JP5367292B2 - Surface inspection apparatus and surface inspection method - Google Patents

Surface inspection apparatus and surface inspection method Download PDF

Info

Publication number
JP5367292B2
JP5367292B2 JP2008090193A JP2008090193A JP5367292B2 JP 5367292 B2 JP5367292 B2 JP 5367292B2 JP 2008090193 A JP2008090193 A JP 2008090193A JP 2008090193 A JP2008090193 A JP 2008090193A JP 5367292 B2 JP5367292 B2 JP 5367292B2
Authority
JP
Japan
Prior art keywords
light
detection
measured
linear
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008090193A
Other languages
Japanese (ja)
Other versions
JP2009244052A (en
Inventor
賢吾 田中
泰志 林
浩一 曾根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Electric Co Ltd
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Sky Aluminum Corp filed Critical Furukawa Electric Co Ltd
Priority to JP2008090193A priority Critical patent/JP5367292B2/en
Publication of JP2009244052A publication Critical patent/JP2009244052A/en
Application granted granted Critical
Publication of JP5367292B2 publication Critical patent/JP5367292B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface inspection apparatus and a surface inspection method, capable of detecting defects in the wide range of the surface of a material to be inspected. <P>SOLUTION: The surface inspection apparatus 10 includes: a light projecting part 11 for irradiating a light; a light condensing optical part 12 for irradiating a detection light 31 toward the surface 2 of the material to be measured 1, by converting the light to a rectangular shape having the first side and a second side and enlarging the first side part a and scaling down the second side part b, to form the line shaped detection light 31; a detection part 13 for forming the detection light 31 reflected from the surface 2 of the material to be measured as a line-shaped receiving light image 40; and an image processing part 14 for determining the deformed part 49 of the line-shaped receiving light 40, received by the detection part 13 to be the defect 50 of the surface 2 of the material to be measured 1. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、表面検査装置および表面検査方法に関し、特に被検査体の表面の欠陥を検査する表面検査装置および表面検査方法に関する。   The present invention relates to a surface inspection apparatus and a surface inspection method, and more particularly to a surface inspection apparatus and a surface inspection method for inspecting a surface defect of an object to be inspected.

被検査体として例えば回転ドラムの表面の検査は、ドラムの表面に対して光を照射して、その反射光をカメラで取り込んで画像処理をすることにより、ドラムの表面の欠陥の検査を行っている(特許文献1を参照)。
特開2006−208184号公報
As an inspection object, for example, the surface of a rotating drum is inspected for defects on the surface of the drum by irradiating the surface of the drum with light, capturing the reflected light with a camera, and performing image processing. (See Patent Document 1).
JP 2006-208184 A

ところが、特許文献1に開示されている欠陥検査方法では、表面の1μm程度の大きさの凹凸状の欠陥を検査する場合に、例えば1000万画素のカメラを使用したとしても、表面の凹凸状の欠陥は最大3mm×3mmの矩形の検査範囲でしか検出することができない。現実には、検査の際にノイズ等の影響を考慮すると、表面の凹凸状の欠陥を検査できる範囲はもっと狭くなってしまう。
そこで、本発明は上記課題を解消するために、広範囲で被検査体の表面の欠陥を検出することができる表面検査装置および表面検査方法を提供することを目的とする。
However, in the defect inspection method disclosed in Patent Document 1, when inspecting an uneven defect having a size of about 1 μm on the surface, even if a camera with 10 million pixels is used, for example, Defects can only be detected within a rectangular inspection range of up to 3 mm × 3 mm. In reality, when the influence of noise or the like is taken into consideration at the time of inspection, the range in which the surface irregularities can be inspected becomes even narrower.
Accordingly, an object of the present invention is to provide a surface inspection apparatus and a surface inspection method capable of detecting defects on the surface of an object to be inspected over a wide range in order to solve the above problems.

上記課題を解消するために、本発明の第1の態様に係る表面検査装置は、被測定体の表面の検査をする表面検査装置であって、
光を照射する投光部と、
前記光を第1辺部と第2辺部を有する矩形形状の光に変えて前記第1辺部を拡大しかつ前記第2辺部を縮小して線状の検出用光に形成して前記検出用光を前記被測定体の表面に向けて照射する集光光学部と、
前記被測定体の表面から反射した前記検出用光を線状に形成した受光像として結像するための検出部と、
前記検出部で受光した前記線状に形成した受光像の変形部分を前記被測定体の表面の欠陥とする画像処理部と、
を備え、
前記検出部は、前記線状に形成した受光像を結像するスクリーンと、前記スクリーンに受光された前記線状に形成した受光像を画像として取り込むカメラと、を有し、
矩形形状を有する前記検出用光の前記第2辺部の長さが、前記集光光学部から前記被測定体の表面をへて、前記スクリーンに到達するまで順次減少するとともに、
前記被測定体の表面から反射した前記検出用光は、直接前記スクリーンに照射されることを特徴とする。
本発明の第2の態様に係る表面検査装置は、本発明の第1の態様に係る表面検査装置において、レンズまたはレンズ機構からなる集光手段を複数有する前記集光光学部の内で前記被測定体に最も近い前記集光手段に入射する前の前記検出用光の前記第2辺部をbとし、前記被測定体の表面の照射対象部位に対して照射される前記検出用光の前記第2辺部をb1とし、前記スクリーン上に結像した前記受光像の前記第2辺部をb2としたとき、
bの長さ>b1の長さ>b2の長さ
の関係を満たしていることを特徴とする。
本発明の第3の態様に係る表面検査装置は、本発明の第1または2の態様に係る表面検査装置において、前記矩形形状を有する前記検出用光の前記第1辺部の長さが、前記集光光学部から前記被測定体の表面をへて、前記スクリーンに到達するまで順次増加することを特徴とする。
本発明の第4の態様に係る表面検査装置は、本発明の第3の態様に係る表面検査装置において、レンズまたはレンズ機構からなる集光手段を複数有する前記集光光学部の内で前記被測定体に最も近い前記集光手段に入射する前の前記検出用光の前記第1辺部をaとし、前記被測定体の表面の照射対象部位に対して照射される前記検出用光の前記第1辺部をa1とし、前記スクリーン上に結像した前記受光像の前記第1辺部をa2としたとき、
a2の長さ>a1の長さ>aの長さ
の関係を満たしていることを特徴とする。
本発明の第5の態様に係る表面検査装置は、本発明の第1乃至4のいずれか1つの態様に係る表面検査装置において、前記画像処理部が、前記カメラで取り込んだ前記線状に形成した受光像の線状データからエッジ位置のデータを得て、前記エッジ位置のデータが、前記エッジ位置のデータから得られる近似曲線からずれている量により、前記被測定体の表面の前記欠陥を判定することを特徴とする。
In order to solve the above problem, the surface inspection apparatus according to the first aspect of the present invention is a surface inspection apparatus for inspecting the surface of a measurement object,
A light projecting unit that emits light;
The light is changed to a rectangular light having a first side and a second side, the first side is enlarged, and the second side is reduced to form a linear detection light. A condensing optical unit for irradiating detection light toward the surface of the object to be measured;
A detection unit for forming the detection light reflected from the surface of the measurement object as a light-receiving image formed in a linear shape;
An image processing unit having a deformed portion of the linearly received light image received by the detection unit as a defect on the surface of the measurement object;
With
The detection unit includes a screen that forms the light reception image formed in the linear shape, and a camera that captures the light reception image formed in the linear shape received by the screen as an image,
The length of the second side part of the detection light having a rectangular shape is sequentially reduced from the condensing optical part through the surface of the measured object until it reaches the screen,
The detection light reflected from the surface of the object to be measured is directly irradiated onto the screen.
The surface inspection apparatus according to a second aspect of the present invention is the surface inspection apparatus according to the first aspect of the present invention , wherein the subject is within the condensing optical unit having a plurality of condensing means comprising lenses or lens mechanisms. The second side portion of the detection light before entering the condensing means closest to the measurement body is b, and the detection light irradiated to the irradiation target portion on the surface of the measurement object is b. When the second side is b1, and the second side of the received light image formed on the screen is b2,
The relationship of length of b> length of b1> length of b2 is satisfied.
The surface inspection apparatus according to the third aspect of the present invention is the surface inspection apparatus according to the first or second aspect of the present invention, wherein the length of the first side portion of the detection light having the rectangular shape is It increases sequentially from the condensing optical part through the surface of the object to be measured until it reaches the screen.
The surface inspection apparatus according to a fourth aspect of the present invention is the surface inspection apparatus according to the third aspect of the present invention , wherein the subject is within the condensing optical unit having a plurality of condensing means comprising a lens or a lens mechanism. The first side portion of the detection light before entering the light condensing means closest to the measurement body is defined as a, and the detection light irradiated to the irradiation target site on the surface of the measurement target When the first side is a1, and the first side of the received light image formed on the screen is a2,
The relationship of length of a2> length of a1> length of a is satisfied.
A surface inspection apparatus according to a fifth aspect of the present invention is the surface inspection apparatus according to any one of the first to fourth aspects of the present invention, wherein the image processing unit is formed in the linear shape captured by the camera. The edge position data is obtained from the linear data of the received light image, and the defect on the surface of the object to be measured is determined by the amount that the edge position data is deviated from the approximate curve obtained from the edge position data. It is characterized by determining.

本発明の第6の態様に係る表面検査装置は、被測定体の表面の検査をする表面検査装置であって、
光を照射する投光部と、
前記光を第1辺部と第2辺部を有する矩形形状の光に変えて前記第1辺部を拡大しかつ前記第2辺部を縮小して線状の検出用光に形成して前記検出用光を前記被測定体の表面に向けて照射する集光光学部と、
前記被測定体の表面から反射した前記検出用光を線状に形成した受光像として結像するための検出部と、
前記検出部で受光した前記線状に形成した受光像の変形部分を前記被測定体の表面の欠陥とする画像処理部と、
を備え、
前記画像処理部は、前記線状に形成した前記受光像の線状データから前記線状の両側の複数のエッジ位置のデータを取得し、前記線状の片側毎に、取得した前記複数のエッジ位置のデータから直線状の近似線を算出し、各前記エッジ位置のデータに対して当該エッジ位置のデータと前記直線状の近似線との距離を算出し、算出した前記線状の両側の前記複数のエッジ位置のデータに対する距離のすべての値を合計した合計値により、前記被測定体の表面の前記欠陥を判定することを特徴とする。
本発明の第7の態様に係る表面検査装置は、本発明の第6の態様に係る表面検査装置において、前記検出部が、前記線状に形成した受光像を結像するスクリーンと、前記スクリーンに受光された前記線状に形成した受光像を画像として取り込むカメラと、を有することを特徴とする。
本発明の第8の態様に係る表面検査装置は、本発明の第6の態様に係る表面検査装置において、前記検出部が、前記線状に形成した受光像を画像として取り込むカメラであることを特徴とする。
A surface inspection apparatus according to a sixth aspect of the present invention is a surface inspection apparatus that inspects the surface of a measurement object,
A light projecting unit that emits light;
The light is changed to a rectangular light having a first side and a second side, the first side is enlarged, and the second side is reduced to form a linear detection light. A condensing optical unit for irradiating detection light toward the surface of the object to be measured;
A detection unit for forming the detection light reflected from the surface of the measurement object as a light-receiving image formed in a linear shape;
An image processing unit having a deformed portion of the linearly received light image received by the detection unit as a defect on the surface of the measurement object;
With
The image processing unit acquires data of a plurality of edge positions on both sides of the linear shape from linear data of the light reception image formed in the linear shape, and the acquired plurality of edges for each one side of the linear shape A linear approximate line is calculated from the position data, the distance between the edge position data and the linear approximate line is calculated for each edge position data, and the calculated values on both sides of the calculated linear line are calculated. The defect on the surface of the object to be measured is determined based on a total value obtained by summing all the values of the distances to the data of a plurality of edge positions.
The surface inspection apparatus according to a seventh aspect of the present invention is the surface inspection apparatus according to the sixth aspect of the present invention, wherein the detection unit forms a screen on which the linearly received light image is formed, and the screen And a camera that captures, as an image, a light-receiving image formed in a linear shape that is received by the camera.
The surface inspection apparatus according to an eighth aspect of the present invention is the surface inspection apparatus according to the sixth aspect of the present invention, wherein the detection unit is a camera that captures the linearly formed light reception image as an image. Features.

本発明の第9の態様に係る表面検査装置は、本発明の第1乃至8のいずれか1つの態様に係る表面検査装置において、前記被測定体の表面が平面であることを特徴とする。
本発明の第10の態様に係る表面検査装置は、本発明の第1乃至8のいずれか1つの態様に係る表面検査装置において、前記被測定体の表面が筒状の曲面であり、前記集光光学部は、前記検出用光を前記筒状の曲面の長手方向と前記第2辺部が平行または斜めとなるように照射することを特徴とする。
本発明の第11の態様に係る表面検査装置は、本発明の第1乃至10のいずれか1つの態様に係る表面検査装置において、前記被測定体を保持して、前記集光光学系に対する前記被測定体の位置を移動するためのステージを有することを特徴とする。
The surface inspection apparatus according to a ninth aspect of the present invention is the surface inspection apparatus according to any one of the first to eighth aspects of the present invention, wherein the surface of the object to be measured is a flat surface.
The surface inspection apparatus according to a tenth aspect of the present invention is the surface inspection apparatus according to any one of the first to eighth aspects of the present invention, wherein the surface of the object to be measured is a cylindrical curved surface, The optical optical unit irradiates the detection light such that the longitudinal direction of the cylindrical curved surface and the second side are parallel or oblique.
A surface inspection apparatus according to an eleventh aspect of the present invention is the surface inspection apparatus according to any one of the first to tenth aspects of the present invention, wherein the object to be measured is held and the light collecting optical system is It has the stage for moving the position of a to-be-measured body, It is characterized by the above-mentioned.

本発明の第1の態様に係る表面検査方法は、被測定体の表面の検査をする表面検査方法であって、
投光部は、断面が第1辺部と第2辺部を有する長方形状の光を照射し、
集光光学部が、前記投光部の前記光の前記第1辺部を拡大しかつ前記第2辺部を縮小して線状の検出用光に形成して前記検出用光を前記被測定体の表面に向けて照射し、
スクリーンとカメラとを有する検出部は、前記スクリーンによって、前記被測定体の表面から反射した前記検出用光を線状に形成した受光像として結像し、前記カメラによって、前記スクリーンに受光された前記線状に形成した受光像を画像として取り込み、
矩形形状を有する前記検出用光の前記第2辺部の長さが、前記集光光学部から前記被測定体の表面をへて、前記スクリーンに到達するまで順次減少するとともに、
前記被測定体の表面から反射した前記検出用光が、直接前記スクリーンに照射され、
画像処理部は、前記検出部で受光した前記線状に形成した受光像の変形部分を前記被測定体の表面の欠陥とすることを特徴とする。
本発明の第2の態様に係る表面検査方法は、本発明の第1の態様に係る表面検査方法において、レンズまたはレンズ機構からなる集光手段を複数有する前記集光光学部の内で前記被測定体に最も近い前記集光手段に入射する前の前記検出用光の前記第2辺部をbとし、前記被測定体の表面の照射対象部位に対して照射される前記検出用光の前記第2辺部をb1とし、前記スクリーン上に結像した前記受光像の前記第2辺部をb2としたとき、
bの長さ>b1の長さ>b2の長さ
の関係を満たしていることを特徴とする。
本発明の第3の態様に係る表面検査方法は、本発明の第1または2の態様に係る表面検査方法において、前記矩形形状を有する前記検出用光の前記第1辺部の長さが、前記集光光学部から前記被測定体の表面をへて、前記スクリーンに到達するまで順次増加することを特徴とする。
本発明の第4の態様に係る表面検査方法は、本発明の第3の態様に係る表面検査方法において、レンズまたはレンズ機構からなる集光手段を複数有する前記集光光学部の内で前記被測定体に最も近い前記集光手段に入射する前の前記検出用光の前記第1辺部をaとし、前記被測定体の表面の照射対象部位に対して照射される前記検出用光の前記第1辺部をa1とし、前記スクリーン上に結像した前記受光像の前記第1辺部をa2としたとき、
a2の長さ>a1の長さ>aの長さ
の関係を満たしていることを特徴とする。
本発明の第5の態様に係る表面検査方法は、被測定体の表面の検査をする表面検査方法であって、
投光部は、断面が第1辺部と第2辺部を有する長方形状の光を照射し、
集光光学部が、前記投光部の前記光の前記第1辺部を拡大しかつ前記第2辺部を縮小して線状の検出用光に形成して前記検出用光を前記被測定体の表面に向けて照射し、
検出部が、前記被測定体の表面から反射した前記検出用光を線状に形成した受光像として結像し、
画像処理部は、前記検出部で受光した前記線状に形成した受光像の変形部分を前記被測定体の表面の欠陥とし、
前記被測定体の表面の前記欠陥は、前記線状に形成した受光像の線状データから前記線状の両側の複数のエッジ位置のデータを取得し、その後、前記線状の片側毎に、取得した前記複数のエッジ位置のデータから直線状の近似線を算出し、各前記エッジ位置のデータに対して当該エッジ位置のデータと前記直線状の近似線との距離を算出し、その後更に、算出した前記線状の両側の前記複数のエッジ位置のデータに対する距離のすべての値を合計した合計値により判定することを特徴とする。



The surface inspection method according to the first aspect of the present invention is a surface inspection method for inspecting the surface of a measurement object,
The light projecting portion irradiates light having a rectangular shape with a cross section having a first side and a second side,
A condensing optical unit enlarges the first side of the light of the light projecting unit and reduces the second side to form linear detection light, and the detection light is measured. Irradiate towards the surface of the body,
A detection unit having a screen and a camera forms an image of the detection light reflected from the surface of the object to be measured as a linearly received light image by the screen, and is received by the screen by the camera. Capture the light-receiving image formed in the linear form as an image,
The length of the second side part of the detection light having a rectangular shape is sequentially reduced from the condensing optical part through the surface of the measured object until it reaches the screen,
The detection light reflected from the surface of the object to be measured is directly applied to the screen,
The image processing unit is characterized in that a deformed portion of the light reception image formed in the linear shape received by the detection unit is defined as a defect on the surface of the measured object.
A surface inspection method according to a second aspect of the present invention is the surface inspection method according to the first aspect of the present invention , wherein the subject is within the condensing optical unit having a plurality of condensing means comprising lenses or lens mechanisms. The second side portion of the detection light before entering the condensing means closest to the measurement body is b, and the detection light irradiated to the irradiation target portion on the surface of the measurement object is b. When the second side is b1, and the second side of the received light image formed on the screen is b2,
The relationship of length of b> length of b1> length of b2 is satisfied.
The surface inspection method according to a third aspect of the present invention is the surface inspection method according to the first or second aspect of the present invention, wherein the length of the first side portion of the detection light having the rectangular shape is It increases sequentially from the condensing optical part through the surface of the object to be measured until it reaches the screen.
A surface inspection method according to a fourth aspect of the present invention is the surface inspection method according to the third aspect of the present invention , wherein the subject is within the condensing optical unit having a plurality of condensing means comprising a lens or a lens mechanism. The first side portion of the detection light before entering the light condensing means closest to the measurement body is defined as a, and the detection light irradiated to the irradiation target site on the surface of the measurement target When the first side is a1, and the first side of the received light image formed on the screen is a2,
The relationship of length of a2> length of a1> length of a is satisfied.
A surface inspection method according to a fifth aspect of the present invention is a surface inspection method for inspecting the surface of a measurement object,
The light projecting portion irradiates light having a rectangular shape with a cross section having a first side and a second side,
A condensing optical unit enlarges the first side of the light of the light projecting unit and reduces the second side to form linear detection light, and the detection light is measured. Irradiate towards the surface of the body,
The detection unit forms an image of the detection light reflected from the surface of the measurement object as a light-receiving image formed in a linear shape,
The image processing unit has a deformed portion of the linearly received light image received by the detection unit as a defect on the surface of the measured object,
The defect on the surface of the object to be measured is obtained by acquiring data of a plurality of edge positions on both sides of the linear shape from the linear data of the light reception image formed in the linear shape. A linear approximate line is calculated from the acquired data of the plurality of edge positions, a distance between the edge position data and the linear approximate line is calculated for each of the edge position data, and then further, The determination is made based on a total value obtained by summing all the distance values for the calculated data of the plurality of edge positions on both sides of the linear shape.



本発明によれば、光の第1辺部を拡大しかつ光の第2辺部を縮小して線状の検出用光に形成して検出用光を被測定体の表面に向けて照射し、被測定体の表面から反射した検出用光を線状に形成した受光像として結像し、この線状に形成した受光像の変形部分を被測定体の表面の欠陥とするので、広範囲で被検査体の表面の欠陥を検出することができる。   According to the present invention, the first side of the light is enlarged and the second side of the light is reduced to form linear detection light, and the detection light is irradiated toward the surface of the object to be measured. Since the detection light reflected from the surface of the object to be measured is formed as a light-receiving image formed in a linear shape, and the deformed portion of the light-receiving image formed in this line is regarded as a defect on the surface of the object to be measured, A defect on the surface of the object to be inspected can be detected.

以下、図面を参照して、本発明の好ましい実施形態を詳細に説明する。
(第1実施形態)
図1は、本発明の表面検査装置の好ましい第1実施形態を示す斜視図である。
図1に示す表面検査装置10は、被測定体1の表面2の凹凸のような欠陥を検査するのに用いられる。図1に示す第1実施形態では、被測定体1の表面2は平面である。
表面検査装置10は、投光部11と、集光光学部12と、検出部13と、画像処理部14とを有する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a perspective view showing a first preferred embodiment of the surface inspection apparatus of the present invention.
A surface inspection apparatus 10 shown in FIG. 1 is used to inspect defects such as irregularities on the surface 2 of the measurement object 1. In the first embodiment shown in FIG. 1, the surface 2 of the measurement object 1 is a flat surface.
The surface inspection apparatus 10 includes a light projecting unit 11, a condensing optical unit 12, a detection unit 13, and an image processing unit 14.

図1に示す投光部11は、例えばHe−Neレーザのようなレーザ光源であり、投光部11は、断面円形状のレーザ光20を集光光学部12に対して照射する。
図1に示す集光光学部12は、投光部11と被測定体1の表面2との間に配置され、第1レンズ21と第2レンズ22を有している。第1レンズ21は、投光部11側に配置され、第2レンズ22は、被測定体1の表面2側に配置されている。投光部11と集光光学系12の光軸OP1は、被測定体1の表面2に対して角度Mだけ傾いている。
The light projecting unit 11 illustrated in FIG. 1 is a laser light source such as a He—Ne laser, for example, and the light projecting unit 11 irradiates the condensing optical unit 12 with a laser beam 20 having a circular cross section.
The condensing optical unit 12 illustrated in FIG. 1 is disposed between the light projecting unit 11 and the surface 2 of the measurement target 1 and includes a first lens 21 and a second lens 22. The first lens 21 is disposed on the light projecting unit 11 side, and the second lens 22 is disposed on the surface 2 side of the measurement object 1. The optical axis OP <b> 1 of the light projecting unit 11 and the condensing optical system 12 is inclined by an angle M with respect to the surface 2 of the measured object 1.

図2は、図1に示す表面検査装置10における光20B等を示している。
図1に示す第1レンズ21は、断面円形状のレーザ光20を断面長方形の光20Bに形成する。この断面長方形の光20Bは、図2に示すように、相対する第1辺部a、aと相対する第2辺部b、bを有している。さらに、第レンズ21は、断面長方形の光20Bの第1辺部a、aの長さを拡大し、しかも第2レンズ22は、断面が長方形の光20Bの第2辺部b、bの長さを縮小する。2つの相対する第1辺部a、aと2つの相対する第2辺部b、bは直交しており、第1辺部aの長さは第2辺部bの長さよりも大きい。
FIG. 2 shows light 20B and the like in the surface inspection apparatus 10 shown in FIG.
The first lens 21 shown in FIG. 1 forms laser light 20 having a circular cross section into light 20B having a rectangular cross section. As shown in FIG. 2, the light 20 </ b> B having a rectangular cross section has first side parts a and a second side parts b and b facing each other. Further, the first lens 21 enlarges the length of the first sides a and a of the light 20B having a rectangular cross section, and the second lens 22 has the second sides b and b of the light 20B having a rectangular cross section. Reduce the length. The two opposing first side parts a and a and the two opposing second side parts b and b are orthogonal to each other, and the length of the first side part a is larger than the length of the second side part b.

図2に示すように、断面長方形の光20Bの第1辺部a、aの長さが拡大され、断面長方形の光20Bの第2辺部b、bの長さが縮小されて、細長い長方形状の検出用光31が被測定体1の表面2の照射対象部位30に、照射される。
これにより、図1と図2に示すように、断面長方形の光20Bに比べて細長い長方形状の検出用光31が、集光光学系12から被測定体1の表面2の照射対象部位30に対して照射できる。細長い長方形状の検出用光31は、相対する第1辺部a1、a1と、相対する第2辺部b1、b1を有している。
As shown in FIG. 2, the lengths of the first sides a and a of the light 20B having a rectangular cross section are enlarged, and the lengths of the second sides b and b of the light 20B having a rectangular cross section are reduced. The detection light 31 having a shape is irradiated on the irradiation target portion 30 on the surface 2 of the measurement object 1.
Thereby, as shown in FIGS. 1 and 2, the detection light 31 having a rectangular shape that is elongated compared to the light 20 </ b> B having a rectangular cross section is irradiated from the condensing optical system 12 to the irradiation target portion 30 on the surface 2 of the measurement object 1. Can be irradiated. The elongate rectangular detection light 31 has first opposing side portions a1 and a1 and second opposing side portions b1 and b1.

このように、図2に示すように、第1レンズ21は、レーザ光20の第1辺部a、aを広角に広げ、第2レンズ22は、レーザ光20の第2辺部b、bを絞って小さくして被測定体1の表面2の照射対象部位30に対して、より細長い長方形状の検出用光31を照射できる。   Thus, as shown in FIG. 2, the first lens 21 widens the first sides a and a of the laser beam 20 to a wide angle, and the second lens 22 has the second sides b and b of the laser beam 20. By narrowing down and reducing, the irradiation target portion 30 on the surface 2 of the measurement object 1 can be irradiated with a more elongated rectangular detection light 31.

図1に戻ると、検出部13は、スクリーン33とカメラ34を有している。図1と図2に示すように、スクリーン33は、被測定体1の表面2の照射対象部位30において反射した検出用光31を、線状に形成した受光像40として結像することができる。
つまりこの検出用光31は、スクリーン33上においてさらに細長く伸ばして拡大投影されるのである。線状に形成した受光像40は、図2に示すように、相対する第1辺部a2、a2と、相対する第2辺部b2、b2を有している。
Returning to FIG. 1, the detection unit 13 includes a screen 33 and a camera 34. As shown in FIGS. 1 and 2, the screen 33 can form the detection light 31 reflected from the irradiation target portion 30 on the surface 2 of the measurement object 1 as a light receiving image 40 formed in a linear shape. .
That is, the detection light 31 is further elongated and projected on the screen 33. As shown in FIG. 2, the light reception image 40 formed in a linear shape has opposed first side portions a <b> 2 and a <b> 2 and opposed second side portions b <b> 2 and b <b> 2.

ここで、図2に示すように、第1辺部a2の長さ>第1辺部a1の長さ>第1辺部aの長さの関係であり、第2辺部bの長さ>第2辺部b1の長さ>第2辺部b2の長さの関係にある。
カメラ34は例えばCCD(電荷結合素子)カメラを用いることができ、このカメラ34はスクリーン33上の線状に形成した受光像40を取り込んで電気信号に変換する。
Here, as shown in FIG. 2, the relationship of the length of the first side part a <b>2> the length of the first side part a <b>1> the length of the first side part a, and the length of the second side part b> The length of the second side part b1 is greater than the length of the second side part b2.
For example, a CCD (Charge Coupled Device) camera can be used as the camera 34, and the camera 34 takes a light-receiving image 40 formed in a line shape on the screen 33 and converts it into an electric signal.

図1に示す被測定体1の表面2の照射対象部位30では、凹凸状の欠陥は形成されていない例を示しており、線状に形成した受光像40は直線状であり、線状に形成した受光像40には変形部分は形成されていない。
これに対して、図3は、被測定体1の表面2の照射対象部位30に、凹状の欠陥50が形成されている例を示している。
In the irradiation target portion 30 on the surface 2 of the measurement object 1 shown in FIG. 1, an example is shown in which uneven defects are not formed, and the light reception image 40 formed in a linear shape is linear and linear. The formed received light image 40 has no deformed portion.
On the other hand, FIG. 3 shows an example in which a concave defect 50 is formed in the irradiation target portion 30 of the surface 2 of the measurement object 1.

画像処理部14は、画像処理装置35とモニター36を有している。図3に示すように、画像処理装置35は、CCDカメラ34で取り込んだ線状に形成した受光像40の変形部分49を、被測定体1の表面2の照射対象部位30における表面の欠陥50として処理する。モニター36は、作業者に対して、線状に形成した受光像40および線状に形成した受光像40の変形部分49を表示するようになっている。   The image processing unit 14 includes an image processing device 35 and a monitor 36. As shown in FIG. 3, the image processing apparatus 35 converts a deformed portion 49 of the light reception image 40 formed by the CCD camera 34 into a linear shape to a surface defect 50 in the irradiation target portion 30 of the surface 2 of the measurement object 1. Process as. The monitor 36 displays to the operator a light reception image 40 formed in a line and a deformed portion 49 of the light reception image 40 formed in a line.

図3に示すように、欠陥50が照射対象部位30にあると、この欠陥50に対応して、線状に形成した受光像40には変形部分49が形成される。このように、照射対象部位30に欠陥50が有る場合には、この欠陥50に対応する変形部分49が線状に形成した受光像40からずれて拡大投影されるので、カメラ34はこの変形部分49を含む線状に形成した受光像40を光学的に取り込む。   As shown in FIG. 3, when the defect 50 exists in the irradiation target portion 30, a deformed portion 49 is formed in the light receiving image 40 formed in a linear shape corresponding to the defect 50. As described above, when the irradiation target site 30 has the defect 50, the deformed portion 49 corresponding to the defect 50 is enlarged and projected out of the light-receiving image 40 formed in a linear form. The light receiving image 40 formed in a linear shape including 49 is optically captured.

画像処理装置35は、CCDカメラ34で取り込んだ線状に形成した受光像40の変形部分49を、被測定体1の表面2の照射対象部位30における表面の欠陥50が存在するとして処理する。モニター36は、作業者に対して、線状に形成した受光像40および線状に形成した受光像40の変形部分49を表示することができる。
上述した、本発明の第1実施形態の表面検査装置10は、光の第1辺部を拡大しかつ光の第2辺部を縮小して線状の検出用光に形成して検出用光を被測定体の表面に向けて照射し、被測定体の表面から反射した検出用光を線状に形成した受光像として結像し、この線状に形成した受光像の変形部分を被測定体の表面の欠陥とするので、被検査体1の表面2の欠陥49を高精度にかつ広範囲で検出することができる。
The image processing device 35 processes the deformed portion 49 of the linearly received light image 40 captured by the CCD camera 34 on the assumption that the surface defect 50 in the irradiation target portion 30 of the surface 2 of the measured object 1 exists. The monitor 36 can display the light reception image 40 formed in a line and the deformed portion 49 of the light reception image 40 formed in a line to the operator.
As described above, the surface inspection apparatus 10 according to the first embodiment of the present invention expands the first side of the light and reduces the second side of the light to form linear detection light, thereby detecting light. Is irradiated toward the surface of the object to be measured, and the detection light reflected from the surface of the object to be measured is formed as a light-receiving image formed in a linear shape, and a deformed portion of the light-receiving image formed in this linear shape is measured. Since the defect is on the surface of the body, the defect 49 on the surface 2 of the inspection object 1 can be detected with high accuracy and in a wide range.

(第2実施形態)
図4は、本発明の表面検査装置の好ましい第2実施形態を示す斜視図である。
図4に示す本発明の好ましい第2実施形態の表面検査装置10Bが、図1〜図3に示す第実施形態の表面検査装置10と異なるのは、検出部13Bの構成である。図1に示す検出部13がスクリーン33とカメラ34で構成されているのとは異なり、この検出部13Bは、スクリーンは用いないでカメラ34Bのみで構成されている。従って、カメラ34は、被測定体1の表面2の照射対象部位30において反射した検出用光31を線状に形成した受光像40として直接取り込むことができる。この検出光31は、カメラ34においてさらに細長く伸ばして線状に形成した受光像40として拡大投影することができる。
図4に示す表面検査装置10Bのその他の構成部分は、図1に示す表面検査装置10の対応する構成部分と実質的に同じであるので、その説明を省略する。
(Second Embodiment)
FIG. 4 is a perspective view showing a second preferred embodiment of the surface inspection apparatus of the present invention.
The surface inspection apparatus 10B according to the second preferred embodiment of the present invention shown in FIG. 4 is different from the surface inspection apparatus 10 of the first embodiment shown in FIGS. 1 to 3 in the configuration of the detection unit 13B. Unlike the detection unit 13 shown in FIG. 1 that includes a screen 33 and a camera 34, the detection unit 13B includes only a camera 34B without using a screen. Accordingly, the camera 34 can directly capture the detection light 31 reflected from the irradiation target portion 30 on the surface 2 of the measurement object 1 as a linearly received light image 40. The detection light 31 can be enlarged and projected as a light receiving image 40 that is further elongated and formed linearly in the camera 34.
The other components of the surface inspection apparatus 10B shown in FIG. 4 are substantially the same as the corresponding components of the surface inspection apparatus 10 shown in FIG.

(第3実施形態)
図5は、本発明の表面検査装置の好ましい第3実施形態を示す図である。図6は、図5の表面検査装置10CをS方向から見た平面図である。
図5と図6に示す表面検査装置10Cは、これまでの実施形態とは異なり、円柱状もしくは円筒状の被測定体100の表面102の凹状の欠陥150を検査するのに用いられる。従って、被測定体100の表面102は曲面であり、被測定体100は例えば複写機に用いられる回転ドラムである。
(Third embodiment)
FIG. 5 is a view showing a third preferred embodiment of the surface inspection apparatus of the present invention. FIG. 6 is a plan view of the surface inspection apparatus 10C of FIG. 5 as viewed from the S direction.
The surface inspection apparatus 10 </ b> C shown in FIGS. 5 and 6 is used to inspect the concave defect 150 on the surface 102 of the columnar or cylindrical measurement object 100, unlike the previous embodiments. Accordingly, the surface 102 of the measured object 100 is a curved surface, and the measured object 100 is a rotating drum used in a copying machine, for example.

表面検査装置10Cは、投光部111と、集光光学部112と、検出部113と、画像処理部114とを有する。投光部111と、集光光学部112の光軸は、X方向に沿っており、被測定体100の軸方向LはZ方向であり、スクリーン133は被測定体100に対してY方向に沿って間隔をおいて配置されている。このスクリーン133は、X―Z平面と平行な平面である。X、Y、Z方向は互いに直交している。   The surface inspection apparatus 10C includes a light projecting unit 111, a condensing optical unit 112, a detecting unit 113, and an image processing unit 114. The optical axes of the light projecting unit 111 and the condensing optical unit 112 are along the X direction, the axial direction L of the measured object 100 is the Z direction, and the screen 133 is in the Y direction with respect to the measured object 100. It is arranged along the interval. The screen 133 is a plane parallel to the XZ plane. The X, Y, and Z directions are orthogonal to each other.

図5に示す投光部111は、例えばHe−Neレーザのようなレーザ光源であり、投光部11は、断面円形状のレーザ光120を集光光学部112に照射する。
図5に示す集光光学部112は、投光部111と被測定体100の表面102との間に配置され、第1レンズ機構121と第2レンズ機構122を有している。第1レンズ機構121は、投光部111側に配置され、第2レンズ機構122は、被測定体100の表面102側に配置されている。
The light projecting unit 111 illustrated in FIG. 5 is a laser light source such as a He—Ne laser, for example, and the light projecting unit 11 irradiates the condensing optical unit 112 with a laser beam 120 having a circular cross section.
The condensing optical unit 112 illustrated in FIG. 5 is disposed between the light projecting unit 111 and the surface 102 of the measurement target 100, and includes a first lens mechanism 121 and a second lens mechanism 122. The first lens mechanism 121 is disposed on the light projecting unit 111 side, and the second lens mechanism 122 is disposed on the surface 102 side of the measurement object 100.

第1レンズ機構121は、断面円形状のレーザ光120を断面長方形の光120Bになるように絞る。この断面長方形の光120Bは、相対する第1辺部a、aと相対する第2辺部b、bを有している。しかも第2レンズ機構121は、断面長方形の光20Bの第1辺部a、aの長さを拡大する。そして、第2レンズ機構122は、断面長方形の光120Bの第2辺部b、bの長さを縮小する。2つの相対する第1辺部a、aと2つの相対する第2辺部b、bは直交しており、第1辺部aの長さは第2辺部bの長さよりも大きい。   The first lens mechanism 121 squeezes the laser light 120 having a circular cross section into light 120B having a rectangular cross section. The light 120B having a rectangular cross section has first side portions a and a that face each other and second side portions b and b that face each other. Moreover, the second lens mechanism 121 enlarges the length of the first sides a and a of the light 20B having a rectangular cross section. Then, the second lens mechanism 122 reduces the length of the second sides b and b of the light 120B having a rectangular cross section. The two opposing first side parts a and a and the two opposing second side parts b and b are orthogonal to each other, and the length of the first side part a is larger than the length of the second side part b.

図8は、被測定体100の表面102の照射対象部位130における表面の欠陥150の例を示しており、この例の欠陥150は凹部である。検出光131が欠陥150を含む照射対象部位130に照射されると、検出用光131は照射対象部位130おいて反射されてスクリーン133上に線状に形成した受光像140として拡大投影される。これにより図5と図8に示すように、スクリーン133上にはより細長い線状に形成した受光像140を形成させることができる。   FIG. 8 shows an example of a surface defect 150 in the irradiation target portion 130 of the surface 102 of the measurement object 100, and the defect 150 in this example is a recess. When the detection light 131 is irradiated onto the irradiation target part 130 including the defect 150, the detection light 131 is reflected by the irradiation target part 130 and is enlarged and projected as a light reception image 140 formed linearly on the screen 133. As a result, as shown in FIGS. 5 and 8, a light receiving image 140 formed in a more elongated line shape can be formed on the screen 133.

図5に示すように、検出部113は、スクリーン133とカメラ134を有している。図1と図2に示すように、スクリーン133は、被測定体100の表面102の照射対象部位130において反射した検出用光131を線状に形成した受光像140として結像することができる。この検出光131は、スクリーン133上においてさらに細長く伸ばして投影する。
カメラ134は例えばCCD(電荷結合素子)カメラを用いることができ、このカメラ134はスクリーン133上の線状に形成した受光像140を取り込んで電気信号に変換する。
As shown in FIG. 5, the detection unit 113 includes a screen 133 and a camera 134. As shown in FIGS. 1 and 2, the screen 133 can form a detection light 131 reflected on the irradiation target portion 130 of the surface 102 of the measurement object 100 as a light reception image 140 formed in a linear shape. The detection light 131 is further elongated and projected on the screen 133.
For example, a CCD (Charge Coupled Device) camera can be used as the camera 134, and the camera 134 takes a light reception image 140 formed in a line shape on the screen 133 and converts it into an electric signal.

画像処理部114は、画像処理装置135とモニター136を有している。画像処理装置135は、CCDカメラ134で取り込んだ線状に形成した受光像140の変形部分1149を、被測定体100の表面102の照射対象部位130における表面の欠陥150として処理する。モニター136は、線状に形成した受光像140および線状に形成した受光像140の変形部分149を表示する。   The image processing unit 114 includes an image processing device 135 and a monitor 136. The image processing device 135 processes the deformed portion 1149 of the linearly received light image 140 captured by the CCD camera 134 as a surface defect 150 in the irradiation target portion 130 of the surface 102 of the measurement object 100. The monitor 136 displays a light reception image 140 formed in a linear shape and a deformed portion 149 of the light reception image 140 formed in a linear shape.

図5に示すように、被測定体100は、XYZθステージ155の回転ステージ160に対して着脱可能に搭載されている。この回転ステージ160は、被測定体100を中心軸Lを中心とする回転方向Fに沿って回転して位置決めできる。   As shown in FIG. 5, the DUT 100 is detachably mounted on the rotary stage 160 of the XYZθ stage 155. The rotary stage 160 can position the object to be measured 100 by rotating along the rotation direction F about the central axis L.

XYZθステージ155は、回転ステージ160をX、Y、Z方向に沿って直線移動して位置決め可能であり、θ方向に回転して位置決めできる。これにより、XYZθステージ155は、例えばスクリーン133に形成される線状に形成した受光像140の太さを最小にするように、XYZθステージ155と回転ステージ160は、被測定体100と集光光学系112との距離を、X、Y、Z方向に関して調整することができる。
これにより被測定体の回転偏芯などの外乱に対する信号変動を抑えることができ、安定した欠陥検出が可能となる。
The XYZθ stage 155 can be positioned by linearly moving the rotary stage 160 along the X, Y, and Z directions, and can be positioned by rotating in the θ direction. As a result, the XYZθ stage 155 and the rotary stage 160 allow the XYZθ stage 155 and the rotary stage 160 to minimize the thickness of the light reception image 140 formed in a line on the screen 133, for example. The distance to the system 112 can be adjusted with respect to the X, Y, and Z directions.
As a result, signal fluctuations due to disturbances such as rotational eccentricity of the measured object can be suppressed, and stable defect detection is possible.

図7は検出用光131が被測定体100の軸Lに対してθ1だけ傾けて照射されている例を示している。レーザ光原が円形の場合は第1レンズ機構および第レンズ機構だけではa辺を拡大照射するにはレンズの数が多くなり集光光学系112の機構が大きくなり場所をとる。その場合、a辺が平行光でも被測定体の曲面に傾けて照射することで検出用光131の被測定体からの反射光を拡大させることができる。   FIG. 7 shows an example in which the detection light 131 is irradiated with an inclination of θ1 with respect to the axis L of the measurement object 100. When the laser beam source is circular, only the first lens mechanism and the first lens mechanism increase the number of lenses and enlarge the mechanism of the condensing optical system 112 in order to enlarge and irradiate side a. In that case, even if the a side is parallel light, the reflected light from the measurement object 131 of the detection light 131 can be expanded by irradiating the curved surface of the measurement object with inclination.

このように筒状の被測定体において、レンズ機構が大きくなることを避けたい場合、検出用光131は、曲面である被測定体100の表面102の照射対象部位130に対して、被測定体100の軸方向Lに対して斜めに照射することで、最終的なスクリーン133上では集光光学系にa辺拡大機能が備わっているのと同等に拡大することができるのである。
またこの斜め照射による拡大効果とレンズでの拡大を組み合わせればさらに拡大投影され、凸凹が軸方向に広範囲にわたっていた場合でも、直線状の受光像140のゆがみがより明確となり広範囲な凸凹の欠陥検出が可能となる。
When it is desired to avoid an increase in the lens mechanism in the cylindrical measurement object, the detection light 131 is compared with the irradiation target portion 130 of the surface 102 of the measurement object 100 that is a curved surface. By irradiating obliquely with respect to the axial direction L of 100, the final screen 133 can be enlarged as if the condensing optical system has an a-side enlargement function.
In addition, if the magnification effect by oblique irradiation and the magnification by the lens are combined, the image is further magnified, and even when the unevenness is in a wide range in the axial direction, the distortion of the linear light receiving image 140 becomes clearer and the defect detection of the wide unevenness Is possible.

この拡大投影された線状に形成した受光像140は、欠陥150に対応する変形部分149を有しており、この変形部分149は線状に形成した受光像140の長手方向に対して直交する方向に突出している。
図5に示す画像処理装置135は、CCDカメラ134で取り込んだ線状に形成した受光像140の変形部分149を、被測定体100の表面102の照射対象部位130における表面の欠陥150として処理する。モニター136は、線状に形成した受光像140および線状に形成した受光像140の変形部分149を表示する。
The enlarged light-receiving image 140 formed into a line has a deformed portion 149 corresponding to the defect 150, and the deformed portion 149 is orthogonal to the longitudinal direction of the light-receiving image 140 formed in a line. Protrudes in the direction.
An image processing apparatus 135 shown in FIG. 5 processes a deformed portion 149 of the light reception image 140 formed in a linear shape captured by the CCD camera 134 as a surface defect 150 in the irradiation target portion 130 of the surface 102 of the measurement object 100. . The monitor 136 displays a light reception image 140 formed in a linear shape and a deformed portion 149 of the light reception image 140 formed in a linear shape.

(第4実施形態)
図9は、本発明の表面検査装置の好ましい第4実施形態を示す図である。
図9に示す本発明の好ましい第4実施形態の表面検査装置10Dが、図5に示す第3実施形態の表面検査装置10Cと異なるのは、検出部113Dの構成である。図5に示す検出部113がスクリーン133とカメラ134で構成されているのとは異なり、この検出部13Dは、スクリーンは用いないでカメラ134Dのみで構成されている。従って、カメラ134Dは、被測定体100の表面102の照射対象部位130において反射した検出用光131を線状に形成した受光像140として直接取り込むことができる。この検出光131は、カメラ134においてさらに細長く伸ばして線状に形成した受光像140として拡大投影することができる。
図9に示す表面検査装置10Dのその他の構成部分は、図5に示す表面検査装置10Cの対応する構成部分と実質的に同じであるので、その説明を省略する。
(Fourth embodiment)
FIG. 9 is a view showing a fourth preferred embodiment of the surface inspection apparatus of the present invention.
The surface inspection apparatus 10D according to the fourth preferred embodiment of the present invention shown in FIG. 9 is different from the surface inspection apparatus 10C of the third embodiment shown in FIG. Unlike the detection unit 113 shown in FIG. 5 that includes a screen 133 and a camera 134, the detection unit 13D includes only a camera 134D without using a screen. Therefore, the camera 134D can directly capture the detection light 131 reflected from the irradiation target portion 130 of the surface 102 of the measurement object 100 as a light reception image 140 formed in a linear shape. The detection light 131 can be enlarged and projected as a light receiving image 140 that is further elongated and formed linearly in the camera 134.
The other components of the surface inspection apparatus 10D shown in FIG. 9 are substantially the same as the corresponding components of the surface inspection apparatus 10C shown in FIG.

次に、図10を参照して、上述した実施形態の画像処理装置35が、線状に形成した受光像40の変形部分49を、被測定体1の表面2の照射対象部位30における表面の欠陥50として処理する処理方法例を説明する。この処理方法は、上述した実施形態の画像処理装置135が、線状に形成した受光像140の変形部分149を、被測定体100の表面102の照射対象部位130における表面の欠陥150として処理する場合も同様である。   Next, referring to FIG. 10, the image processing apparatus 35 according to the above-described embodiment forms a deformed portion 49 of the light reception image 40 formed in a linear shape on the surface of the irradiation target portion 30 of the surface 2 of the measurement object 1. An example of a processing method for processing as the defect 50 will be described. In this processing method, the image processing apparatus 135 according to the above-described embodiment processes the deformed portion 149 of the light reception image 140 formed in a linear shape as a surface defect 150 in the irradiation target portion 130 of the surface 102 of the measurement object 100. The same applies to the case.

図10(A)は、線状に形成した受光像40の変形部分49を示しており、変形部分49に関しては、画面上のウィンドウW内において、エッジ位置データDAn(DA1〜DA7)と、反対側のエッジ位置データDBn(DB1〜DB8)を得る。   FIG. 10A shows a deformed portion 49 of the light-receiving image 40 formed in a linear shape. The deformed portion 49 is opposite to the edge position data DAn (DA1 to DA7) in the window W on the screen. Side edge position data DBn (DB1 to DB8) is obtained.

次に、図10(B)に示すように、エッジ位置データDAn(DA1〜DA7)に対して近似曲線TAを描き、反対側のエッジ位置データDBn(DB1〜DB8)に対して近似曲線TBを描く。   Next, as shown in FIG. 10B, an approximate curve TA is drawn for the edge position data DAn (DA1 to DA7), and an approximate curve TB is drawn for the opposite edge position data DBn (DB1 to DB8). Draw.

次に、図10(C)では、各エッジ位置データDAn(DA1〜DA7)と近似曲線TAnとの間の距離An(絶対値)の合計値と、各エッジ位置データDBn(DB1〜DB8)と近似曲線TBnとの距離Bn(絶対値)の合計値を算出する。そして、距離Anの合計値と距離Bnの合計値を合計することで判定値Vを得る。この判定値Vが予め定めた値以上である場合には、変形部分49が欠陥である判定する。変形部分49の判定と同様にして変形部分149の判定も行うことができる。   Next, in FIG. 10C, the total value of the distance An (absolute value) between each edge position data DAn (DA1 to DA7) and the approximate curve TAn, and each edge position data DBn (DB1 to DB8) The total value of the distance Bn (absolute value) with the approximate curve TBn is calculated. Then, the determination value V is obtained by summing the total value of the distance An and the total value of the distance Bn. If the determination value V is greater than or equal to a predetermined value, it is determined that the deformed portion 49 is defective. The determination of the deformation portion 149 can be performed in the same manner as the determination of the deformation portion 49.

このようにして、画像処理部装置は、カメラで取り込んだ線状に形成した受光像の線状データからエッジ部のデータを得て、エッジ部のデータが、線状に形成した受光像の近似曲線からずれている量(距離の合計値)により、被測定体の表面の欠陥を判定する。   In this way, the image processing unit apparatus obtains edge data from the linear data of the linearly received light image captured by the camera, and the edge data is an approximation of the linearly received light image. Defects on the surface of the object to be measured are determined based on the amount deviated from the curve (total distance).

図11は、図5に示す第3実施形態において、ドラムである被測定体100の表面102の照射対象部位130には、凹み深さ実測値と画像処理データとの関係を示している。
ドラムにはへこみが無く良品である場合と、へこみがあるへこみ部位とを比較すると、近似曲線とエッジ位置のなす面積Vは、へこみがあるへこみ部位の方が大きいことが分かる。
FIG. 11 shows the relationship between the measured dent depth and the image processing data in the irradiation target portion 130 of the surface 102 of the measurement object 100 that is a drum in the third embodiment shown in FIG.
Comparing the case where the drum has no dent and is a good product and the dent portion with the dent, it can be seen that the area V formed by the approximate curve and the edge position is larger at the dent portion with the dent.

またへこみの大きさが大きくなると面積Vが大きく測定されることがわかる。よって面積Vの判定基準を1500程度に設定し、それ以上は不良品と判定するようにすれば、凹み値1μm以上の欠陥品について判定可能である。   In addition, it can be seen that the area V is increased as the size of the dent increases. Therefore, if the criterion for determining the area V is set to about 1500 and the determination is made that the defective product is defective, it is possible to determine a defective product having a dent value of 1 μm or more.

本発明では、被測定体の表面の検査をする表面検査装置は、光を照射する投光部と、光を第1辺部と第2辺部を有する矩形形状の光に変えて第1辺部を拡大しかつ第2辺部を縮小して線状の検出用光に形成して検出用光を被測定体の表面に向けて照射する集光光学部と、被測定体の表面から反射した検出用光を線状に形成した受光像として結像するための検出部と、検出部で受光した前記線状に形成した受光像の変形部分を前記被測定体の表面の欠陥とする画像処理部とを備える。
これにより、光の第1辺部を拡大しかつ光の第2辺部を縮小して線状の検出用光に形成して検出用光を被測定体の表面に向けて照射し、被測定体の表面から反射した検出用光を線状に形成した受光像として結像し、この線状に形成した受光像の変形部分を被測定体の表面の欠陥とするので、広範囲で被検査体の表面の欠陥を検出することができる。
In the present invention, the surface inspection apparatus that inspects the surface of the object to be measured includes a light projecting unit that irradiates light, and the first side by changing the light into a rectangular light having a first side and a second side. A condensing optical unit for enlarging the portion and reducing the second side portion to form linear detection light and irradiating the detection light toward the surface of the measured object, and reflecting from the surface of the measured object An image in which a detection portion for forming the detected light as a linearly received light image and a deformed portion of the linearly received light image received by the detection portion as a defect on the surface of the object to be measured A processing unit.
As a result, the first side portion of the light is enlarged and the second side portion of the light is reduced to form a linear detection light, and the detection light is irradiated toward the surface of the measurement object to be measured. The detection light reflected from the surface of the body is formed as a light-receiving image formed in a linear shape, and the deformed portion of the light-receiving image formed in a linear shape is used as a defect on the surface of the object to be measured. Surface defects can be detected.

被測定体の表面が平面である場合に、広範囲で被検査体の表面の欠陥を検出することができる。
被測定体の表面は筒状の曲面である場合に、集光光学部が検出用光を筒状の長手方向に対して平行または斜めに照射することにより、検出光は被測定体の曲面で反射して検出部において拡大投影することができる。
When the surface of the object to be measured is flat, defects on the surface of the object to be inspected can be detected over a wide range.
When the surface of the object to be measured is a cylindrical curved surface, the condensing optical unit irradiates the detection light parallel or obliquely to the longitudinal direction of the cylinder, so that the detection light is a curved surface of the object to be measured. It can be reflected and enlarged and projected at the detection unit.

検出部は、線状に形成した受光像を結像するスクリーンと、スクリーンに受光された線状に形成した受光像を画像として取り込むカメラと、を有しているので、スクリーンにおいて受光像を拡大投影できる。   The detection unit has a screen that forms a linearly received light image and a camera that captures the linearly received light image received by the screen as an image. Can project.

画像処理部は、カメラで取り込んだ線状に形成した受光像の線状データからエッジ位置のデータを得て、エッジ位置のデータが、エッジ位置のデータから得られる近似曲線からずれている量により、被測定体の表面の欠陥を判定するので、欠陥の判定が正確に行える。   The image processing unit obtains edge position data from the linear data of the light-receiving image formed in a line captured by the camera, and the edge position data is deviated from the approximate curve obtained from the edge position data. Since the defect on the surface of the object to be measured is determined, the defect can be determined accurately.

また、被測定体を保持して、前記集光光学系に対する被測定体の位置を移動するためのステージを有する。これにより、集光光学部が検出用光を被検査体の表面に対して照射する場合に、検出光の第1辺部の長さと第2辺部の長さを調整することができる。   In addition, a stage for holding the measured object and moving the position of the measured object relative to the condensing optical system is provided. Thereby, when the condensing optical part irradiates the light for detection with respect to the surface of a to-be-inspected object, the length of the 1st edge part of a detection light and the length of a 2nd edge part can be adjusted.

本発明の表面検査装置および表面検査方法を用いることにより、広範囲でしかも高精度の凹凸状の欠陥の検出ができる。すなわち、投光部の光、例えばレーザ光の幅分の検出範囲の表面の凹凸等の欠陥を拡大して検出部において拡大投影でき、例えば1μm程度の欠陥も広範囲に検出できる。   By using the surface inspection apparatus and the surface inspection method of the present invention, it is possible to detect uneven defects in a wide range and with high accuracy. That is, defects such as unevenness on the surface of the detection range corresponding to the width of the light of the light projecting unit, for example, the laser beam can be enlarged and projected on the detection unit, and a defect of about 1 μm, for example, can be detected in a wide range.

ところで、本発明は、上記実施形態に限定されず種々の変形例を採用できる。
例えば、投光部は、レーザ光源以外に例えば発光ダイオードやその他の種類の光源を用いても良い。
By the way, this invention is not limited to the said embodiment, A various modified example is employable.
For example, the light projecting unit may use, for example, a light emitting diode or another type of light source in addition to the laser light source.

本発明の表面検査装置の好ましい第1実施形態を示す斜視図である。1 is a perspective view showing a first preferred embodiment of a surface inspection apparatus of the present invention. 断面が長方形の光の第1辺部a、aが拡大され、断面が長方形の光の第2辺部b、bが縮小されて、長い長方形状の検出用光が被測定体の表面の照射対象部位に、照射されている様子を示す図である。The first sides a and a of the light having a rectangular cross section are enlarged, the second sides b and b of the light having a rectangular cross section are reduced, and the long rectangular detection light is irradiated on the surface of the object to be measured. It is a figure which shows a mode that the target site | part is irradiated. 欠陥が照射対象部位にある場合の例を示す図である。It is a figure which shows the example in case a defect exists in the irradiation object site | part. 本発明の表面検査装置の好ましい第2実施形態を示す斜視図である。It is a perspective view which shows preferable 2nd Embodiment of the surface inspection apparatus of this invention. 本発明の表面検査装置の好ましい第3実施形態を示す斜視図である。It is a perspective view which shows preferable 3rd Embodiment of the surface inspection apparatus of this invention. 図5の表面検査装置をS方向から見た平面図である。It is the top view which looked at the surface inspection apparatus of FIG. 5 from the S direction. 検出用光が、集光光学系から被測定体の表面の照射対象部位に対して、斜めに照射される例を示す図である。It is a figure which shows the example by which the light for a detection is irradiated diagonally with respect to the irradiation object site | part of the surface of a to-be-measured body from a condensing optical system. 被測定体の表面の照射対象部位における表面の欠陥の例を示す図である。It is a figure which shows the example of the surface defect in the irradiation object site | part of the surface of a to-be-measured body. 本発明の表面検査装置の好ましい第4実施形態を示す図である。It is a figure which shows preferable 4th Embodiment of the surface inspection apparatus of this invention. 変形部分を、被測定体の表面の照射対象部位における表面の欠陥として処理する処理方法例を示す図である。It is a figure which shows the example of a processing method which processes a deformation | transformation part as a surface defect in the irradiation object site | part of the surface of a to-be-measured body. 凹み深さ実測値と画像処理データとの関係を示す図である。It is a figure which shows the relationship between a dent depth measured value and image processing data.

