131706A (en) 1991-06-05
JP2809348B2 JP2809348B2 (en) 1998-10-08

Family

ID=17497268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1271237A Expired - Fee Related JP2809348B2 (en) 1989-10-18 1989-10-18 3D position measuring device

Country Status (1)

Country Link
JP (1) JP2809348B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526640A (en) * 1991-07-25 1993-02-02 Toshiba Corp Lead shape measuring device
JP2007286048A (en) * 2006-03-23 2007-11-01 Nissan Motor Co Ltd System and method of detecting work position
JP2008185511A (en) * 2007-01-31 2008-08-14 Bridgestone Corp Tire rro measurement method and its device
JP2012093104A (en) * 2010-10-25 2012-05-17 Yaskawa Electric Corp Shape measuring device, robot system, and shape measuring method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6478104A (en) * 1987-09-19 1989-03-23 Toyota Central Res & Dev Three-dimensional coordinate measuring instrument

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6478104A (en) * 1987-09-19 1989-03-23 Toyota Central Res & Dev Three-dimensional coordinate measuring instrument

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526640A (en) * 1991-07-25 1993-02-02 Toshiba Corp Lead shape measuring device
JP2007286048A (en) * 2006-03-23 2007-11-01 Nissan Motor Co Ltd System and method of detecting work position
JP2008185511A (en) * 2007-01-31 2008-08-14 Bridgestone Corp Tire rro measurement method and its device
JP2012093104A (en) * 2010-10-25 2012-05-17 Yaskawa Electric Corp Shape measuring device, robot system, and shape measuring method

Also Published As

Publication number Publication date
JP2809348B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
US6031941A (en) Three-dimensional model data forming apparatus
US5757674A (en) Three-dimensional position detecting apparatus
US9990739B1 (en) Method and device for fisheye camera automatic calibration
JPS60200111A (en) Apparatus for recognizing three-dimensional object
Li Real-time spherical stereo
JP2559939B2 (en) Three-dimensional information input device
JP2002099902A (en) Image processing device for measuring three-dimensional information of object through binocular stereoscopic vision, its method, and storage medium with measurement program stored therein
JPH07181024A (en) Method and apparatus for measuring three-dimensional profile
JPH03131706A (en) Three-dimensional position measuring instrument
Pachidis et al. Pseudostereo-vision system: A monocular stereo-vision system as a sensor for real-time robot applications
JP4918675B2 (en) 3D coordinate measurement method
JP3221384B2 (en) 3D coordinate measuring device
JP3340599B2 (en) Plane estimation method
JPH0875454A (en) Range finding device
US20030190073A1 (en) Image processing device for stereo image processing
JP2970835B2 (en) 3D coordinate measuring device
JP3655065B2 (en) Position / attitude detection device, position / attitude detection method, three-dimensional shape restoration device, and three-dimensional shape restoration method
JPS63217214A (en) Three-dimensional position measuring instrument
JP2000028355A (en) Three-dimensional image processing device
Guo Ground-constrained motion target tracking for monocular sequence images
JPH1137736A (en) Method and device for measuring 3-dimentional shape
JPH04171586A (en) Pattern retrieving method
Boutteau et al. An omnidirectional stereoscopic system for mobile robot navigation
JPH05329793A (en) Visual sensor
JP2626780B2 (en) 3D image measurement method by segment correspondence

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees