JP2001296252A - Defect detection method of object surface, and device thereof - Google Patents

Defect detection method of object surface, and device thereof

Info

Publication number
JP2001296252A
JP2001296252A JP2000109673A JP2000109673A JP2001296252A JP 2001296252 A JP2001296252 A JP 2001296252A JP 2000109673 A JP2000109673 A JP 2000109673A JP 2000109673 A JP2000109673 A JP 2000109673A JP 2001296252 A JP2001296252 A JP 2001296252A
Authority
JP
Japan
Prior art keywords
defect
feature
candidate
linear pattern
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000109673A
Other languages
Japanese (ja)
Inventor
Koushi Aketo
甲志 明渡
Ryosuke Mitaka
良介 三高
Yuji Sakuma
▲祐▼治 佐久間
Osamu Hirakawa
修 平川
Yutaka Henmi
裕 辺見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Breweries Ltd
Panasonic Electric Works Co Ltd
Original Assignee
Asahi Breweries Ltd
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Breweries Ltd, Matsushita Electric Works Ltd filed Critical Asahi Breweries Ltd
Priority to JP2000109673A priority Critical patent/JP2001296252A/en
Publication of JP2001296252A publication Critical patent/JP2001296252A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To correctly detect a defect, even if a characteristic similar to the defect exists of if defect information has an interruption or a deletion. SOLUTION: This defect detection device is composed of a measuring device 2 for irradiating plural liner light beams at intervals on the side of a detection object 1, a TV camera 3 for imaging plural linear patterns obtained thereby, an image-processing device 6 for inspecting ruggedness defects on the side through images processing from the plural linear patterns. The image-processing device 6 has a processing function for extracting one or more defective character quantities, showing the shape of a defective characteristic part which is a deformation of each linear pattern has a deformation, evaluating the shape of a defect candidate, which is a group of plural defective characteristic parts ranging in one direction relative to each defective characteristic part, based on the defective characteristic quantities of the plural defective characteristic parts included in the defect candidate, for determining the degree and the kind of the defect on the side, and extracting an index as defect reliability from the defect candidate, to thereby determine whether the defect candidate is a defect.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として円筒状を
なす検査対象物に対してレーザー光などを投光し、その
正反射光をスクリーンに投影する等の方法により、検査
対象物のある断面における面方向変化に従って曲がりが
生じるような線状パターンを生成せしめ、これを撮影し
た画像を処理することにより物体表面に存在しうる凹凸
欠陥を検出する物体表面の欠陥検出方方法およびその装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for projecting a laser beam or the like onto a cylindrical inspection object and projecting the specular reflection light onto a screen. A method and apparatus for detecting a defect on a surface of an object, which generates a linear pattern that bends in accordance with a change in the surface direction of the object and detects an irregularity defect that may be present on the surface of the object by processing an image obtained by photographing the linear pattern. It is.

【0002】[0002]

【従来の技術】平面状の検査対象物表面の微小な欠陥を
検出するために、検査対象物表面の傾きを検出する方法
としては、特開平10−9838号公報に示されるよう
に、光源から物体表面に投光された光の正反射成分をカ
メラにより捕らえるようカメラおよび光源を配置し、光
源とカメラの角度を変化させつつ複数の画像を撮影し、
物体表面の同一位置における明度が最大となる光源角度
を求める方法が開示されている。
2. Description of the Related Art In order to detect minute defects on the surface of a planar inspection object, a method of detecting the inclination of the surface of the inspection object is disclosed in Japanese Patent Application Laid-Open No. Hei 10-9838. A camera and a light source are arranged to capture the specular reflection component of the light projected on the object surface by the camera, and a plurality of images are taken while changing the angle of the light source and the camera,
A method is disclosed in which the light source angle at which the brightness at the same position on the object surface is maximized is determined.

【0003】また、筒状物の外観検査方法としては、特
開平8−151163号公報に示されるように、筒状物
表面に帯状光を映すよう周囲に光源を配置し、この帯状
光とその近傍の明度変化から欠陥を検出する方法が開示
されている。
As a method for inspecting the appearance of a cylindrical object, as shown in Japanese Patent Application Laid-Open No. 8-151163, a light source is arranged around the surface of the cylindrical object so as to project the band light, and the band light and its light are arranged. A method for detecting a defect from a change in brightness in the vicinity is disclosed.

【0004】また、円筒物表面に存在する極めて浅い凹
凸欠陥を検出する方法としては、特開平11−2114
42号公報に示されるように、対象物の表面にレーザー
光を投光し、その正反射成分をスクリーンに投影しカメ
ラによって撮像する方法が開示されている。
As a method for detecting an extremely shallow concave / convex defect existing on the surface of a cylindrical object, Japanese Patent Laid-Open No. 11-2114 discloses a method.
As disclosed in Japanese Patent No. 42, a method is disclosed in which a laser beam is projected on the surface of an object, the specular reflection component is projected on a screen, and an image is taken by a camera.

【0005】また、形状の異なる複数の欠陥が同一画面
内に撮影された画像から個々の欠陥を弁別し、かつその
形状および欠陥種別、程度等を判定する方法としては、
特開平5−280959号公報に示されるように、しき
い値処理により画像を2値化し、欠陥部ごとに領域分割
を行い、かつ当該欠陥部の情報を画像のX・Y方向に投
影した1次元的な情報を欠陥の周辺分布情報として用い
ることにより線状の欠陥と点状の欠陥とに弁別し、かつ
個々の欠陥の特徴量により欠陥種別等を判定する方法が
開示されている。
A method of discriminating individual defects from an image in which a plurality of defects having different shapes are photographed in the same screen and determining the shape, defect type, degree and the like is as follows.
As disclosed in JP-A-5-280959, the image is binarized by threshold processing, area division is performed for each defective part, and information of the defective part is projected in the X and Y directions of the image. A method is disclosed in which dimensional information is used as peripheral distribution information of a defect to discriminate between a linear defect and a point-like defect, and a defect type or the like is determined based on the feature amount of each defect.

【0006】[0006]

【発明が解決しようとする課題】上記特開平10−98
38号公報に示される方法によれば、平面状の物体の表
面に存在する微細な凹凸状の欠陥を極めて明瞭に検出す
ることができるが、その検査方法は平面物体の検査に適
する方法であるので、飲料缶などの円筒物体の表面に存
在する凹凸欠陥を検査する場合には応用が困難である。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
According to the method disclosed in Japanese Patent Publication No. 38-38, a fine uneven defect existing on the surface of a planar object can be detected very clearly, but the inspection method is a method suitable for inspecting a planar object. Therefore, it is difficult to apply the method to inspect unevenness defects existing on the surface of a cylindrical object such as a beverage can.

【0007】円筒物体表面の微細欠陥を検出する手段と
して上述した特開平11−211442号公報の方法に
おいては、対象物の表面にレーザー光を投光し、その正
反射成分をスクリーンに投影しカメラによって撮像する
方法を用いることにより、円筒物を回転させることなく
その表面に存在する極めて浅い欠陥部を検出することが
できるようにしている。
In the method disclosed in Japanese Patent Application Laid-Open No. H11-212442 as a means for detecting a minute defect on the surface of a cylindrical object, a laser beam is projected on the surface of the object, and the specular reflection component is projected on a screen. By using the imaging method, an extremely shallow defect existing on the surface of the cylindrical object can be detected without rotating the cylindrical object.

【0008】上記方法では、円筒物体表面に凹凸がある
部分においては円筒物の軸方向に沿った面の傾きが変化
しているために、投光されたレーザーの正反射成分がス
クリーンに投影される位置が変化し、線状をなす投影パ
ターン(以下線状パターン)に曲がりが生じることを利
用している。また、深さがある程度大きな凹凸欠陥部で
は欠陥部の底部に当たったレーザー光はスクリーンに到
達しないので、スクリーンを撮影した画像において、欠
陥部の周辺のみで線状パターンの曲がりが観測され、欠
陥部中央では線状パターンは途絶する。よって、この方
法においては、線状パターンの曲がりに加えて途絶が発
生している部分を検出することにより、欠陥部と欠陥で
はない凹凸(ごく浅い凹凸)を区別することができる。
[0008] In the above method, since the inclination of the surface along the axial direction of the cylindrical object changes in a portion having irregularities on the surface of the cylindrical object, the regular reflection component of the emitted laser is projected on the screen. This is based on the fact that the position at which the image is projected changes and a linear projection pattern (hereinafter referred to as a linear pattern) bends. In addition, since the laser light hitting the bottom of the defect does not reach the screen at the irregularity defect having a relatively large depth, the bending of the linear pattern is observed only in the vicinity of the defect in the image taken of the screen. At the center of the part, the linear pattern is interrupted. Therefore, in this method, by detecting the portion where the interruption occurs in addition to the bending of the linear pattern, it is possible to distinguish the defective portion from the non-defect unevenness (very shallow unevenness).

【0009】しかしながら、上記方法においてはスクリ
ーンに投影される線状パターンは円筒物体表面の微細構
造のために線形状が不明瞭となり、線状パターンに曲が
り形状が観測されないため欠陥部と認識できないことが
ある。すなわち、得られた線状パターンにおいて、たと
えば長いすじ状の欠陥部が途切れて短いすじ状欠陥が複
数あるように見えることがある。
However, in the above method, the linear pattern projected on the screen has an indistinct line shape due to the fine structure of the surface of the cylindrical object, and since the bent pattern is not observed in the linear pattern, it cannot be recognized as a defective portion. There is. That is, in the obtained linear pattern, for example, a long streak-like defect portion may be interrupted, and it may appear that there are a plurality of short streak-like defects.

【0010】また、検査対象物表面に水滴などの異物が
付着した場合には線状パターンの途絶が生じるので、こ
れが欠陥部と誤認織される可能性もある。
Further, if foreign matter such as water droplets adheres to the surface of the inspection object, the linear pattern is interrupted, which may be erroneously recognized as a defective portion.

【0011】また、筒状物の外観検査方法に関するまた
別の従来技術として上述した特開平8−15163号公
報に示される方法においては、筒状物表面に光源が映り
こんだ帯状光およびその近傍の明度変化を観測すること
により筒状物の検査を可能としている。
Further, in the method disclosed in Japanese Patent Application Laid-Open No. H8-15163 described above as another prior art relating to a method of inspecting the appearance of a cylindrical object, a belt-like light in which a light source is reflected on the surface of the cylindrical object and its vicinity. By observing the change in the brightness of the object, it is possible to inspect the cylindrical object.

【0012】しかしながら、その方法においては、欠陥
によって帯状光が変形し、帯状光近傍に配設された明度
計測線を横切ることを利用して欠陥を検出するため、欠
陥以外の原因により上記帯状光に変化が現れる場合には
誤検出が発生するという問題がある。たとえば、円筒物
に水滴が不着している場合、水滴がレンズの働きをして
周囲の光を集光することにより筒状物表面に欠陥の特徴
に類似した光点が形成されるため、これを欠陥として誤
検出することが考えられる。
However, in this method, the strip light is deformed due to the defect, and the defect is detected by using the crossing of the lightness measurement line arranged near the strip light. However, when a change appears in the data, there is a problem that erroneous detection occurs. For example, when water droplets do not adhere to a cylindrical object, the water droplets act as a lens and condense surrounding light, so that a light spot similar to the feature of a defect is formed on the surface of the cylindrical object. May be erroneously detected as a defect.

【0013】実際に炭酸飲料の缶詰め工程においては、
発泡を抑えるため低温にて注入を行い、その後温水によ
って常温に戻してから出荷されるが、このような工程で
は缶に付着した水滴を完全に除去するのは困難であり、
水滴と欠陥の区別を行う必要が生じる。しかしながら、
上記方法では特徴の大きさ等を判断せず、帯状光の近傍
に光点があれば欠陥とみなす定性的な方法であるため、
水滴と欠陥の区別は不可能であり、このような状況にお
いては適用不可能である。
In the canning process of carbonated beverages,
Inject at a low temperature to suppress foaming, then return to normal temperature with warm water before shipping, but it is difficult to completely remove water droplets attached to the can in such a process,
It becomes necessary to distinguish between water droplets and defects. However,
The above method does not judge the size of the feature, etc., because it is a qualitative method to consider as a defect if there is a light spot near the band light,
The distinction between water droplets and defects is not possible and is not applicable in such situations.

【0014】このように、欠陥部と誤認識されやすい特
徴が存在し、かつ1つの欠陥が複数に別れて見えるよう
な画像を処理する方法として、特開平5−280959
号公報の方法では検査画像のX,Y方向に1次元投影し
て線状性・点状性を示す情報を取り出すことにより、一
つの欠陥を含む複数の領域を生成するようにしている
が、この方法は欠陥部が水平あるいは垂直についている
場合にしか適用できない欠点があり、またX,Y方向の
座標が同じ位置にある複数の領域が全て1つの欠陥とさ
れてしまうため、欠陥部の長さが大きく狂う危険が考え
られる。
As described above, Japanese Patent Application Laid-Open No. HEI 5-280959 discloses a method for processing an image in which there is a feature that is likely to be erroneously recognized as a defective portion and one defect appears to be divided into a plurality.
According to the method disclosed in Japanese Patent Application Laid-Open No. H10-209, a plurality of areas including one defect are generated by one-dimensionally projecting the inspection image in the X and Y directions and extracting information indicating linearity / pointiness. This method has the drawback that it can be applied only when the defective portion is horizontal or vertical. In addition, since a plurality of regions at the same position in the X and Y directions are all regarded as one defect, the length of the defective portion is reduced. There is a danger that the data will go out of order.

【0015】本発明は、上記事情に鑑みてなされたもの
であり、欠陥に類似した特徴が存在したり、欠陥情報に
途絶や欠落があっても正しく欠陥の検出が行える物体表
面の欠陥検出方法およびその装置を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a method of detecting a defect on an object surface capable of correctly detecting a defect even if a feature similar to the defect exists or the defect information is interrupted or missing. And an apparatus thereof.

【0016】[0016]

【課題を解決するための手段】上記課題を解決するため
に請求項1記載の発明は、検査対象物の曲面となる表面
に間隔を置いて複数の線状光を照射し、これら複数の線
状光によって前記表面に沿った角度で配列される複数の
線状パターンの撮影を行い、この撮影で得られた複数の
線状パターンから、線状パターン処理過程および欠陥検
出過程の画像処理を通じて、前記検査対象物の表面にお
ける凹凸状の欠陥を検出する欠陥検出方法であって、前
記線状パターン処理過程は、前記撮影で得られた複数の
線状パターンの各々に対して、当該線状パターンに変形
があればその変形を欠陥特徴部として検出する欠陥特徴
部検出過程と、前記欠陥特徴部の形状を表す欠陥特徴量
を少なくとも1つ抽出する欠陥特徴量抽出過程とを含
み、前記欠陥検出過程は、前記線状パターン処理過程で
得られた複数の欠陥特徴部に対して、前記線状パターン
の方向と交差する方向に連なる複数の欠陥特徴部の群を
欠陥候補として抽出する欠陥候補抽出過程と、前記欠陥
候補に含まれる複数の欠陥特徴部の欠陥特徴量をもとに
当該欠陥候補の形状を評価して、前記検査対象物の表面
における欠陥の程度および種別の少なくとも一方を判定
する欠陥形状評価過程と、前記欠陥候補から欠陥として
の確からしさを表す欠陥信頼性としての指標を抽出して
当該欠陥候補が欠陥であるか否かを判定する欠陥信頼性
評価過程とを含むことを特徴とする。
According to a first aspect of the present invention, a plurality of linear light beams are irradiated on a curved surface of an object to be inspected at intervals. By taking a plurality of linear patterns arranged at an angle along the surface by the shape light, from a plurality of linear patterns obtained by this shooting, through the image processing of the linear pattern processing step and the defect detection step, A defect detection method for detecting an irregular defect on a surface of the inspection object, wherein the linear pattern processing step includes, for each of a plurality of linear patterns obtained by the photographing, the linear pattern A defect feature detecting step of detecting the deformation as a defect feature, if any, and a defect feature extracting step of extracting at least one defect feature representing a shape of the defect feature. Excessive A defect candidate extracting step of extracting, as a defect candidate, a group of a plurality of defect feature parts connected in a direction intersecting with the direction of the linear pattern with respect to the plurality of defect feature parts obtained in the linear pattern processing step. And a defect for evaluating at least one of a degree and a type of a defect on the surface of the inspection object by evaluating a shape of the defect candidate based on defect feature amounts of a plurality of defect characteristic portions included in the defect candidate. A shape evaluation step, and a defect reliability evaluation step of extracting an index as defect reliability representing the likelihood of a defect from the defect candidate to determine whether the defect candidate is a defect. And

【0017】請求項2記載の発明は、請求項1記載の物
体表面の欠陥検出方法において、前記欠陥特徴部検出過
程の線状パターンの変形とは途絶を境に互いに逆向きに
伸びる変形であることを特徴とする。
According to a second aspect of the present invention, in the method for detecting a defect on an object surface according to the first aspect, the linear pattern in the process of detecting the defect characteristic portion is a deformation extending in directions opposite to each other after the interruption. It is characterized by the following.

【0018】請求項3記載の発明は、請求項1記載の物
体表面の欠陥検出方法において、前記欠陥特徴量抽出過
程の欠陥特徴量とは、その欠陥特徴部を含む線状パター
ンの方向およびこの方向と直交する方向の少なくとも一
方に沿った当該欠陥特徴部の大きさであることを特徴と
する。
According to a third aspect of the present invention, in the method for detecting a defect on the surface of an object according to the first aspect, the defect feature amount in the defect feature amount extracting step includes the direction of a linear pattern including the defect feature portion and the The size of the defect feature portion is along at least one of the directions orthogonal to the direction.

【0019】請求項4記載の発明は、請求項1記載の物
体表面の欠陥検出方法において、前記欠陥特徴量抽出過
程の欠陥特徴量とはその欠陥特徴部の明度であることを
特徴とする。
According to a fourth aspect of the present invention, in the method for detecting a defect on an object surface according to the first aspect, the defect feature amount in the defect feature amount extracting step is the brightness of the defect feature portion.

【0020】請求項5記載の発明は、請求項1記載の物
体表面の欠陥検出方法において、前記欠陥候補抽出過程
の処理として、前記複数の欠陥特徴部の各々に対して、
当該欠陥特徴部を含む線状パターンに隣接ないし近接す
る別の線状パターンに、前記交差する方向に当該欠陥特
徴部と連なる別の欠陥特徴部があれば、これら双方の欠
陥特徴部を前記欠陥候補としての群に含める処理を順次
行うことを特徴とする。
According to a fifth aspect of the present invention, in the method for detecting a defect on the surface of an object according to the first aspect, the processing of the defect candidate extracting step includes the steps of:
If another linear pattern adjacent to or close to the linear pattern including the defect feature includes another defect feature connected to the defect feature in the intersecting direction, both of these defect features are replaced with the defect feature. It is characterized in that processing to be included in a group as a candidate is sequentially performed.

【0021】請求項6記載の発明は、請求項5記載の物
体表面の欠陥検出方法において、前記複数の欠陥特徴部
の各々に対して、当該欠陥特徴部を含む線状パターンに
対して近接するものとして所定距離内にある別の線状パ
ターンに、前記交差する方向に当該欠陥特徴部と連なる
別の欠陥特徴部があれば、これら双方の欠陥特徴部を前
記欠陥候補としての群に含める処理を順次行うことを特
徴とする。
According to a sixth aspect of the present invention, in the method for detecting a defect on the surface of an object according to the fifth aspect, each of the plurality of defect features is close to a linear pattern including the defect feature. If another linear feature within a predetermined distance has another defect feature that is continuous with the defect feature in the intersecting direction, a process of including both of these defect features in the group as the defect candidates Are sequentially performed.

【0022】請求項7記載の発明は、請求項5記載の物
体表面の欠陥検出方法において、前記処理で得られた複
数の欠陥候補のうち、少なくとも2つの欠陥候補を連結
して新たな欠陥候補とすることを特徴とする。
According to a seventh aspect of the present invention, in the method for detecting a defect on an object surface according to the fifth aspect, at least two of the plurality of defect candidates obtained by the processing are connected to form a new defect candidate. It is characterized by the following.

【0023】請求項8記載の発明は、請求項1記載の物
体表面の欠陥検出方法において、前記欠陥候補に含まれ
る複数の欠陥特徴部の欠陥特徴量は、これら複数の欠陥
特徴量の統計量および前記欠陥候補の両端間の距離の少
なくとも一方であることを特徴とする。
According to an eighth aspect of the present invention, in the method for detecting a defect on an object surface according to the first aspect, the defect feature amounts of the plurality of defect feature portions included in the defect candidate are statistical quantities of the plurality of defect feature amounts. And at least one of a distance between both ends of the defect candidate.

【0024】請求項9記載の発明は、請求項1記載の物
体表面の欠陥検出方法において、前記欠陥信頼性評価過
程の欠陥信頼性は、前記欠陥候補に含まれる欠陥特徴部
の数を、当該欠陥候補に含まれる複数の欠陥特徴部に対
応する複数の線状パターンの本数で除して得られる値で
あることを特徴とする。
According to a ninth aspect of the present invention, in the method for detecting a defect on the surface of an object according to the first aspect, the defect reliability in the defect reliability evaluation step is based on the number of defect features included in the defect candidate. It is a value obtained by dividing by the number of a plurality of linear patterns corresponding to a plurality of defect features included in a defect candidate.

【0025】請求項10記載の発明は、検査対象物の曲
面となる表面に間隔を置いて複数の線状光を照射する計
測手段と、前記複数の線状光によって前記表面に沿った
角度で配列される複数の線状パターンの撮影を行う撮影
手段と、前記撮影で得られた複数の線状パターンから、
線状パターン処理過程および欠陥検出過程の画像処理を
通じて、前記検査対象物の表面における凹凸状の欠陥を
検出する画像処理手段とにより構成される欠陥検出装置
であって、前記線状パターン処理過程は、前記撮影で得
られた複数の線状パターンの各々に対して、当該線状パ
ターンに変形があればその変形を欠陥特徴部として検出
する欠陥特徴部検出過程と、前記欠陥特徴部の形状を表
す欠陥特徴量を少なくとも1つ抽出する欠陥特徴量抽出
過程とを含み、前記欠陥検出過程は、前記線状パターン
処理過程で得られた複数の欠陥特徴部に対して、前記線
状パターンの方向と交差する方向に連なる複数の欠陥特
徴部の群を欠陥候補として抽出する欠陥候補抽出過程
と、前記欠陥候補に含まれる複数の欠陥特徴部の欠陥特
徴量をもとに当該欠陥候補の形状を評価して、前記検査
対象物の表面における欠陥の程度および種別の少なくと
も一方を判定する欠陥形状評価過程と、前記欠陥候補か
ら欠陥としての確からしさを表す欠陥信頼性としての指
標を抽出して当該欠陥候補が欠陥であるか否かを判定す
る欠陥信頼性評価過程とを含むことを特徴とする。
According to a tenth aspect of the present invention, there is provided a measuring means for irradiating a plurality of linear lights at intervals on a curved surface of an object to be inspected, and an angle along the surface by the plurality of linear lights. A photographing means for photographing a plurality of linear patterns to be arranged, and a plurality of linear patterns obtained by the photographing,
A defect detecting apparatus comprising image processing means for detecting an uneven defect on the surface of the inspection object through image processing of a linear pattern processing step and a defect detection step, wherein the linear pattern processing step is For each of the plurality of linear patterns obtained in the photographing, if there is a deformation in the linear pattern, a defect feature detection step of detecting the deformation as a defect feature, and a shape of the defect feature. Extracting at least one defect feature quantity to be represented, wherein the defect detection step comprises: detecting a plurality of defect feature parts obtained in the linear pattern processing step, and detecting a direction of the linear pattern. A defect candidate extraction process of extracting a group of a plurality of defect feature portions connected in a direction intersecting with the defect candidate as a defect candidate, and a defect feature amount of the plurality of defect feature portions included in the defect candidate. Evaluating the shape of the candidate, a defect shape evaluation step of determining at least one of the degree and type of a defect on the surface of the inspection object, and an index as defect reliability representing the likelihood of a defect from the defect candidate A defect reliability evaluation step of extracting and determining whether or not the defect candidate is a defect.

【0026】[0026]

【発明の実施の形態】図1は物体表面の欠陥検出装置の
構成図、図2は図1のTVカメラにより撮影される光学
パターンの一例を示す図、図3は図1の線状光源から射
出される線状光により検査対象物の表面形状に応じた線
状パターンが形成される様子を示す図で、これらの図を
用いて以下に本発明の一実施形態の説明を行う。
FIG. 1 is a block diagram of an apparatus for detecting a defect on the surface of an object, FIG. 2 is a view showing an example of an optical pattern photographed by the TV camera of FIG. 1, and FIG. FIG. 4 is a diagram showing a state in which a linear pattern according to the surface shape of the inspection object is formed by the emitted linear light, and an embodiment of the present invention will be described below with reference to these drawings.

【0027】図1に示す欠陥検出装置は、飲料缶などの
検査対象物1の曲面となる表面(図1では側面)におけ
る凹凸状の欠陥の有無を検出するものであって、計測装
置2と、TVカメラ3と、量子化装置4と、記憶装置5
と、画像処理装置6とを備えている。
The defect detecting device shown in FIG. 1 detects the presence or absence of an irregular defect on the curved surface (the side surface in FIG. 1) of the inspection object 1 such as a beverage can. , TV camera 3, quantization device 4, storage device 5
And an image processing device 6.

【0028】計測装置2は、検査対象物1を、この軸を
鉛直方向に向けた状態で載置して一の方向(図では左
方)に一定の速度で搬送するコンベア21と、このコン
ベア21によって搬送される検査対象物1が所定位置を
通過したか否かの検出を行う通過センサ22と、線状光
源23とにより構成されている。この線状光源23は、
点状光源としてのレーザーダイオード231と、このレ
ーザーダイオード231からの点状光を面状に拡散して
線状光に変換するシリンドリカルレンズ232とにより
成り、上記所定位置を通過する検査対象物1の側面に上
方斜めから間隔を置いて複数の線状光を照射し、これら
複数の線状光によって上記側面に沿った角度で図2に示
すような扇状に配列される複数の線状パターンをコンベ
ア4の上面に形成(投影)するためのものである。そし
て、上記通過センサ22および線状光源23は、この線
状光が、検査対象物1の側面においてその軸とほぼ平行
になるように、かつ図3(b)に示すように検査対象物
1の側面の法線方向に対してある角度をなすように配置
される。
The measuring device 2 comprises a conveyor 21 for placing the inspection object 1 with its axis oriented in a vertical direction and transporting the object 1 in one direction (to the left in the figure) at a constant speed. The inspection apparatus 1 includes a pass sensor 22 for detecting whether or not the inspection object 1 conveyed by the sensor 21 has passed a predetermined position, and a linear light source 23. This linear light source 23
A laser diode 231 as a point light source, and a cylindrical lens 232 that diffuses the point light from the laser diode 231 into a plane and converts it into a linear light. The side surface is irradiated with a plurality of linear lights at an oblique interval from above, and a plurality of linear patterns arranged in a fan shape as shown in FIG. 2 at an angle along the side surface by the plurality of linear lights are conveyed. 4 for forming (projecting) on the upper surface. Then, the passage sensor 22 and the linear light source 23 cause the linear light to be substantially parallel to the axis on the side surface of the inspection target 1 and, as shown in FIG. Are arranged at an angle with respect to the normal direction of the side surface of.

【0029】TVカメラ3は、コンベア21の上方か
ら、その上面に形成されることになる複数の線状パター
ンを撮影するためのもので、量子化装置4は、TVカメ
ラ3からの信号をデジタル画像に変換するもので、そし
て記憶装置5は、そのデジタル画像を記憶するものであ
る。
The TV camera 3 is for photographing a plurality of linear patterns to be formed on the upper surface of the conveyor 21 from above, and the quantizing device 4 converts the signal from the TV camera 3 into a digital signal. The image is converted into an image, and the storage device 5 stores the digital image.

【0030】ここで、検査対象物1の側面への間隔を置
いた複数の線状光の照射による複数の線状パターンの形
成を、複数の線状光源を用いて実現してもよいが、本実
施形態では1の線状光源23を用いて実現すべく、コン
ベア21による検査対象物1の搬送を利用して、通過セ
ンサ22で検査対象物1が所定位置を通過したことを示
す検出結果が得られると、この検出結果をトリガーとし
て、線状光源23が所定の時間間隔で線状光を間欠照射
するとともにその線状光の必要回数の照射が終了するま
でTVカメラ3がシャッターを解放する構成が採られ
る。これにより、線状光源23から所定の時間間隔を置
いて射出された複数の線状光が検査対象物1の側面で反
射して、コンベア4の上面に扇状に配列された複数の線
状パターンが実質的に形成されることになり、その複数
の線状パターンが一の光学パターンとしてTVカメラ3
により撮影されることになる。
Here, the formation of a plurality of linear patterns by irradiating a plurality of spaced linear lights on the side surface of the inspection object 1 may be realized using a plurality of linear light sources. In the present embodiment, in order to realize using one linear light source 23, a detection result indicating that the inspection object 1 has passed a predetermined position is detected by the passage sensor 22 by using the conveyance of the inspection object 1 by the conveyor 21. Is obtained, using the detection result as a trigger, the linear light source 23 intermittently emits linear light at predetermined time intervals, and the TV camera 3 releases the shutter until the required number of irradiations of the linear light is completed. The following configuration is adopted. As a result, a plurality of linear light beams emitted from the linear light source 23 at predetermined time intervals are reflected on the side surface of the inspection object 1, and a plurality of linear patterns arranged in a fan shape on the upper surface of the conveyor 4. Are substantially formed, and the plurality of linear patterns are used as one optical pattern in the TV camera 3.
Will be taken.

【0031】画像処理装置6は、上記撮影で得られた複
数の線状パターンから、線状パターン処理過程および欠
陥検出過程の画像処理を通じて、検査対象物1の側面に
おける凹凸状の欠陥の有無を検出するものである。線状
パターン処理過程は、TVカメラ3の撮影で得られた複
数の線状パターンの各々に対して、線状パターンに変形
があればその変形を欠陥特徴部として検出する欠陥特徴
部検出過程と、欠陥特徴部の形状を表す欠陥特徴量を少
なくとも1つ抽出する欠陥特徴量抽出過程とを含み、欠
陥検出過程は、線状パターン処理過程で得られた複数の
欠陥特徴部に対して、線状パターンの方向と交差する方
向に連なる複数の欠陥特徴部の群を欠陥候補として抽出
する欠陥候補抽出過程と、欠陥候補に含まれる複数の欠
陥特徴部の欠陥特徴量をもとに欠陥候補の形状を評価し
て、検査対象物1の側面における欠陥の程度および種別
の少なくとも一方を判定する欠陥形状評価過程と、欠陥
候補から欠陥としての確からしさを表す欠陥信頼性とし
ての指標を抽出して欠陥候補が欠陥であるか否かを判定
する欠陥信頼性評価過程とを含む。なお、これら線状パ
ターン処理過程および欠陥検出過程については後で詳述
する。
The image processing device 6 determines the presence or absence of an uneven defect on the side surface of the inspection object 1 from a plurality of linear patterns obtained by the above photographing through image processing in a linear pattern processing step and a defect detection step. It is to detect. The linear pattern processing step includes, for each of the plurality of linear patterns obtained by photographing with the TV camera 3, a defect characteristic part detecting step of detecting the deformation as a defect characteristic part if the linear pattern is deformed. Extracting at least one defect feature representing the shape of the defect feature. The defect detection process includes the steps of: extracting a plurality of defect features obtained in the linear pattern processing process; A defect candidate extraction process of extracting a group of a plurality of defect feature portions connected in a direction intersecting with the direction of the pattern as a defect candidate, and a defect candidate extraction process based on the defect feature amounts of the plurality of defect feature portions included in the defect candidate. A defect shape evaluation process for evaluating the shape and determining at least one of the degree and type of a defect on the side surface of the inspection object 1 and extracting an index as a defect reliability indicating the probability of the defect from the defect candidate. Defect candidate and contains a defect reliability evaluation process determines whether the defect. The linear pattern processing process and the defect detection process will be described later in detail.

【0032】ここで、上記画像処理に使用される基本的
な各種検出ないし判別の原理を説明する。なお、より詳
細な原理については後述する。
Here, the principle of various kinds of detection or discrimination used in the image processing will be described. A more detailed principle will be described later.

【0033】まず、凹凸状の欠陥検出の原理を説明す
る。図3(a)に示すように、検査対象物1の側面に線
状光が照射されると、この線状光が検査対象物1の側面
においてその軸とほぼ平行になるので、検査対象物1の
側面における完全な円筒側面となる部分11により、線
状パターンPnのほぼ直線となる一部Pn1が形成され
る。
First, the principle of detection of an uneven defect will be described. As shown in FIG. 3A, when linear light is applied to the side surface of the inspection object 1, the linear light is substantially parallel to the axis of the side surface of the inspection object 1, so that the inspection object A portion Pn1 which is a substantially straight line of the linear pattern Pn is formed by the portion 11 which is a complete cylindrical side surface on one side surface.

【0034】これに対して、線状光が検査対象物1の側
面における凹凸状の欠陥部分に掛かると、線状光が検査
対象物1の側面の法線方向に対してある角度をなすの
で、線状パターンPnに変形が生じる。すなわち、検査
対象物1の側面における下向きに傾いた面の部分12に
より、コンベア21に向かって左に曲がる変形Pn2が
線状パターンPnに生じてその一部となり、検査対象物
1の側面における上向きに傾いた面の部分14により、
コンベア21に向かって右に曲がる変形Pn4が線状パ
ターンPnに生じてその一部となる。
On the other hand, if the linear light impinges on the uneven defect portion on the side surface of the inspection object 1, the linear light makes an angle with respect to the normal direction of the side surface of the inspection object 1. , The linear pattern Pn is deformed. That is, due to the downwardly inclined surface portion 12 on the side surface of the inspection object 1, a deformation Pn2 that turns left toward the conveyor 21 is generated in the linear pattern Pn and becomes a part of the linear pattern Pn, and the upward deformation on the side surface of the inspection object 1 occurs. By the part 14 of the surface inclined to
A deformation Pn4 that turns right toward the conveyor 21 occurs in the linear pattern Pn and becomes a part thereof.

【0035】そして、部分12,14間の部分13が深
いと、この部分に対応する線状パターンPnの位置に図
3(a)に示すような途絶が生じ、この途絶の側に近づ
くほど左右の一方に一層伸びる変形Pn3が生じる。こ
の変形Pn3はTVカメラ3の撮影範囲を超えたり、線
状光が欠陥部に到達しなかったりする。
If the portion 13 between the portions 12 and 14 is deep, an interruption as shown in FIG. 3A occurs at the position of the linear pattern Pn corresponding to this portion. A deformation Pn3 that extends further on one side is generated. This deformation Pn3 may exceed the shooting range of the TV camera 3, or the linear light may not reach the defective portion.

【0036】したがって、線状パターンPnに変形Pn
2,Pn4が生じてこれらの間に途絶が生じていれば、
換言すると途絶を境に互いに逆向きに伸びる変形が生じ
ていれば、検査対象物1の側面に、所定レベルよりも深
くなった欠陥F1があると判断することができるのであ
る。さらにいえば、部分12,14間の部分13が浅
く、途絶が生じることなく、左右にそれぞれ伸びる先端
側が反転して繋がるサイン波状の変形が生じる凹み(後
述の図5,図6参照)程度では欠陥と見なさないように
できるのである。
Therefore, the deformation Pn is added to the linear pattern Pn.
2, if Pn4 occurs and there is an interruption between them,
In other words, if deformations that extend in opposite directions occur after the interruption, it can be determined that there is a defect F1 deeper than a predetermined level on the side surface of the inspection object 1. Furthermore, if the portion 13 between the portions 12 and 14 is shallow, there is no interruption, and a dent (see FIGS. 5 and 6 described later) in which sinusoidal deformation occurs in which the leading ends extending left and right are inverted and connected. It can be considered as a defect.

【0037】次に、欠陥F1と異物との判別の原理を説
明する。図3(a)に示すように、検査対象物1の側面
に汚れや水滴などの異物15が付着していると、線状パ
ターンに単に途絶する部分Pn5が生じる。したがっ
て、単に途絶するか、途絶を境に互いに逆向きに伸びる
変形が生じているかを見ることで、欠陥F1と異物とを
判別することができる。これにより、汚れや水滴などの
異物の付着が欠陥として誤検出される問題を解決するこ
とができる。
Next, the principle of discriminating between the defect F1 and foreign matter will be described. As shown in FIG. 3A, if a foreign matter 15 such as dirt or water drops adheres to the side surface of the inspection object 1, a portion Pn5 that is simply interrupted in the linear pattern occurs. Therefore, the defect F1 and the foreign matter can be discriminated by simply seeing whether or not there is a break or deformations extending in opposite directions after the break. Thus, it is possible to solve the problem that foreign matter such as dirt and water droplets is erroneously detected as a defect.

【0038】図3(a)に示すすじ状欠陥における部分
16に、角度の急峻な凹凸状の欠陥F2があるとする
と、Pn6のように、途絶の検出は可能となるものの、
途絶を境に互いに逆向きに伸びるパターン形状の検出が
できない場合がある。このような場合、上記異物と欠陥
F2とを判別することができない。次にこれらの判別の
原理を、図面をさらに用いて説明する。
If a streak-like defect F2 having a steep angle is present in the portion 16 of the streak defect shown in FIG. 3A, the interruption can be detected as in Pn6.
In some cases, it is not possible to detect pattern shapes extending in opposite directions after the interruption. In such a case, the foreign matter and the defect F2 cannot be distinguished. Next, the principle of these determinations will be described with reference to the drawings.

【0039】図4に一例としての検査対象物の斜視図
を、図5に図4の検査対象物に対して得られる光学パタ
ーンの例を、図6に図5の光学パターンの各線状パター
ンを切り分けて抽出しその長さを正規化したものを示
す。ただし、Aは欠陥F1を含むすじ状欠陥、Bは欠陥
F1を含む点状欠陥、Cは検出対象外のごく浅い凹凸、
Dは異物、そしてすじ状欠陥AにおけるEは欠陥F2を
含む部分を示す。また、図5,図6において、図4のA
〜Eに対応する各部分にその符号を用いてある。
FIG. 4 is a perspective view of an inspection object as an example, FIG. 5 is an example of an optical pattern obtained for the inspection object of FIG. 4, and FIG. 6 is a linear pattern of the optical pattern of FIG. It shows the result obtained by dividing and extracting and normalizing the length. However, A is a streak defect including the defect F1, B is a point defect including the defect F1, C is a very shallow unevenness outside the detection target,
D indicates a foreign substance, and E in the streak defect A indicates a portion including the defect F2. In FIGS. 5 and 6, A in FIG.
The code is used for each part corresponding to .about.E.

【0040】まず、図5に示す光学パターンから、図6
に示すように、各線状パターンを切り出して長さを正規
化した画像を生成し、この後、個々の線状パターンに、
欠陥F1に相当する食い違いパターン(図3(a)に示
すPf参照)があればその食い違いパターンを欠陥特徴
部として検出する。これにより、ごく浅い凹凸Cおよび
異物Dの各部分が検出すべき欠陥から除外され、またこ
の段階では検出すべき欠陥F2を含む部分Eも検出すべ
き欠陥から除外される。
First, from the optical pattern shown in FIG.
As shown in, each linear pattern is cut out to generate an image whose length is normalized, and thereafter, into individual linear patterns,
If there is a stagger pattern corresponding to the defect F1 (see Pf shown in FIG. 3A), the stagger pattern is detected as a defect feature. As a result, each portion of the very shallow unevenness C and foreign matter D is excluded from the defects to be detected, and at this stage, the portion E including the defect F2 to be detected is also excluded from the defects to be detected.

【0041】続いて、線状パターンの方向と直交する方
向に連なる複数の欠陥特徴部の群を欠陥候補として抽出
する。このとき、各欠陥特徴部を含む線状パターンに隣
接ないし近接する別の線状パターンに、上記直交する方
向に当該欠陥特徴部と連なる別の欠陥特徴部があれば、
これら双方の欠陥特徴部を欠陥候補としての群に含める
処理を順次行う。これにより、部分Eをすじ状欠陥Aに
含めることができ、異物Dの部分と欠陥F2の部分Eと
を判別することができるとともに、最終的に、すじ状欠
陥Aと点状欠陥Bとを検出することができる。
Subsequently, a group of a plurality of defect feature parts connected in a direction orthogonal to the direction of the linear pattern is extracted as a defect candidate. At this time, if another linear pattern adjacent to or close to the linear pattern including each defect characteristic portion has another defect characteristic portion connected to the defect characteristic portion in the orthogonal direction,
The process of including both of these defect feature parts in a group as defect candidates is sequentially performed. As a result, the portion E can be included in the streak defect A, the portion of the foreign matter D and the portion E of the defect F2 can be determined, and finally, the streak defect A and the point defect B can be determined. Can be detected.

【0042】ここで、図7に、すじ状および点状の欠
陥、ごく浅い凹凸、異物、垂直面(良品部)の弁別基準
をまとめた図を示す。すじ状および点状の欠陥と異物
は、食い違いパターンの大小、つまり途絶を境に互いに
逆向きに伸びる変形があるかどうかで区別することがで
きる。また、すじ状および点状の欠陥と浅い凹凸は、ラ
イン途絶の有無で区別することができる。
FIG. 7 is a diagram summarizing the criteria for discriminating streak-like and dot-like defects, very shallow irregularities, foreign matter, and vertical surfaces (non-defective parts). Streak-like and dot-like defects and foreign matter can be distinguished by the size of the staggered pattern, that is, by the presence or absence of deformations extending in opposite directions after the break. Further, streak-like and dot-like defects and shallow irregularities can be distinguished by the presence or absence of line breaks.

【0043】また、検査対象物1の側面上における複数
の線状光の間隔が既知であれば、欠陥候補に含まれる線
状パターンの数からその欠陥の長さ(図6のLa,L
b)が分かるので、すじ状欠陥Aおよび点状欠陥Bを定
量的に区別することができる。
If the interval between a plurality of linear lights on the side surface of the inspection object 1 is known, the length of the defect (La, L in FIG. 6) is determined from the number of linear patterns included in the defect candidate.
Since b) is known, the streak defect A and the point defect B can be quantitatively distinguished.

【0044】以上の検出ないし判別の原理を用いる線状
パターン処理過程および欠陥検出過程の処理が画像処理
装置6によって実行される。以下、これら線状パターン
処理過程および欠陥検出過程の処理手順について図面を
さらに用いて説明する。
The processing of the linear pattern processing step and the defect detection step using the above-described principle of detection or discrimination is executed by the image processing device 6. Hereinafter, the processing procedure of the linear pattern processing process and the defect detection process will be described with reference to the drawings.

【0045】図8は画像処理装置により実行される線状
パターン処理過程および欠陥検出過程の処理手順を示す
フローチャート、図9は欠陥特徴部検出過程などのフロ
ーチャート、図10は欠陥特徴部検出過程および欠陥特
徴量抽出過程の説明図、図11は欠陥候補の追跡処理の
説明図、図12は欠陥候補抽出過程のフローチャート、
図13は欠陥形状評価過程および欠陥信頼性評価過程の
説明図、図14は欠陥形状評価過程および欠陥信頼性評
価過程のフローチャートである。
FIG. 8 is a flowchart showing a processing procedure of a linear pattern processing step and a defect detection step executed by the image processing apparatus, FIG. 9 is a flowchart of a defect characteristic part detection step and the like, and FIG. FIG. 11 is an explanatory diagram of a defect feature amount extraction process, FIG. 11 is an explanatory diagram of a defect candidate tracking process, FIG. 12 is a flowchart of a defect candidate extraction process,
FIG. 13 is an explanatory diagram of the defect shape evaluation process and the defect reliability evaluation process, and FIG. 14 is a flowchart of the defect shape evaluation process and the defect reliability evaluation process.

【0046】図8に示すように、欠陥検出の処理は、各
線状パターンに含まれる欠陥特徴部を抽出する線状パタ
ーン処理過程S1と、その欠陥特徴部の線状パターン間
での位置関係をもとに欠陥特徴部を連結し欠陥判定を行
う欠陥検出過程S2とに大別される。そして、線状パタ
ーン処理過程S1は、欠陥特徴部検出過程S11と欠陥
特徴抽出過程S12とに分けられる。
As shown in FIG. 8, the defect detection process includes a linear pattern processing step S1 for extracting a defect feature included in each linear pattern, and a positional relationship between the linear patterns of the defect feature. A defect detection process S2 for connecting defect feature parts and performing defect determination is basically classified. The linear pattern processing step S1 is divided into a defect feature detection step S11 and a defect feature extraction step S12.

【0047】欠陥特徴部検出過程S11においては、検
査対象物1の側面の鉛直方向の形状変化によって発生す
る線状パターンの曲がりを捕らえることにより、欠陥特
徴部を検出する。検出すべき欠陥F1があると線状パタ
ーンの途絶を伴った食い違いパターンが見られるので、
そのパターンを利用して、図10に示すように、線状パ
ターンがその中心線を跨ぐ部分L1を検出し、この上下
で線状パターンの曲がりが最大となる位置Pr,Plを
検出する(図9のS110,S111)。ここで、後述
する幅および深さが十分大きければ欠陥特徴部とする。
In the defect feature detection step S11, the defect feature is detected by capturing the bending of the linear pattern generated by the vertical shape change of the side surface of the inspection object 1. If there is a defect F1 to be detected, a staggered pattern with an interruption of the linear pattern is seen.
Using the pattern, as shown in FIG. 10, a portion L1 where the linear pattern straddles the center line is detected, and positions Pr and Pl where the bending of the linear pattern is maximum above and below are detected (see FIG. 10). 9 (S110, S111). Here, if the width and depth described later are sufficiently large, it is regarded as a defect feature portion.

【0048】欠陥特徴抽出過程S12において、上記欠
陥特徴部検出過程S11で検出された欠陥特徴部に対し
て、欠陥部の大きさを定量的に評価できるよう欠陥特徴
量を求める。欠陥特徴量として、点Pr−Pl間の線状
パターンの方向に垂直な方向の距離(以下「深さ」)L
2と点Pr−Pl間の線状パターンの方向に沿った距離
(以下「幅」)L3の2つを抽出する(図9のS11
2)。そして、深さL2および幅L3が十分大きければ
欠陥特徴部とする(図9のS113でY)。これによ
り、線状パターンの曲がり形状を求めることができる。
In the defect feature extraction step S12, a defect feature amount is determined for the defect feature detected in the defect feature detection step S11 so that the size of the defect can be quantitatively evaluated. As a defect feature amount, a distance (hereinafter, “depth”) L in a direction perpendicular to the direction of the linear pattern between points Pr and Pl
Two distances L3 along the direction of the linear pattern between the points 2 and Pr-Pl (hereinafter, "width") L3 are extracted (S11 in FIG. 9).
2). If the depth L2 and the width L3 are sufficiently large, it is determined to be a defect feature (Y in S113 in FIG. 9). Thereby, the bent shape of the linear pattern can be obtained.

【0049】また、図10に示すように、食い違いパタ
ーンの内側にあたる部分、すなわち線分Pr−Pl間の
平均明度Iの値も特徴量として求める(図9のS11
4)。このように欠陥特徴部での明度を求めておくこと
により、図10のI3に示すように、欠陥部では線状パ
ターンの明度が低下することから、線状パターンの途絶
を判断することができる。
Further, as shown in FIG. 10, the portion inside the staggered pattern, that is, the value of the average lightness I between the line segments Pr-Pl is also obtained as a feature value (S11 in FIG. 9).
4). By determining the brightness at the defect feature portion in this way, the brightness of the linear pattern is reduced at the defective portion as shown by I3 in FIG. 10, so that the interruption of the linear pattern can be determined. .

【0050】ステップS114の後、欠陥特徴部の位
置、幅、深さ、明度を記録する(図9のS115)。以
上の処理を線状パターンの最下部に至るまで繰り返す
(図9のS116)。
After step S114, the position, width, depth, and brightness of the defective feature are recorded (S115 in FIG. 9). The above process is repeated until the bottom of the linear pattern is reached (S116 in FIG. 9).

【0051】次に、欠陥検出過程S2に進むのである
が、この欠陥検出過程S2は、欠陥候補抽出過程S21
と欠陥形状評価過程S22とに分けられる。ただし、欠
陥形状評価過程S22には後述する欠陥信頼性評価過程
が含まれる。
Next, the process proceeds to the defect detection step S2, which is a defect candidate extraction step S21.
And a defect shape evaluation process S22. However, the defect shape evaluation step S22 includes a defect reliability evaluation step described later.

【0052】欠陥候補抽出過程S21においては、上記
線状パターン処理過程S1で抽出された欠陥特徴部を連
結して欠陥候補を生成する(図11参照)。
In the defect candidate extraction step S21, the defect feature parts extracted in the linear pattern processing step S1 are connected to generate a defect candidate (see FIG. 11).

【0053】欠陥候補抽出過程S21の処理は図12に
示す手順で行われる。 (1)図11に示すように、最も左端の線状パターンか
ら順に、追跡始点となる欠陥特徴部d10を探す(図1
2のS120,S121)。 (2)線状パターンlm上の欠陥特徴部dl0を始点と
し、その右側の線状パターンlm+1上でd10の位置
の上下±tの範囲内に欠陥特徴部d11が存在するかを
調べる(S122,S123)。 (3)欠陥特徴部d11が存在する場合(S123で
Y)、その右側の線状パターンlm±2上でその位置の
上下±tの範囲内に欠陥特徴部d12が存在するか調べ
る(S123)。 (4)存在しなければさらにもう1つ右側の線状パター
ンlm+3上でd11の位置の上下±tの範囲内に欠陥
特徴部d12が存在するか調べる(S126)。 (5)上記(3)〜(4)の過程を繰り返し、n本の線
状パターンに連続して欠陥特徴部が発見されなければ追
跡された欠陥特徴部の群(図11ではd10〜d17)
をまとめて1つの欠陥候補A1とする(S124)。 (6)次の追跡始点となる欠陥特徴部d20を検出し、
手順(2)〜(5)を繰り返す。 (7)手順(1)〜(6)を画像内で追跡始点となる欠
陥特徴部がなくなる(追跡始点探索が一番右端の線状パ
ターンの最下部に到達する)まで繰り返す(S12
8)。
The process of the defect candidate extraction step S21 is performed according to the procedure shown in FIG. (1) As shown in FIG. 11, in order from the leftmost linear pattern, a defect feature d10 serving as a tracking start point is searched for (FIG. 1).
2 (S120, S121). (2) With the defect feature d10 on the linear pattern lm as a starting point, it is checked whether or not the defect feature d11 exists within a range of ± t above and below the position d10 on the linear pattern lm + 1 on the right side (S122, S123). (3) When the defect feature d11 exists (Y in S123), it is checked whether the defect feature d12 exists within a range of ± t above and below the position on the right side linear pattern lm ± 2 (S123). . (4) If it does not exist, it is checked whether or not the defect feature part d12 exists within a range of ± t above and below the position of d11 on the further right-hand linear pattern lm + 3 (S126). (5) The above-mentioned steps (3) and (4) are repeated, and if no defect features are found successively in n linear patterns, a group of defect features tracked (d10 to d17 in FIG. 11).
Are combined into one defect candidate A1 (S124). (6) Detect defect feature d20 serving as the next tracking start point,
Steps (2) to (5) are repeated. (7) Steps (1) to (6) are repeated until there is no defect feature portion serving as a tracking start point in the image (the tracking start point search reaches the bottom of the rightmost linear pattern) (S12).
8).

【0054】以上の処理において、手順(5)で追跡終
了を決定する条件nの数値は一つの欠陥候補内に含まれ
る途切れの許容値となるため、例えば欠陥画像を2値画
像として扱い、連結領域を抽出する方法とは異なり、途
切れのある欠陥候補も抽出が可能である。nを大きくす
ることにより、より疎らな欠陥特徴部の集合も欠陥候補
として抽出が可能となる。
In the above processing, the numerical value of the condition n for determining the end of tracking in the procedure (5) is an allowable value of discontinuity included in one defect candidate. Unlike the method of extracting a region, it is possible to extract a defect candidate with a break. By increasing n, a sparser set of defect features can be extracted as defect candidates.

【0055】次に、上述のように短い途切れを許容した
追跡方法を用いる方法では対応できないケースに対応す
るための欠陥候補結合処理について図13を用いて説明
する。A2のように欠陥特徴部を比較的密に含む欠陥候
補が、間に上述のn(図13ではn=2)以上の幅を持
つ途切れを有するために2つの欠陥候補A21とA22
に別れて検出されることがある。このような場合には、
A21とA22の端点間の距離d1ならびに高さの差d
2を求め、これらがあらかじめ決められた許容値以内で
あればA21,A22の他にA21とA22を結合した
欠陥候補A2を生成し、その結合関係を記録する。
Next, a defect candidate combining process to cope with a case that cannot be dealt with by the method using the tracking method allowing a short break as described above will be described with reference to FIG. A defect candidate relatively densely including a defect feature portion, such as A2, has a discontinuity having a width of n or more (n = 2 in FIG. 13) between the two defect candidates A21 and A22.
May be detected separately. In such a case,
Distance d1 between end points of A21 and A22 and difference d in height d
2 are found, and if these are within a predetermined allowable value, a defect candidate A2 combining A21 and A22 is generated in addition to A21 and A22, and the connection relationship is recorded.

【0056】次に、欠陥形状評価過程および欠陥信頼性
評価過程について図14を用いて説明する。 (11)各欠陥候補について、欠陥候補の両端聞の距離
(以下「長さ」)、および欠陥候補に含まれる欠陥特徴
部の欠陥特徴量(幅、深さ、明度)の平均値を求める
(図14のS220,S221)。なお、欠陥候補に対
する欠陥形状評価過程および欠陥信頼性評価過程による
欠陥判定処理は、上述の欠陥候補結合処理により生成さ
れた欠陥候補(図13ではA2)に対して優先して実行
する。 (12)各欠陥候補について、(欠陥特徴部の長さ/欠
陥候補全体の長さ)で表される欠陥信頼性(密度)を求
める(S222)。 (13)欠陥信頼性の低い欠陥候補を虚報部分として除
外する(S223)。 (14)明度が高い欠陥候補を虚報部分として除外する
(S224)。 (15)長さに基づいて欠陥種別の判定を行う(S22
5〜S227)。 (16)深さ、幅に基づいて欠陥程度の判定を行う(S
228)。 (17)欠陥候補の結合関係をもとに不要な判定情報を
除外する。現在注目している欠陥候補(図13ではA2
1あるいはA22)が上記手順により欠陥部であると判
定されても、それが上述の欠陥部結合処理により生成さ
れ、かつ先に欠陥部と判定されたより長い欠陥候補(図
13ではA2)の一部であった場合には現在注目してい
る欠陥部は欠陥としない(S229)。
Next, the defect shape evaluation process and the defect reliability evaluation process will be described with reference to FIG. (11) For each defect candidate, an average value of the distance between both ends of the defect candidate (hereinafter, “length”) and the defect feature amounts (width, depth, brightness) of the defect feature part included in the defect candidate is obtained ( S220 and S221 in FIG. 14). It should be noted that the defect determination process in the defect shape evaluation process and the defect reliability evaluation process for the defect candidate is preferentially executed for the defect candidate (A2 in FIG. 13) generated by the above-described defect candidate combining process. (12) For each defect candidate, a defect reliability (density) represented by (length of defect feature / length of entire defect candidate) is obtained (S222). (13) Defect candidates with low defect reliability are excluded as false alarm parts (S223). (14) A defect candidate having a high brightness is excluded as a false alarm part (S224). (15) The defect type is determined based on the length (S22).
5 to S227). (16) Determining the degree of defect based on the depth and width (S
228). (17) Unnecessary determination information is excluded based on the connection relationship between defect candidates. The defect candidate currently focused on (A2 in FIG. 13)
1 or A22) is determined to be a defective portion by the above procedure, it is generated by the above-described defective portion combining process and is one of longer defect candidates (A2 in FIG. 13) previously determined to be a defective portion. If it is a defective portion, the defective portion currently focused on is not regarded as a defect (S229).

【0057】上記手順において、手順(13)が欠陥信
頼性評価過程、手順(14)〜(17)が欠陥形状評価
過程である。ここで、図13において、欠陥候補A2は
すじ状欠陥部、A21,A22は上述のように欠陥候補
A2が分離して見える部分、B2は点状欠陥、C1は浅
い凹凸、D1はごく小さな点状の凹凸が連続しているた
めに生じる虚報部、D2は異物である。これらの欠陥候
補は各々次のように分類される。 (21)欠陥信頼性の低い欠陥候補D1は虚報とされ
る。また、異物D2は欠陥部としては認識されない。 (22)明度情報に基づいて、欠陥部での明度が明るい
欠陥候補C1は虚報とされる。 (23)長さによる分類に従って、A2,C1はすじ状
欠陥、A21,A22,B2は点状欠陥として分類され
る。 (24)深さと幅情報に基づいて、A2は真のすじ状欠
陥、A21,A22,B2は真の点状欠陥であると判定
される。 (25)A21,A22は、これらを結合したA2が真
のすじ状欠陥であると判断されているので、欠陥判定か
ら除外される。
In the above procedure, procedure (13) is a defect reliability evaluation process, and procedures (14) to (17) are defect shape evaluation processes. Here, in FIG. 13, defect candidate A2 is a streak defect portion, A21 and A22 are portions where defect candidate A2 appears to be separated as described above, B2 is a point defect, C1 is a shallow unevenness, and D1 is a very small point. The false alarm part, D2, which is generated due to the continuous irregularities in the shape of a circle, is a foreign substance. These defect candidates are classified as follows. (21) The defect candidate D1 with low defect reliability is false information. Further, the foreign matter D2 is not recognized as a defective portion. (22) Based on the brightness information, the defect candidate C1 having a bright brightness at the defective portion is regarded as a false report. (23) According to the classification based on the length, A2 and C1 are classified as streak defects, and A21, A22 and B2 are classified as point defects. (24) Based on the depth and width information, A2 is determined to be a true streak defect, and A21, A22, and B2 are determined to be true point-like defects. (25) A21 and A22 are excluded from the defect determination because A2 obtained by combining them is determined to be a true stripe defect.

【0058】以上のように、欠陥候補からすじ状欠陥A
2と点状欠陥B2だけが真の欠陥部であると判断され、
それ以外は虚報あるいは不要な情報として除外される。
このように、欠陥候補の欠陥形状だけでなく、欠陥信頼
性を考慮して判定することにより、正しい欠陥の判定が
得られる。
As described above, the defect A
2 and the point defect B2 alone are determined to be true defects,
Others are excluded as false information or unnecessary information.
As described above, by making a determination in consideration of not only the defect shape of the defect candidate but also the defect reliability, a correct defect can be determined.

【0059】[0059]

【発明の効果】以上のことから明らかなように、請求項
1記載の発明によれば、検査対象物の曲面となる表面に
間隔を置いて複数の線状光を照射し、これら複数の線状
光によって前記表面に沿った角度で配列される複数の線
状パターンの撮影を行い、この撮影で得られた複数の線
状パターンから、線状パターン処理過程および欠陥検出
過程の画像処理を通じて、前記検査対象物の表面におけ
る凹凸状の欠陥を検出する欠陥検出方法であって、前記
線状パターン処理過程は、前記撮影で得られた複数の線
状パターンの各々に対して、当該線状パターンに変形が
あればその変形を欠陥特徴部として検出する欠陥特徴部
検出過程と、前記欠陥特徴部の形状を表す欠陥特徴量を
少なくとも1つ抽出する欠陥特徴量抽出過程とを含み、
前記欠陥検出過程は、前記線状パターン処理過程で得ら
れた複数の欠陥特徴部に対して、前記線状パターンの方
向と交差する方向に連なる複数の欠陥特徴部の群を欠陥
候補として抽出する欠陥候補抽出過程と、前記欠陥候補
に含まれる複数の欠陥特徴部の欠陥特徴量をもとに当該
欠陥候補の形状を評価して、前記検査対象物の表面にお
ける欠陥の程度および種別の少なくとも一方を判定する
欠陥形状評価過程と、前記欠陥候補から欠陥としての確
からしさを表す欠陥信頼性としての指標を抽出して当該
欠陥候補が欠陥であるか否かを判定する欠陥信頼性評価
過程とを含むので、個々の線状パターンから例えば面方
向が変化している部分が欠陥特徴部として検出され、そ
の部分に対する欠陥特徴量が抽出されるようになり、得
られた欠陥特徴部の追跡で欠陥特徴部の群が欠陥候補と
して抽出され、その欠陥候補について欠陥形状と欠陥信
頼性の両方を併用して欠陥の程度や種別の判定が行われ
るようになり、これにより、欠陥部が不明瞭かつノイズ
が含まれる場合にも正しい欠陥検出が行える。
As is apparent from the above description, according to the first aspect of the present invention, a plurality of linear light beams are radiated at intervals to the curved surface of the inspection object. By taking a plurality of linear patterns arranged at an angle along the surface by the shape light, from a plurality of linear patterns obtained by this shooting, through the image processing of the linear pattern processing step and the defect detection step, A defect detection method for detecting an irregular defect on a surface of the inspection object, wherein the linear pattern processing step includes, for each of a plurality of linear patterns obtained by the photographing, the linear pattern If there is a deformation, a defect feature detection step of detecting the deformation as a defect feature, and a defect feature extraction step of extracting at least one defect feature representing the shape of the defect feature,
In the defect detecting step, a group of a plurality of defect feature parts connected in a direction intersecting with the direction of the linear pattern is extracted as a defect candidate for the plurality of defect feature parts obtained in the linear pattern processing step. A defect candidate extraction step, and evaluating a shape of the defect candidate based on defect feature amounts of a plurality of defect feature parts included in the defect candidate, and at least one of a degree and a type of a defect on the surface of the inspection object. And a defect reliability evaluation step of extracting an index as defect reliability representing the likelihood of a defect from the defect candidate to determine whether the defect candidate is a defect. Therefore, for example, a portion where the plane direction is changed is detected as a defect feature from each linear pattern, and a defect feature amount for the portion is extracted, and the obtained defect feature is obtained. In the tracking, a group of defect features is extracted as a defect candidate, and the degree and type of the defect are determined by using both the defect shape and the defect reliability for the defect candidate. Even when the image is unclear and includes noise, correct defect detection can be performed.

【0060】請求項2記載の発明によれば、請求項1記
載の物体表面の欠陥検出方法において、前記欠陥特徴部
検出過程の線状パターンの変形とは途絶を境に互いに逆
向きに伸びる変形であるので、単純な線状パターンの途
絶を欠陥特徴部と誤認識することを防ぐことができる。
According to a second aspect of the present invention, in the method for detecting a defect on the surface of an object according to the first aspect, the deformation extending in opposite directions to the deformation of the linear pattern in the step of detecting the defect feature portion is performed. Therefore, it is possible to prevent the interruption of a simple linear pattern from being erroneously recognized as a defective feature.

【0061】請求項3記載の発明によれば、請求項1記
載の物体表面の欠陥検出方法において、前記欠陥特徴量
抽出過程の欠陥特徴量とは、その欠陥特徴部を含む線状
パターンの方向およびこの方向と直交する方向の少なく
とも一方に沿った当該欠陥特徴部の大きさであり、この
ような欠陥特徴量を抽出することにより後の処理におけ
る欠陥判定に有用な情報を得ることができる。
According to a third aspect of the present invention, in the method for detecting a defect on the surface of an object according to the first aspect, the defect feature amount in the defect feature amount extracting step is defined as a direction of a linear pattern including the defect feature portion. And the size of the defect feature portion along at least one of the directions orthogonal to this direction. By extracting such a defect feature amount, it is possible to obtain useful information for defect determination in subsequent processing.

【0062】請求項4記載の発明によれば、請求項1記
載の物体表面の欠陥検出方法において、前記欠陥特徴量
抽出過程の欠陥特徴量とはその欠陥特徴部の明度であ
り、この明度を元にして欠陥特徴部中央で生じる線状パ
ターンの途絶を判定することによって、深い凹凸と浅い
凹凸を区別することができる。
According to a fourth aspect of the present invention, in the defect detecting method for an object surface according to the first aspect, the defect feature amount in the defect feature amount extracting step is the brightness of the defect feature portion. By determining the discontinuity of the linear pattern generated at the center of the defect feature based on the original, it is possible to distinguish between the deep unevenness and the shallow unevenness.

【0063】請求項5記載の発明によれば、請求項1記
載の物体表面の欠陥検出方法において、前記欠陥候補抽
出過程の処理として、前記複数の欠陥特徴部の各々に対
して、当該欠陥特徴部を含む線状パターンに隣接ないし
近接する別の線状パターンに、前記交差する方向に当該
欠陥特徴部と連なる別の欠陥特徴部があれば、これら双
方の欠陥特徴部を前記欠陥候補としての群に含める処理
を順次行うのであり、例えば隣り合う線状パターンの欠
陥特徴部を順次追跡して連結し、欠陥候補を生成すれ
ば、水平な欠陥候補のみならず曲がった欠陥候補をも抽
出することができる。
According to a fifth aspect of the present invention, in the method for detecting a defect on the surface of an object according to the first aspect of the present invention, the defect candidate extraction process is performed on each of the plurality of defect characteristic portions. If another linear pattern adjacent to or close to the linear pattern including the portion has another defect characteristic portion connected to the defect characteristic portion in the intersecting direction, both of these defect characteristic portions are regarded as the defect candidates. The process of including in a group is sequentially performed. For example, if defect features of adjacent linear patterns are sequentially tracked and connected, and a defect candidate is generated, not only a horizontal defect candidate but also a bent defect candidate is extracted. be able to.

【0064】請求項6記載の発明によれば、請求項5記
載の物体表面の欠陥検出方法において、前記複数の欠陥
特徴部の各々に対して、当該欠陥特徴部を含む線状パタ
ーンに対して近接するものとして所定距離内にある別の
線状パターンに、前記交差する方向に当該欠陥特徴部と
連なる別の欠陥特徴部があれば、これら双方の欠陥特徴
部を前記欠陥候補としての群に含める処理を順次行うの
で、欠陥候補が途切れて短い欠陥候補が複数あるように
見える場合でも、短い途切れに影響されずに追跡が行え
る。
According to a sixth aspect of the present invention, in the method for detecting a defect on an object surface according to the fifth aspect, for each of the plurality of defect features, a linear pattern including the defect feature is provided. If another linear pattern that is within a predetermined distance as being close to another has another defect feature connected to the defect feature in the intersecting direction, both of these defect features are grouped as the defect candidate. Since the inclusion process is performed sequentially, even if the defect candidate is interrupted and it appears that there are a plurality of short defect candidates, tracking can be performed without being affected by the short interruption.

【0065】請求項7記載の発明によれば、請求項5記
載の物体表面の欠陥検出方法において、前記処理で得ら
れた複数の欠陥候補のうち、少なくとも2つの欠陥候補
を連結して新たな欠陥候補とするので、欠陥候補が途切
れて短い欠陥候補が複数あるように見える場合におい
て、途切れが大きい場合にも短い欠陥が2つあると誤認
識されるのを防ぐことができる。
According to a seventh aspect of the present invention, in the method for detecting a defect on an object surface according to the fifth aspect, at least two of the plurality of defect candidates obtained by the processing are connected to form a new defect candidate. Since it is assumed that the defect candidate is interrupted and there are a plurality of short defect candidates, it is possible to prevent erroneous recognition that there are two short defects even when the interruption is large.

【0066】請求項8記載の発明によれば、請求項1記
載の物体表面の欠陥検出方法において、前記欠陥候補に
含まれる複数の欠陥特徴部の欠陥特徴量は、これら複数
の欠陥特徴量の統計量および前記欠陥候補の両端間の距
離の少なくとも一方であるので、欠陥候補の長さあるい
は欠陥候補に含まれる欠陥特徴部の例えば形状特徴を用
いて、すじ状欠陥と点状欠陥の区別や欠陥程度(欠陥部
の幅、深さなど)の判定を行うことができる。
According to an eighth aspect of the present invention, in the method for detecting a defect on an object surface according to the first aspect, the defect feature amounts of the plurality of defect feature portions included in the defect candidate are the same as those of the plurality of defect feature amounts. Since it is at least one of the statistic and the distance between both ends of the defect candidate, using the length of the defect candidate or the shape feature of the defect feature portion included in the defect candidate, for example, to distinguish between a streak defect and a point defect, It is possible to determine the degree of defect (the width, depth, etc. of the defective portion).

【0067】請求項9記載の発明によれば、請求項1記
載の物体表面の欠陥検出方法において、前記欠陥信頼性
評価過程の欠陥信頼性は、前記欠陥候補に含まれる欠陥
特徴部の数を、当該欠陥候補に含まれる複数の欠陥特徴
部に対応する複数の線状パターンの本数で除して得られ
る値であるので、この値(欠陥特徴部の密度)を用いて
欠陥の有無を判定すれば、細かな凹凸が連続している場
合などに生じる途切れの多い欠陥候補を欠陥として誤検
出したり、ノイズによって欠陥候補が本来より長く検出
されるのを防止することができる。
According to a ninth aspect of the present invention, in the method for detecting a defect on an object surface according to the first aspect, the defect reliability in the defect reliability evaluation step is determined by the number of defect features included in the defect candidate. Since the value is obtained by dividing by the number of the plurality of linear patterns corresponding to the plurality of defect features included in the defect candidate, the presence / absence of a defect is determined using this value (density of the defect features). This makes it possible to prevent erroneous detection of a defect candidate having many discontinuities that occurs when fine irregularities are continuous as a defect, and prevent a defect candidate from being detected longer than originally due to noise.

【0068】請求項10記載の発明によれば、検査対象
物の曲面となる表面に間隔を置いて複数の線状光を照射
する計測手段と、前記複数の線状光によって前記表面に
沿った角度で配列される複数の線状パターンの撮影を行
う撮影手段と、前記撮影で得られた複数の線状パターン
から、線状パターン処理過程および欠陥検出過程の画像
処理を通じて、前記検査対象物の表面における凹凸状の
欠陥を検出する画像処理手段とにより構成される欠陥検
出装置であって、前記線状パターン処理過程は、前記撮
影で得られた複数の線状パターンの各々に対して、当該
線状パターンに変形があればその変形を欠陥特徴部とし
て検出する欠陥特徴部検出過程と、前記欠陥特徴部の形
状を表す欠陥特徴量を少なくとも1つ抽出する欠陥特徴
量抽出過程とを含み、前記欠陥検出過程は、前記線状パ
ターン処理過程で得られた複数の欠陥特徴部に対して、
前記線状パターンの方向と交差する方向に連なる複数の
欠陥特徴部の群を欠陥候補として抽出する欠陥候補抽出
過程と、前記欠陥候補に含まれる複数の欠陥特徴部の欠
陥特徴量をもとに当該欠陥候補の形状を評価して、前記
検査対象物の表面における欠陥の程度および種別の少な
くとも一方を判定する欠陥形状評価過程と、前記欠陥候
補から欠陥としての確からしさを表す欠陥信頼性として
の指標を抽出して当該欠陥候補が欠陥であるか否かを判
定する欠陥信頼性評価過程とを含むので、物体表面の凹
凸欠陥を正しく検出することができる。
According to the tenth aspect of the present invention, the measuring means for irradiating a plurality of linear lights at intervals on the curved surface of the object to be inspected, and the measuring means along the surface by the plurality of linear lights Photographing means for photographing a plurality of linear patterns arranged at an angle, and a plurality of linear patterns obtained by the photographing, through image processing in a linear pattern processing step and a defect detection step, to obtain an image of the inspection object. A defect detection apparatus configured by an image processing unit that detects an uneven defect on a surface, wherein the linear pattern processing step is performed on each of the plurality of linear patterns obtained by the imaging. If the linear pattern is deformed, a defect feature detection step of detecting the deformation as a defect feature, and a defect feature extraction step of extracting at least one defect feature representing the shape of the defect feature are included. , The defect detection process for a plurality of defect features obtained in the linear pattern process,
A defect candidate extraction process of extracting a group of a plurality of defect feature portions connected in a direction intersecting with the direction of the linear pattern as a defect candidate, and a defect feature amount of the plurality of defect feature portions included in the defect candidate. Evaluating the shape of the defect candidate, a defect shape evaluation step of determining at least one of the degree and type of a defect on the surface of the inspection object, and a defect reliability representing the likelihood as a defect from the defect candidate Since the method includes a defect reliability evaluation step of extracting an index and determining whether or not the defect candidate is a defect, the irregularity defect on the object surface can be correctly detected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】物体表面の欠陥検出装置の構成図である。FIG. 1 is a configuration diagram of a defect detection device for an object surface.

【図2】図1のTVカメラにより撮影される光学パター
ンの一例を示す図である。
FIG. 2 is a diagram illustrating an example of an optical pattern captured by the TV camera in FIG. 1;

【図3】図1の線状光源から射出される線状光により検
査対象物の表面形状に応じた線状パターンが形成される
様子を示す図である。
FIG. 3 is a diagram illustrating a state in which a linear pattern according to the surface shape of an inspection target is formed by linear light emitted from the linear light source in FIG. 1;

【図4】一例としての検査対象物の斜視図である。FIG. 4 is a perspective view of an inspection object as an example.

【図5】図4の検査対象物に対して得られる光学パター
ンの例を示す図である。
FIG. 5 is a diagram illustrating an example of an optical pattern obtained for the inspection target in FIG. 4;

【図6】図5の光学パターンの各線状パターンを切り分
けて抽出しその長さを正規化したものを示す図である。
FIG. 6 is a diagram showing the linear pattern of the optical pattern of FIG. 5 cut out and extracted, and the length thereof is normalized.

【図7】すじ状および点状の欠陥、ごく浅い凹凸、異
物、垂直面(良品部)の弁別基準をまとめた図である。
FIG. 7 is a diagram summarizing discrimination criteria for streak-like and point-like defects, very shallow irregularities, foreign matters, and vertical surfaces (non-defective parts).

【図8】画像処理装置により実行される線状パターン処
理過程および欠陥検出過程の処理手順を示すフローチャ
ートである。
FIG. 8 is a flowchart showing a processing procedure of a linear pattern processing step and a defect detection step executed by the image processing apparatus.

【図9】欠陥特徴部検出過程などのフローチャートであ
る。
FIG. 9 is a flowchart of a defect feature detection process and the like.

【図10】欠陥特徴部検出過程および欠陥特徴量抽出過
程の説明図である。
FIG. 10 is an explanatory diagram of a defect feature portion detection process and a defect feature value extraction process.

【図11】欠陥候補の追跡処理の説明図である。FIG. 11 is an explanatory diagram of a tracking process of a defect candidate.

【図12】欠陥候補抽出過程のフローチャートである。FIG. 12 is a flowchart of a defect candidate extraction process.

【図13】欠陥形状評価過程および欠陥信頼性評価過程
の説明図である。
FIG. 13 is an explanatory diagram of a defect shape evaluation process and a defect reliability evaluation process.

【図14】欠陥形状評価過程および欠陥信頼性評価過程
の説明図である。
FIG. 14 is an explanatory diagram of a defect shape evaluation process and a defect reliability evaluation process.

【符号の説明】[Explanation of symbols]

1 検査対象物 2 計測装置 3 TVカメラ 4 量子化装置 5 記憶装置 6 画像処理装置 21 コンベア 22 通過センサ 23 線状光源 231 レーザーダイオード 232 シリンドリカルレンズ DESCRIPTION OF SYMBOLS 1 Inspection object 2 Measuring device 3 TV camera 4 Quantization device 5 Storage device 6 Image processing device 21 Conveyor 22 Passage sensor 23 Linear light source 231 Laser diode 232 Cylindrical lens

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三高 良介 大阪府門真市大字門真1048番地 松下電工 株式会社内 (72)発明者 佐久間 ▲祐▼治 大阪府門真市大字門真1048番地 松下電工 株式会社内 (72)発明者 平川 修 大阪府門真市大字門真1048番地 松下電工 株式会社内 (72)発明者 辺見 裕 東京都墨田区吾妻橋1−23−1 アサヒビ ール株式会社内 Fターム(参考) 2F065 AA07 AA21 AA23 AA25 AA49 AA67 BB08 BB15 CC00 FF01 FF02 FF09 FF42 GG06 GG08 GG12 HH05 HH12 HH14 JJ03 JJ19 JJ26 LL08 LL30 MM03 NN02 PP15 QQ03 QQ21 QQ23 QQ24 QQ41 QQ42 RR05 RR06 2G051 AA21 AB07 AB10 BA10 CA04 CB01 EA16 EC01 ED14 5B057 AA02 BA02 BA15 CA02 CA06 CA12 CA16 CB02 CB06 CB12 CB16 CC04 CH08 DA03 DB02 DB05 DB08 DC03 DC08 DC09 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ryosuke Mitaka 1048 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Works, Ltd. (72) Inventor Osamu Hirakawa 1048 Kazuma Kadoma, Osaka Pref. Matsushita Electric Works, Ltd. (72) Inventor Hiroshi Hemi 1-23-1, Azumabashi, Sumida-ku, Tokyo Asahi Beer Co., Ltd. AA07 AA21 AA23 AA25 AA49 AA67 BB08 BB15 CC00 FF01 FF02 FF09 FF42 GG06 GG08 GG12 HH05 HH12 HH14 JJ03 JJ19 JJ26 LL08 LL30 MM03 NN02 PP15 QQ03 QQ21 QQ23 QQ14 AQ04 AQ04 AQ04 AQ07 AQ04 CA06 CA12 CA16 CB02 CB06 CB12 CB16 CC04 CH08 DA03 DB02 DB05 DB08 DC03 DC08 DC09

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 検査対象物の曲面となる表面に間隔を置
いて複数の線状光を照射し、これら複数の線状光によっ
て前記表面に沿った角度で配列される複数の線状パター
ンの撮影を行い、この撮影で得られた複数の線状パター
ンから、線状パターン処理過程および欠陥検出過程の画
像処理を通じて、前記検査対象物の表面における凹凸状
の欠陥を検出する欠陥検出方法であって、 前記線状パターン処理過程は、前記撮影で得られた複数
の線状パターンの各々に対して、当該線状パターンに変
形があればその変形を欠陥特徴部として検出する欠陥特
徴部検出過程と、前記欠陥特徴部の形状を表す欠陥特徴
量を少なくとも1つ抽出する欠陥特徴量抽出過程とを含
み、 前記欠陥検出過程は、前記線状パターン処理過程で得ら
れた複数の欠陥特徴部に対して、前記線状パターンの方
向と交差する方向に連なる複数の欠陥特徴部の群を欠陥
候補として抽出する欠陥候補抽出過程と、前記欠陥候補
に含まれる複数の欠陥特徴部の欠陥特徴量をもとに当該
欠陥候補の形状を評価して、前記検査対象物の表面にお
ける欠陥の程度および種別の少なくとも一方を判定する
欠陥形状評価過程と、前記欠陥候補から欠陥としての確
からしさを表す欠陥信頼性としての指標を抽出して当該
欠陥候補が欠陥であるか否かを判定する欠陥信頼性評価
過程とを含むことを特徴とする物体表面の欠陥検出方
法。
1. A method of irradiating a plurality of linear lights at intervals on a surface of a test object, which is a curved surface, and forming a plurality of linear patterns arranged at an angle along the surface by the plurality of linear lights. A defect detection method for performing imaging and performing image processing in a linear pattern processing step and a defect detection step from a plurality of linear patterns obtained by the imaging to detect uneven defects on the surface of the inspection object. The linear pattern processing step includes, for each of the plurality of linear patterns obtained by the photographing, a defect characteristic part detecting step of detecting the deformation as a defect characteristic part if the linear pattern is deformed. And a defect feature quantity extraction step of extracting at least one defect feature quantity representing a shape of the defect feature part. The defect detection step includes the step of extracting a plurality of defect feature parts obtained in the linear pattern processing step. versus A defect candidate extraction step of extracting a group of a plurality of defect feature portions connected in a direction intersecting with the direction of the linear pattern as a defect candidate; and a defect feature amount of the plurality of defect feature portions included in the defect candidate. A defect shape evaluation step of evaluating the shape of the defect candidate to determine at least one of a degree and a type of a defect on the surface of the inspection object; and a defect reliability representing a probability as a defect from the defect candidate. A defect reliability evaluation step of extracting whether or not the defect candidate is a defect by extracting the index as a defect candidate.
【請求項2】 前記欠陥特徴部検出過程の線状パターン
の変形とは途絶を境に互いに逆向きに伸びる変形である
ことを特徴とする請求項1記載の物体表面の欠陥検出方
法。
2. The method for detecting a defect on an object surface according to claim 1, wherein the deformation of the linear pattern in the step of detecting the defect feature portion is a deformation extending in mutually opposite directions with a break.
【請求項3】 前記欠陥特徴量抽出過程の欠陥特徴量と
は、その欠陥特徴部を含む線状パターンの方向およびこ
の方向と直交する方向の少なくとも一方に沿った当該欠
陥特徴部の大きさであることを特徴とする請求項1記載
の物体表面の欠陥検出方法。
3. The defect feature value in the defect feature value extraction process is a size of the defect feature portion along at least one of a direction of a linear pattern including the defect feature portion and a direction orthogonal to the direction. 2. The method for detecting defects on an object surface according to claim 1, wherein:
【請求項4】 前記欠陥特徴量抽出過程の欠陥特徴量と
はその欠陥特徴部の明度であることを特徴とする請求項
1記載の物体表面の欠陥検出方法。
4. The method according to claim 1, wherein the defect feature amount in the defect feature amount extraction step is the brightness of the defect feature portion.
【請求項5】 前記欠陥候補抽出過程の処理として、前
記複数の欠陥特徴部の各々に対して、当該欠陥特徴部を
含む線状パターンに隣接ないし近接する別の線状パター
ンに、前記交差する方向に当該欠陥特徴部と連なる別の
欠陥特徴部があれば、これら双方の欠陥特徴部を前記欠
陥候補としての群に含める処理を順次行うことを特徴と
する請求項1記載の物体表面の欠陥検出方法。
5. A process of the defect candidate extraction step, wherein each of the plurality of defect features intersects with another linear pattern adjacent to or close to a linear pattern including the defect feature. 2. The defect on the object surface according to claim 1, wherein if there is another defect feature in the direction, the defect feature is connected to the defect candidate group. Detection method.
【請求項6】 前記複数の欠陥特徴部の各々に対して、
当該欠陥特徴部を含む線状パターンに対して近接するも
のとして所定距離内にある別の線状パターンに、前記交
差する方向に当該欠陥特徴部と連なる別の欠陥特徴部が
あれば、これら双方の欠陥特徴部を前記欠陥候補として
の群に含める処理を順次行うことを特徴とする請求項5
記載の物体表面の欠陥検出方法。
6. For each of the plurality of defect features,
If another linear pattern within a predetermined distance as being close to the linear pattern including the defect characteristic portion has another defect characteristic portion connected to the defect characteristic portion in the intersecting direction, both of these are included. 6. A process for sequentially including the defect feature part in the group as the defect candidate is performed.
The method for detecting a defect on an object surface according to the above description.
【請求項7】 前記処理で得られた複数の欠陥候補のう
ち、少なくとも2つの欠陥候補を連結して新たな欠陥候
補とすることを特徴とする請求項5記載の物体表面の欠
陥検出方法。
7. The method according to claim 5, wherein at least two defect candidates among the plurality of defect candidates obtained in the processing are connected to form a new defect candidate.
【請求項8】 前記欠陥候補に含まれる複数の欠陥特徴
部の欠陥特徴量は、これら複数の欠陥特徴量の統計量お
よび前記欠陥候補の両端間の距離の少なくとも一方であ
ることを特徴とする請求項1記載の物体表面の欠陥検出
方法。
8. The defect feature amount of a plurality of defect feature portions included in the defect candidate is at least one of a statistic of the plurality of defect feature amounts and a distance between both ends of the defect candidate. The method for detecting defects on an object surface according to claim 1.
【請求項9】 前記欠陥信頼性評価過程の欠陥信頼性
は、前記欠陥候補に含まれる欠陥特徴部の数を、当該欠
陥候補に含まれる複数の欠陥特徴部に対応する複数の線
状パターンの本数で除して得られる値であることを特徴
とする請求項1記載の物体表面の欠陥検出方法。
9. The defect reliability in the defect reliability evaluation step is determined by changing the number of defect features included in the defect candidate by a plurality of linear patterns corresponding to the plurality of defect features included in the defect candidate. 2. The method according to claim 1, wherein the value is a value obtained by dividing the number of defects.
【請求項10】 検査対象物の曲面となる表面に間隔を
置いて複数の線状光を照射する計測手段と、前記複数の
線状光によって前記表面に沿った角度で配列される複数
の線状パターンの撮影を行う撮影手段と、前記撮影で得
られた複数の線状パターンから、線状パターン処理過程
および欠陥検出過程の画像処理を通じて、前記検査対象
物の表面における凹凸状の欠陥を検出する画像処理手段
とにより構成される欠陥検出装置であって、 前記線状パターン処理過程は、前記撮影で得られた複数
の線状パターンの各々に対して、当該線状パターンに変
形があればその変形を欠陥特徴部として検出する欠陥特
徴部検出過程と、前記欠陥特徴部の形状を表す欠陥特徴
量を少なくとも1つ抽出する欠陥特徴量抽出過程とを含
み、 前記欠陥検出過程は、前記線状パターン処理過程で得ら
れた複数の欠陥特徴部に対して、前記線状パターンの方
向と交差する方向に連なる複数の欠陥特徴部の群を欠陥
候補として抽出する欠陥候補抽出過程と、前記欠陥候補
に含まれる複数の欠陥特徴部の欠陥特徴量をもとに当該
欠陥候補の形状を評価して、前記検査対象物の表面にお
ける欠陥の程度および種別の少なくとも一方を判定する
欠陥形状評価過程と、前記欠陥候補から欠陥としての確
からしさを表す欠陥信頼性としての指標を抽出して当該
欠陥候補が欠陥であるか否かを判定する欠陥信頼性評価
過程とを含むことを特徴とする物体表面の欠陥検出装
置。
10. A measuring means for irradiating a plurality of linear lights on a curved surface of an object to be inspected at intervals, and a plurality of lines arranged at an angle along the surface by the plurality of linear lights. Imaging means for imaging a linear pattern, and detecting, from a plurality of linear patterns obtained by the imaging, an uneven defect on the surface of the inspection object through image processing in a linear pattern processing step and a defect detection step The linear pattern processing step includes, for each of the plurality of linear patterns obtained by the photographing, if the linear pattern is deformed. A defect feature detection step of detecting the deformation as a defect feature, and a defect feature extraction step of extracting at least one defect feature representing a shape of the defect feature. A defect candidate extraction step of extracting, as defect candidates, a group of a plurality of defect feature parts connected in a direction intersecting with the direction of the linear pattern, for a plurality of defect feature parts obtained in the linear pattern processing step; A defect shape evaluation step of evaluating a shape of the defect candidate based on defect feature amounts of a plurality of defect feature portions included in the defect candidate and determining at least one of a degree and a type of a defect on the surface of the inspection object; And a defect reliability evaluation step of extracting an index as defect reliability representing the probability of the defect from the defect candidate and determining whether or not the defect candidate is a defect. Surface defect detection device.
JP2000109673A 2000-04-11 2000-04-11 Defect detection method of object surface, and device thereof Withdrawn JP2001296252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000109673A JP2001296252A (en) 2000-04-11 2000-04-11 Defect detection method of object surface, and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000109673A JP2001296252A (en) 2000-04-11 2000-04-11 Defect detection method of object surface, and device thereof

Publications (1)

Publication Number Publication Date
JP2001296252A true JP2001296252A (en) 2001-10-26

Family

ID=18622330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000109673A Withdrawn JP2001296252A (en) 2000-04-11 2000-04-11 Defect detection method of object surface, and device thereof

Country Status (1)

Country Link
JP (1) JP2001296252A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047079A (en) * 2005-08-11 2007-02-22 Hitachi Information & Control Solutions Ltd Seaming defect inspection method of can
JP2008309577A (en) * 2007-06-13 2008-12-25 Kagome Co Ltd Quality determination method and inspection device of container
JP2009244052A (en) * 2008-03-31 2009-10-22 Furukawa Electric Co Ltd:The Surface inspection apparatus and surface inspection method
JP2010071722A (en) * 2008-09-17 2010-04-02 Nippon Steel Corp Method and device for inspecting unevenness flaws
CN102628811A (en) * 2012-03-30 2012-08-08 中国科学院长春光学精密机械与物理研究所 Verifying device of grating groove defect
CN104535579A (en) * 2014-12-22 2015-04-22 中国科学院长春光学精密机械与物理研究所 Etch defect detection device for steel belt grating
JP2016090328A (en) * 2014-10-31 2016-05-23 株式会社 日立産業制御ソリューションズ Imaging device and buckling inspection device
CN114184621A (en) * 2020-09-14 2022-03-15 临颍县爬杆机器人有限公司 Method for detecting appearance defects of curved surface part and device for implementing method
JP7451611B2 (en) 2022-07-07 2024-03-18 キヤノン株式会社 Image processing device, image processing method, and program
JP7501264B2 (en) 2020-09-15 2024-06-18 株式会社アイシン Anomaly detection device, anomaly detection program, and anomaly detection system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047079A (en) * 2005-08-11 2007-02-22 Hitachi Information & Control Solutions Ltd Seaming defect inspection method of can
JP2008309577A (en) * 2007-06-13 2008-12-25 Kagome Co Ltd Quality determination method and inspection device of container
JP2009244052A (en) * 2008-03-31 2009-10-22 Furukawa Electric Co Ltd:The Surface inspection apparatus and surface inspection method
JP2010071722A (en) * 2008-09-17 2010-04-02 Nippon Steel Corp Method and device for inspecting unevenness flaws
CN102628811A (en) * 2012-03-30 2012-08-08 中国科学院长春光学精密机械与物理研究所 Verifying device of grating groove defect
JP2016090328A (en) * 2014-10-31 2016-05-23 株式会社 日立産業制御ソリューションズ Imaging device and buckling inspection device
CN104535579A (en) * 2014-12-22 2015-04-22 中国科学院长春光学精密机械与物理研究所 Etch defect detection device for steel belt grating
CN114184621A (en) * 2020-09-14 2022-03-15 临颍县爬杆机器人有限公司 Method for detecting appearance defects of curved surface part and device for implementing method
JP7501264B2 (en) 2020-09-15 2024-06-18 株式会社アイシン Anomaly detection device, anomaly detection program, and anomaly detection system
JP7451611B2 (en) 2022-07-07 2024-03-18 キヤノン株式会社 Image processing device, image processing method, and program

Similar Documents

Publication Publication Date Title
JP3051279B2 (en) Bump appearance inspection method and bump appearance inspection device
RU2764644C1 (en) Method for detecting surface defects, device for detecting surface defects, method for producing steel materials, method for steel material quality control, steel materials production plant, method for generating models for determining surface defects and a model for determining surface defects
US6304323B1 (en) Method for detecting defect in bottle
JP6079948B1 (en) Surface defect detection device and surface defect detection method
JP2020008501A (en) Surface defect detection device and surface defect detection method
JPH0810196B2 (en) Solder appearance inspection device
JP2001296252A (en) Defect detection method of object surface, and device thereof
JP2007316019A (en) Surface defect inspection device
US7024031B1 (en) System and method for inspection using off-angle lighting
JP7119034B2 (en) SURFACE INSPECTION METHOD, SURFACE INSPECTION APPARATUS, AND SURFACE INSPECTION SYSTEM
CN114820622A (en) Interlayer foreign matter detection method and device
JP4016381B2 (en) Surface defect inspection equipment
JPH08190633A (en) Defect judging method
JP4389761B2 (en) Solder inspection method and board inspection apparatus using the method
JPH11111784A (en) Device for determining quality of bump height
JP2004037134A (en) Method and apparatus for inspecting metal mask
JP2006226834A (en) Surface inspection device and surface inspection method
JPH03142576A (en) Picture processing method
JPH1010053A (en) Inspection device for surface defect
JPH09113467A (en) Method for deciding defect
JP3509581B2 (en) Appearance inspection method
JPH0814846A (en) Inspection device for solder joint section
JP3216669B2 (en) Optical disk defect inspection method
JPH09321500A (en) Appearance inspecting method in soldered state
JPH0949717A (en) Method and apparatus for detecting surface flaw of work

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703