符号の説明Explanation of symbols

1 被測定体
2 被測定体の表面
10 表面検査装置
11 投光部
12 集光光学部
13 検出部
14 画像処理部
21 第1レンズ
22 第2レンズ
30 照射対象部位
31 検出用光
40 線状に形成した受光像
a 矩形形状の光の第1辺部
b 矩形形状の光の第2辺部
DESCRIPTION OF SYMBOLS 1 Object to be measured 2 Surface of object to be measured 10 Surface inspection device 11 Projecting unit 12 Condensing optical unit 13 Detection unit 14 Image processing unit 21 First lens 22 Second lens 30 Irradiation target portion 31 Light for detection 40 Linearly Formed light receiving image a First side of rectangular light b Second side of rectangular light

Claims (16)

被測定体の表面の検査をする表面検査装置であって、
光を照射する投光部と、
前記光を第1辺部と第2辺部を有する矩形形状の光に変えて前記第1辺部を拡大しかつ前記第2辺部を縮小して線状の検出用光に形成して前記検出用光を前記被測定体の表面に向けて照射する集光光学部と、
前記被測定体の表面から反射した前記検出用光を線状に形成した受光像として結像するための検出部と、
前記検出部で受光した前記線状に形成した受光像の変形部分を前記被測定体の表面の欠陥とする画像処理部と、
を備え、
前記検出部は、前記線状に形成した受光像を結像するスクリーンと、前記スクリーンに受光された前記線状に形成した受光像を画像として取り込むカメラと、を有し、
矩形形状を有する前記検出用光の前記第2辺部の長さが、前記集光光学部から前記被測定体の表面をへて、前記スクリーンに到達するまで順次減少するとともに、
前記被測定体の表面から反射した前記検出用光は、直接前記スクリーンに照射されることを特徴とする表面検査装置。
A surface inspection device for inspecting the surface of a measured object,
A light projecting unit that emits light;
The light is changed to a rectangular light having a first side and a second side, the first side is enlarged, and the second side is reduced to form a linear detection light. A condensing optical unit for irradiating detection light toward the surface of the object to be measured;
A detection unit for forming the detection light reflected from the surface of the measurement object as a light-receiving image formed in a linear shape;
An image processing unit having a deformed portion of the linearly received light image received by the detection unit as a defect on the surface of the measurement object;
With
The detection unit includes a screen that forms the light reception image formed in the linear shape, and a camera that captures the light reception image formed in the linear shape received by the screen as an image,
The length of the second side part of the detection light having a rectangular shape is sequentially reduced from the condensing optical part through the surface of the measured object until it reaches the screen,
The surface inspection apparatus, wherein the detection light reflected from the surface of the object to be measured is directly applied to the screen.
レンズまたはレンズ機構からなる集光手段を複数有する前記集光光学部の内で前記被測定体に最も近い前記集光手段に入射する前の前記検出用光の前記第2辺部をbとし、前記被測定体の表面の照射対象部位に対して照射される前記検出用光の前記第2辺部をb1とし、前記スクリーン上に結像した前記受光像の前記第2辺部をb2としたとき、
bの長さ>b1の長さ>b2の長さ
の関係を満たしていることを特徴とする請求項1に記載の表面検査装置。
The second side part of the detection light before entering the condensing unit closest to the measured object in the condensing optical unit having a plurality of condensing units consisting of a lens or a lens mechanism is b, The second side portion of the detection light emitted to the irradiation target site on the surface of the measurement object is b1, and the second side portion of the received light image formed on the screen is b2. When
The surface inspection apparatus according to claim 1, wherein a relationship of length of b> length of b 1> length of b 2 is satisfied.
前記矩形形状を有する前記検出用光の前記第1辺部の長さが、前記集光光学部から前記被測定体の表面をへて、前記スクリーンに到達するまで順次増加することを特徴とする請求項1または2に記載の表面検査装置。   The length of the first side portion of the detection light having the rectangular shape is sequentially increased from the condensing optical unit through the surface of the measured object until reaching the screen. The surface inspection apparatus according to claim 1 or 2. レンズまたはレンズ機構からなる集光手段を複数有する前記集光光学部の内で前記被測定体に最も近い前記集光手段に入射する前の前記検出用光の前記第1辺部をaとし、前記被測定体の表面の照射対象部位に対して照射される前記検出用光の前記第1辺部をa1とし、前記スクリーン上に結像した前記受光像の前記第1辺部をa2としたとき、
a2の長さ>a1の長さ>aの長さ
の関係を満たしていることを特徴とする請求項3に記載の表面検査装置。
The first side portion of the detection light before entering the light collecting means closest to the measured object in the light collecting optical part having a plurality of light collecting means consisting of a lens or a lens mechanism is defined as a. The first side of the detection light emitted to the irradiation target site on the surface of the measurement object is a1, and the first side of the received light image formed on the screen is a2. When
4. The surface inspection apparatus according to claim 3, wherein a relationship of length of a2> length of a1> length of a is satisfied.
前記画像処理部は、前記カメラで取り込んだ前記線状に形成した受光像の線状データからエッジ位置のデータを得て、前記エッジ位置のデータが、前記エッジ位置のデータから得られる近似曲線からずれている量により、前記被測定体の表面の前記欠陥を判定することを特徴とする請求項1乃至4のいずれか1項に記載の表面検査装置。   The image processing unit obtains edge position data from linear data of the linearly received light image captured by the camera, and the edge position data is obtained from an approximate curve obtained from the edge position data. The surface inspection apparatus according to claim 1, wherein the defect on the surface of the object to be measured is determined based on a deviation amount. 被測定体の表面の検査をする表面検査装置であって、
光を照射する投光部と、
前記光を第1辺部と第2辺部を有する矩形形状の光に変えて前記第1辺部を拡大しかつ前記第2辺部を縮小して線状の検出用光に形成して前記検出用光を前記被測定体の表面に向けて照射する集光光学部と、
前記被測定体の表面から反射した前記検出用光を線状に形成した受光像として結像するための検出部と、
前記検出部で受光した前記線状に形成した受光像の変形部分を前記被測定体の表面の欠陥とする画像処理部と、
を備え、
前記画像処理部は、前記線状に形成した前記受光像の線状データから前記線状の両側の複数のエッジ位置のデータを取得し、前記線状の片側毎に、取得した前記複数のエッジ位置のデータから直線状の近似線を算出し、各前記エッジ位置のデータに対して当該エッジ位置のデータと前記直線状の近似線との距離を算出し、算出した前記線状の両側の前記複数のエッジ位置のデータに対する距離のすべての値を合計した合計値により、前記被測定体の表面の前記欠陥を判定することを特徴とする表面検査装置。
A surface inspection device for inspecting the surface of a measured object,
A light projecting unit that emits light;
The light is changed to a rectangular light having a first side and a second side, the first side is enlarged, and the second side is reduced to form a linear detection light. A condensing optical unit for irradiating detection light toward the surface of the object to be measured;
A detection unit for forming the detection light reflected from the surface of the measurement object as a light-receiving image formed in a linear shape;
An image processing unit having a deformed portion of the linearly received light image received by the detection unit as a defect on the surface of the measurement object;
With
The image processing unit acquires data of a plurality of edge positions on both sides of the linear shape from linear data of the light reception image formed in the linear shape, and the acquired plurality of edges for each one side of the linear shape A linear approximate line is calculated from the position data, the distance between the edge position data and the linear approximate line is calculated for each edge position data, and the calculated values on both sides of the calculated linear line are calculated. The surface inspection apparatus characterized by determining the said defect of the surface of the said to-be-measured object by the total value which totaled all the values with respect to the data of several edge position.
前記検出部は、前記線状に形成した受光像を結像するスクリーンと、前記スクリーンに受光された前記線状に形成した受光像を画像として取り込むカメラと、を有することを特徴とする請求項6に記載の表面検査装置。   The said detection part has a screen which forms the light reception image formed in the said linear form, and a camera which takes in the said light reception image formed in the linear form received by the screen as an image, It is characterized by the above-mentioned. 6. The surface inspection apparatus according to 6. 前記検出部は、前記線状に形成した受光像を画像として取り込むカメラであることを特徴とする請求項6に記載の表面検査装置。   The surface inspection apparatus according to claim 6, wherein the detection unit is a camera that captures the linearly received light reception image as an image. 前記被測定体の表面は平面であることを特徴とする請求項1乃至8のいずれか1項に記載の表面検査装置。   The surface inspection apparatus according to claim 1, wherein the surface of the object to be measured is a flat surface. 前記被測定体の表面は筒状の曲面であり、前記集光光学部は、前記検出用光を前記筒状の曲面の長手方向と前記第2辺部が平行または斜めとなるように照射することを特徴とする請求項1乃至8のいずれか1項に記載の表面検査装置。   The surface of the measured object is a cylindrical curved surface, and the condensing optical unit irradiates the detection light so that the longitudinal direction of the cylindrical curved surface and the second side portion are parallel or oblique. The surface inspection apparatus according to any one of claims 1 to 8, wherein 前記被測定体を保持して、前記集光光学系に対する前記被測定体の位置を移動するためのステージを有することを特徴とする請求項1乃至10のいずれか1項に記載の表面検査装置。   The surface inspection apparatus according to claim 1, further comprising a stage for holding the measured object and moving a position of the measured object with respect to the condensing optical system. . 被測定体の表面の検査をする表面検査方法であって、
投光部は、断面が第1辺部と第2辺部を有する長方形状の光を照射し、
集光光学部が、前記投光部の前記光の前記第1辺部を拡大しかつ前記第2辺部を縮小して線状の検出用光に形成して前記検出用光を前記被測定体の表面に向けて照射し、
スクリーンとカメラとを有する検出部は、前記スクリーンによって、前記被測定体の表面から反射した前記検出用光を線状に形成した受光像として結像し、前記カメラによって、前記スクリーンに受光された前記線状に形成した受光像を画像として取り込み、
矩形形状を有する前記検出用光の前記第2辺部の長さが、前記集光光学部から前記被測定体の表面をへて、前記スクリーンに到達するまで順次減少するとともに、
前記被測定体の表面から反射した前記検出用光が、直接前記スクリーンに照射され、
画像処理部は、前記検出部で受光した前記線状に形成した受光像の変形部分を前記被測定体の表面の欠陥とすることを特徴とする表面検査方法。
A surface inspection method for inspecting the surface of a measured object,
The light projecting portion irradiates light having a rectangular shape with a cross section having a first side and a second side,
A condensing optical unit enlarges the first side of the light of the light projecting unit and reduces the second side to form linear detection light, and the detection light is measured. Irradiate towards the surface of the body,
A detection unit having a screen and a camera forms an image of the detection light reflected from the surface of the object to be measured as a linearly received light image by the screen, and is received by the screen by the camera. Capture the light-receiving image formed in the linear form as an image,
The length of the second side part of the detection light having a rectangular shape is sequentially reduced from the condensing optical part through the surface of the measured object until it reaches the screen,
The detection light reflected from the surface of the object to be measured is directly applied to the screen,
A surface inspection method, wherein the image processing unit uses a deformed portion of the linearly received light image received by the detection unit as a defect on the surface of the object to be measured.
レンズまたはレンズ機構からなる集光手段を複数有する前記集光光学部の内で前記被測定体に最も近い前記集光手段に入射する前の前記検出用光の前記第2辺部をbとし、前記被測定体の表面の照射対象部位に対して照射される前記検出用光の前記第2辺部をb1とし、前記スクリーン上に結像した前記受光像の前記第2辺部をb2としたとき、
bの長さ>b1の長さ>b2の長さ
の関係を満たしていることを特徴とする請求項12に記載の表面検査方法。
The second side part of the detection light before entering the condensing unit closest to the measured object in the condensing optical unit having a plurality of condensing units consisting of a lens or a lens mechanism is b, The second side portion of the detection light emitted to the irradiation target site on the surface of the measurement object is b1, and the second side portion of the received light image formed on the screen is b2. When
The surface inspection method according to claim 12, wherein a relation of length of b> length of b 1> length of b 2 is satisfied.
前記矩形形状を有する前記検出用光の前記第1辺部の長さが、前記集光光学部から前記被測定体の表面をへて、前記スクリーン上に到達するまで順次増加することを特徴とする請求項12または13に記載の表面検査方法。   The length of the first side portion of the detection light having the rectangular shape is sequentially increased from the condensing optical unit through the surface of the measurement object until reaching the screen. The surface inspection method according to claim 12 or 13. レンズまたはレンズ機構からなる集光手段を複数有する前記集光光学部の内で前記被測定体に最も近い前記集光手段に入射する前の前記検出用光の前記第1辺部をaとし、前記被測定体の表面の照射対象部位に対して照射される前記検出用光の前記第1辺部をa1とし、前記スクリーン上に結像した前記受光像の前記第1辺部をa2としたとき、
a2の長さ>a1の長さ>aの長さ
の関係を満たしていることを特徴とする請求項14に記載の表面検査方法。
The first side portion of the detection light before entering the light collecting means closest to the measured object in the light collecting optical part having a plurality of light collecting means consisting of a lens or a lens mechanism is defined as a. The first side of the detection light emitted to the irradiation target site on the surface of the measurement object is a1, and the first side of the received light image formed on the screen is a2. When
The surface inspection method according to claim 14, wherein a relationship of length of a <b>2> length of a <b>1> length of a is satisfied.
被測定体の表面の検査をする表面検査方法であって、
投光部は、断面が第1辺部と第2辺部を有する長方形状の光を照射し、
集光光学部が、前記投光部の前記光の前記第1辺部を拡大しかつ前記第2辺部を縮小して線状の検出用光に形成して前記検出用光を前記被測定体の表面に向けて照射し、
検出部が、前記被測定体の表面から反射した前記検出用光を線状に形成した受光像として結像し、
画像処理部は、前記検出部で受光した前記線状に形成した受光像の変形部分を前記被測定体の表面の欠陥とし、
前記被測定体の表面の前記欠陥は、前記線状に形成した受光像の線状データから前記線状の両側の複数のエッジ位置のデータを取得し、その後、前記線状の片側毎に、取得した前記複数のエッジ位置のデータから直線状の近似線を算出し、各前記エッジ位置のデータに対して当該エッジ位置のデータと前記直線状の近似線との距離を算出し、その後更に、算出した前記線状の両側の前記複数のエッジ位置のデータに対する距離のすべての値を合計した合計値により判定することを特徴とする表面検査方法。
A surface inspection method for inspecting the surface of a measured object,
The light projecting portion irradiates light having a rectangular shape with a cross section having a first side and a second side,
A condensing optical unit enlarges the first side of the light of the light projecting unit and reduces the second side to form linear detection light, and the detection light is measured. Irradiate towards the surface of the body,
The detection unit forms an image of the detection light reflected from the surface of the measurement object as a light-receiving image formed in a linear shape,
The image processing unit has a deformed portion of the linearly received light image received by the detection unit as a defect on the surface of the measured object,
The defect on the surface of the object to be measured is obtained by acquiring data of a plurality of edge positions on both sides of the linear shape from the linear data of the light reception image formed in the linear shape. A linear approximate line is calculated from the acquired data of the plurality of edge positions, a distance between the edge position data and the linear approximate line is calculated for each of the edge position data, and then further, A surface inspection method comprising: determining by a total value obtained by summing all values of distances to the calculated data of the plurality of edge positions on both sides of the linear shape.
JP2008090193A 2008-03-31 2008-03-31 Surface inspection apparatus and surface inspection method Expired - Fee Related JP5367292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008090193A JP5367292B2 (en) 2008-03-31 2008-03-31 Surface inspection apparatus and surface inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008090193A JP5367292B2 (en) 2008-03-31 2008-03-31 Surface inspection apparatus and surface inspection method

Publications (2)

Publication Number Publication Date
JP2009244052A JP2009244052A (en) 2009-10-22
JP5367292B2 true JP5367292B2 (en) 2013-12-11

Family

ID=41306115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008090193A Expired - Fee Related JP5367292B2 (en) 2008-03-31 2008-03-31 Surface inspection apparatus and surface inspection method

Country Status (1)

Country Link
JP (1) JP5367292B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5619348B2 (en) * 2008-11-21 2014-11-05 住友化学株式会社 Mold sheet inspection system
JP4726983B2 (en) * 2009-10-30 2011-07-20 住友化学株式会社 Defect inspection system, and defect inspection imaging apparatus, defect inspection image processing apparatus, defect inspection image processing program, recording medium, and defect inspection image processing method used therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3520356B2 (en) * 1995-05-02 2004-04-19 日立電子エンジニアリング株式会社 Magnetic film defect inspection system for magnetic disks
JP2001296252A (en) * 2000-04-11 2001-10-26 Matsushita Electric Works Ltd Defect detection method of object surface, and device thereof
JP4081414B2 (en) * 2002-10-08 2008-04-23 新日本製鐵株式会社 Strip shape inspection method and apparatus

Also Published As

Publication number Publication date
JP2009244052A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
EP2508871A1 (en) Inspection apparatus, measurement method for three-dimensional shape, and production method for structure
JPH03267745A (en) Surface property detecting method
JP2009020000A (en) Inspection device and method
JP4706356B2 (en) Screw shape measuring device
JP2009168581A (en) Inspecting apparatus of inspection object
JP6849149B2 (en) Thread shape measuring device and measuring method
JP2009283633A (en) Surface inspection device, and surface inspection method
JP2010190886A (en) Pantograph height measuring device and calibration method therefor
JP3914500B2 (en) Defect inspection equipment
JP5251617B2 (en) Screw shape measuring device and screw shape measuring method
JP2006200957A (en) Through hole inspection device and through hole inspection method using the same
KR100926019B1 (en) Defective particle measuring apparatus and defective particle measuring method
JP5367292B2 (en) Surface inspection apparatus and surface inspection method
US8547547B2 (en) Optical surface defect inspection apparatus and optical surface defect inspection method
JP2011145160A (en) Device and method for multi-focus inspection
JP2007198761A (en) Flaw detection method and detector
JP2008008689A (en) Surface inspection device and surface inspection method
JP2007147324A (en) Surface inspection device
JP5570890B2 (en) Tire appearance inspection method and appearance inspection apparatus
JP3162099U (en) Translucent inspection device
JP2006349351A (en) Three-dimensional microstructure measuring method
JP4035558B2 (en) Surface inspection device
JP2007003332A (en) Method and detector for detecting defect on planar body side face
JP2006003168A (en) Measurement method for surface shape and device therefor
JP4679995B2 (en) Defect detection method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130911

R151 Written notification of patent or utility model registration

Ref document number: 5367292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees