JPH1010053A - Inspection device for surface defect - Google Patents

Inspection device for surface defect

Info

Publication number
JPH1010053A
JPH1010053A JP8162942A JP16294296A JPH1010053A JP H1010053 A JPH1010053 A JP H1010053A JP 8162942 A JP8162942 A JP 8162942A JP 16294296 A JP16294296 A JP 16294296A JP H1010053 A JPH1010053 A JP H1010053A
Authority
JP
Japan
Prior art keywords
defect
light
image
inspected
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8162942A
Other languages
Japanese (ja)
Inventor
Masanori Imanishi
正則 今西
Yutaka Suzuki
裕 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP8162942A priority Critical patent/JPH1010053A/en
Publication of JPH1010053A publication Critical patent/JPH1010053A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect even a gentle irregular defect by calculating a defect candidate position on the basis of the space of the brightness pattern boundary area of an image data, and comparing and judging the defect candidate position continuously obtained in time series with a prescribed condition. SOLUTION: An image pickup means 102 takes the image of a brightness pattern, and converts it into an image data of electric signal. An image processing means 103 extracts the boundary area of the brightness pattern from the image data, and performs a calculation as the area where the space of the adjacent boundary areas is not uniform, if present, as a defect candidate position. A defect detecting means 104 executes a prescribed processing by the means 103 every optional time while moving a surface 100 to be inspected or either one of the means 102 and a lighting means 101. When the change of the defect candidate position continuously obtained in time series is fitted to the movement of the surface 100 to be inspected under a prescribed condition, or when a conformed moving object is present in the image, this area is judged as defect.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被検査物体の表面
欠陥、例えば自動車ボディの塗装面を検査する表面欠陥
検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface defect inspection apparatus for inspecting a surface defect of an object to be inspected, for example, a painted surface of an automobile body.

【0002】[0002]

【従来の技術】従来の表面欠陥検査装置としては、例え
ば特開平2−73139号公報などに示されたものがあ
る。これは、被検査面に所定の明暗縞(ストライプ)模
様を映し出し、被検査面上に凹凸等の欠陥があった場
合、それによる明度(輝度)差や明度(輝度)変化をも
った受光画像を微分することにより、被検査面の表面の
欠陥を検出するものである。
2. Description of the Related Art A conventional surface defect inspection apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. 2-73139. This is because a predetermined light and dark fringe (stripe) pattern is projected on the surface to be inspected, and when there is a defect such as unevenness on the surface to be inspected, a received light image having a difference in brightness (luminance) or a change in brightness (luminance) due to the defect. Is used to detect a defect on the surface to be inspected.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の表面欠陥検査装置においては、次のごとき問
題があった。例えば、自動車ボディの塗装において、通
常、表面欠陥と呼ばれるものは、ゴミ等が付着した上に
塗装が行なわれた結果生じる塗装表面の凸部であり、例
えば直径が0.5〜2mm程度で厚さが数十μm程度の
ものである。この程度の凸部は直径が小さいのに高さ
(厚さ)が比較的大きいため、光の乱反射角が大きくな
り、目につきやすい。しかし、デコヘコと呼ばれる欠陥
は、厚さに対して直径が非常に大きいため、光の乱反射
角が小さく見つけにくい。このようなデコヘコ欠陥は、
従来のように微分等の画像処理を用いても検出できな
い、という問題があった。
However, such a conventional surface defect inspection apparatus has the following problems. For example, in the painting of an automobile body, what is usually called a surface defect is a projection on the painted surface resulting from the application of dust and the like, for example, having a diameter of about 0.5 to 2 mm and a thickness of about 0.5 to 2 mm. Is about several tens of μm. Since the height (thickness) of the projections of this degree is relatively large although the diameter is small, the irregular reflection angle of light becomes large and is easily noticeable. However, a defect called a deco heco has a very large diameter with respect to its thickness, and thus has a small light diffuse reflection angle and is difficult to find. Such deco-health defects are
There is a problem that detection cannot be performed even by using image processing such as differentiation as in the related art.

【0004】本発明は、このような従来の問題点に着目
してなされたもので、被検査面上の緩やかな凹凸状の欠
陥をも検出することができる表面欠陥検査装置を提供す
ることを目的とする。
The present invention has been made in view of such conventional problems, and has as its object to provide a surface defect inspection apparatus which can detect even a rugged irregular defect on a surface to be inspected. Aim.

【0005】[0005]

【課題を解決するための手段】上記目的達成のため、本
発明は、被検査面に光を照射し、その被検査面からの反
射光に基づいて受光画像を作成し、この受光画像に基づ
いて被検査面上の欠陥を検出する表面欠陥検査装置にお
いて、被検査物体表面に所定の明暗パターンを形成する
照明手段と、上記被検査面を撮像して得られる受光画像
を電気信号の画像データに変換する撮像手段と、上記画
像データにおいて上記明パターンと暗パターンとの境界
領域を抽出し、上記明暗パターン境界領域の間隔に基づ
いて欠陥候補位置を算出する画像処理手段と、上記被検
査面もしくは撮像手段および照明手段のいずれか一方を
移動させながら任意の時刻毎に上記画像処理手段で所定
の処理を実行し、時系列に連続して得られる欠陥候補位
置が上記移動と所定の条件で一致するか否かを判定し、
一致したならばその欠陥候補を欠陥と判定する欠陥検出
手段と、を備えた構成とする。
In order to achieve the above object, the present invention irradiates a surface to be inspected with light, creates a light-receiving image based on light reflected from the surface to be inspected, and generates a light-receiving image based on the light-receiving image. In a surface defect inspection apparatus for detecting a defect on a surface to be inspected, an illuminating means for forming a predetermined light and dark pattern on the surface of the object to be inspected, and a received light image obtained by imaging the surface to be inspected as image data of electric signals Image processing means for extracting a boundary region between the light pattern and the dark pattern in the image data, and calculating a defect candidate position based on an interval between the light and dark pattern boundary regions; and Alternatively, a predetermined process is executed by the image processing means at any time while moving either the imaging means or the illumination means, and the defect candidate position obtained continuously in time series is determined by the movement. It determines whether to match the conditions,
And a defect detecting means for determining the defect candidate as a defect if they match.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳細に説明する。図1は、本発明の第1の実
施の形態を示す説明図であって、請求項1に相当するも
のである。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is an explanatory diagram showing a first embodiment of the present invention, and corresponds to claim 1.

【0007】図1において、100は被検査面であり、
例えば自動車ボディの塗装面である。また、101は被
検査面に所定の明暗パターンを映し出す照明手段であ
る。また、102は被検査面を撮像して上記明暗パター
ンを電気信号の画像データを変換する撮像手段であり、
例えばCCDカメラ等のビデオカメラである。また、1
03は上記画像データにおいて上記明パターンと暗パタ
ーンとの境界領域を抽出し、隣合う上記明暗パターン境
界領域の間隔に基づいて欠陥候補位置を算出する画像処
理手段である。また、104は、上記被検査面もしくは
撮像手段および照明手段のいずれか一方を移動させなが
ら任意の時刻毎に上記画像処理手段で所定の処理を実行
し、時系列に連続して得られる欠陥候補位置が上記移動
と所定の条件で適合するか否かを判定し、適合したなら
ばその欠陥候補を欠陥と判定する欠陥検出手段である。
これら画像処理手段103、欠陥検出手段104の部分
は、例えばコンピュータで構成される。
In FIG. 1, reference numeral 100 denotes a surface to be inspected.
For example, a painted surface of an automobile body. Reference numeral 101 denotes illumination means for projecting a predetermined light and dark pattern on the surface to be inspected. Reference numeral 102 denotes imaging means for imaging the surface to be inspected and converting the light / dark pattern into image data of an electric signal;
For example, it is a video camera such as a CCD camera. Also, 1
An image processing unit 03 extracts a boundary region between the bright pattern and the dark pattern in the image data, and calculates a defect candidate position based on an interval between the adjacent bright and dark pattern boundary regions. Reference numeral 104 denotes a defect candidate obtained by executing predetermined processing by the image processing means at an arbitrary time while moving any one of the inspection surface or the imaging means and the illuminating means, and continuously obtaining the defect candidates in time series. It is a defect detecting means for judging whether or not the position matches the above-mentioned movement under a predetermined condition, and if so, judges the defect candidate as a defect.
The image processing unit 103 and the defect detection unit 104 are configured by, for example, a computer.

【0008】上記の構成によると、照明手段によって被
検査面に所定の明暗パターンを映し出し、それを撮像手
段で撮像して上記明暗パターンを電気信号の画像データ
に変換する。次に、画像強調手段では、上記画像データ
から明暗パターンの境界領域を抽出し、画像において隣
合う上記境界領域の間隔が一様でない領域があったなら
ばそこにデコヘコ欠陥がある可能性が高いと判断できる
ので、その位置を欠陥候補位置として算出する。次に、
欠陥検出手段では、上記被検査面もしくは撮像手段およ
び照明手段のいずれか一方を移動させながら任意の時刻
毎に上記画像処理手段で所定の処理を実行する。ここで
時系列に連続して得られる欠陥候補位置の変化が、上記
被検査面もしくは照明およびカメラの移動と所定の条件
で適合したならば、その欠陥候補を欠陥と判定すること
ができる。つまり画像中を上記移動に一致した移動物体
(領域)があれば、その領域を欠陥と判定するものであ
る。
According to the above arrangement, a predetermined light / dark pattern is projected on the surface to be inspected by the illuminating means, and the light / dark pattern is converted into electric signal image data by capturing the image with the imaging means. Next, the image enhancing means extracts a boundary region of the light and dark pattern from the image data, and if there is a region where the interval between the adjacent boundary regions in the image is not uniform, there is a high possibility that there is a deco-health defect there. Therefore, the position is calculated as a defect candidate position. next,
In the defect detecting means, a predetermined process is executed by the image processing means at an arbitrary time while moving any one of the inspection surface or the imaging means and the illumination means. Here, if the change in the defect candidate position obtained continuously in time series matches the movement of the inspection surface or the illumination and the camera under predetermined conditions, the defect candidate can be determined as a defect. That is, if there is a moving object (region) that matches the above movement in the image, the region is determined as a defect.

【0009】図2〜図4は、本発明の第2の実施の形態
を示す図である。図2において、1は被検査面6に所定
の明暗パターンを映し出す照明装置である。2は被検査
面を撮像して上記明暗パターンを電気信号の画像データ
に変換する撮像手段であり、例えばCCDカメラ等のビ
デオカメラである。3は上記カメラ2によって得られた
画像データを処理する画像処理装置である。4は画像処
理装置3で処理された時系列に連続した画像データから
欠陥7を検出する欠陥検出手段であり、パソコン等のコ
ンピュータである。
FIG. 2 to FIG. 4 are views showing a second embodiment of the present invention. In FIG. 2, reference numeral 1 denotes an illumination device for projecting a predetermined light-dark pattern on the surface 6 to be inspected. Reference numeral 2 denotes an imaging unit for imaging the surface to be inspected and converting the light / dark pattern into image data of an electric signal, for example, a video camera such as a CCD camera. Reference numeral 3 denotes an image processing device that processes image data obtained by the camera 2. Reference numeral 4 denotes a defect detection means for detecting a defect 7 from the time-series continuous image data processed by the image processing apparatus 3, and is a computer such as a personal computer.

【0010】本実施の形態ではカメラ2および照明装置
1が固定され、被検査面6が搬送コンベヤのようなもの
(図示せず)で図2矢印の方向に移動しているものとす
る。
In this embodiment, it is assumed that the camera 2 and the illuminating device 1 are fixed, and the surface 6 to be inspected is moving in a direction indicated by an arrow in FIG. 2 by means of a conveyor (not shown).

【0011】次に、画像処理装置3における欠陥候補領
域の抽出手順の一例を説明する。図2のように、照明装
置1で明暗パターンを被検査面6に照射し、その反射光
をモノクロのカメラ2で撮像すると、図3(原画像)の
ような濃淡画像が得られる。ここで上記デコヘコ欠陥が
明暗パターンの境界線近くにあると、その部分の境界線
がデコヘコ欠陥の凹凸に沿って歪んだ画像となる。
Next, an example of a procedure for extracting a defect candidate area in the image processing apparatus 3 will be described. As shown in FIG. 2, when the light-dark pattern is irradiated on the surface 6 to be inspected by the illumination device 1 and the reflected light is captured by the monochrome camera 2, a gray-scale image as shown in FIG. 3 (original image) is obtained. Here, if the deco-healing defect is near the boundary between the light and dark patterns, the boundary line of that part becomes an image distorted along the unevenness of the deco-healing defect.

【0012】図3において、まずはじめに画像処理装置
3は、原画像を入力する(ステップ1:S1)。ここで
画像の横方向をx、縦方向をyとする。次のステップで
は、原画像に対して微分等のエッジ検出処理を行い、輝
度変化のある領域を抽出する(S2)。ここで得られた
微分画像を所定の輝度レベルのしきい値で2値化する
と、輝度変化のある領域が白、それ以外が黒となる2値
画像が得られる(S3)。続いて、画像の白領域に対し
てラベリング(ラベル付け:S4)および面積/重心座
標計算(S5)を行う。次に、デコヘコ欠陥検出に必要
な明暗パターン境界領域のみの画像を得るために、孤立
点除去処理を行う(S6)。これは、例えば明暗パター
ン境界領域に比べて面積の小さい領域を除去する、とい
った処理で実現できる。
In FIG. 3, first, the image processing apparatus 3 inputs an original image (step 1: S1). Here, the horizontal direction of the image is x, and the vertical direction is y. In the next step, an edge detection process such as differentiation is performed on the original image to extract a region having a luminance change (S2). When the obtained differential image is binarized with a threshold value of a predetermined luminance level, a binary image is obtained in which the area where the luminance changes is white and the other areas are black (S3). Subsequently, labeling (labeling: S4) and area / centroid coordinate calculation (S5) are performed on the white region of the image. Next, an isolated point removal process is performed to obtain an image of only the light and dark pattern boundary region necessary for the detection of the deco-healing defect (S6). This can be realized by, for example, a process of removing a region having a smaller area than the light-dark pattern boundary region.

【0013】次に、明暗パターン境界領域の間隔を算出
する(S7)。これは、画像(S6)のx方向のランリ
スト、つまり1ラインにおける白領域の始点、終点座標
から算出できる。被検査面6にデコヘコ欠陥7がなけれ
ば、隣合う明暗パターン境界領域の間隔は、ほぼ一定と
なる。デコヘコ欠陥7がある場合、明暗パターン境界領
域が歪むので、その部分の明暗パターン境界領域の間隔
が局所的に大きく変化する。よって、上記変化のあった
位置にデコヘコ欠陥7がある可能性が高いので、その座
標を欠陥候補位置とする(S8)。
Next, the interval between the light and dark pattern boundary areas is calculated (S7). This can be calculated from the run list in the x direction of the image (S6), that is, the start point and end point coordinates of the white area in one line. If there is no deco-healing defect 7 on the surface 6 to be inspected, the interval between the adjacent light and dark pattern boundary regions is substantially constant. When the deco-healing defect 7 is present, the light-dark pattern boundary region is distorted, and the interval between the light-dark pattern boundary regions in that portion is largely changed. Therefore, since there is a high possibility that the deco-healing defect 7 exists at the position where the change has occurred, the coordinates are set as defect candidate positions (S8).

【0014】次に、コンピュータ4における欠陥検出手
順の一例を説明する。コンピュータ4は、メモリから前
回までの欠陥候補位置を読み込み(S9)、上記S8で
算出した今回の欠陥候補位置との移動量d1を算出する
(S10)。
Next, an example of a defect detection procedure in the computer 4 will be described. The computer 4 reads the defect candidate position up to the previous time from the memory (S9), and calculates the movement amount d1 from the current defect candidate position calculated in S8 (S10).

【0015】本実施の形態では、被検査面6が図3矢印
のように画像のx方向に移動するものとして説明する
(y方向の移動はなし)。よって、前回の画像から今回
の画像までの欠陥の移動量d1は、今回の欠陥候補のx
方向座標と前回の欠陥候補のx方向座標との差として算
出できる。
In this embodiment, a description will be given assuming that the surface 6 to be inspected moves in the x direction of the image as indicated by the arrow in FIG. 3 (no movement in the y direction). Therefore, the movement amount d1 of the defect from the previous image to the current image is x of the current defect candidate.
It can be calculated as the difference between the direction coordinates and the x-direction coordinates of the previous defect candidate.

【0016】次に、被検査面6の移動量d2を算出する
(S11)。本実施の形態では被検査面6は、搬送コン
ベヤで移動しているので、例えば、コンベヤ駆動源の回
転量をパルスジェネレータ等で検出し、その検出結果か
ら移動量d2を算出することができる。このように求め
た移動量d1,d2の一致度合いに基づいて欠陥か否か
を判定する(S12) 。例えば、上記d1とd2の差が
所定値drefより小さければ、その欠陥候補は被検査
面6と同じ動き方をしているので、欠陥である確率が高
いと判定し、その欠陥候補の一致回数変数mを+1する
(S13)。このような一連の処理を時系列に連続した
画像データに対して行い、上記変数mが所定値以上にな
ったならば、その欠陥候補を欠陥と判定しメモリする
(S14)。つまり、欠陥7は時間の変化と共に図4の
ように移動し、この移動が被検査面6自身の移動と一致
していれば、欠陥7が本物の欠陥である、と判定するも
のである。なお、上記画像処理手段および欠陥検出手段
における処理手順や判定方法等は本実施の形態に限定さ
れるものではない。
Next, the movement amount d2 of the inspection surface 6 is calculated (S11). In the present embodiment, since the inspection surface 6 moves on the transport conveyor, for example, the rotation amount of the conveyor drive source is detected by a pulse generator or the like, and the movement amount d2 can be calculated from the detection result. It is determined whether or not there is a defect based on the degree of coincidence of the movement amounts d1 and d2 thus obtained (S12). For example, if the difference between d1 and d2 is smaller than a predetermined value dref, the defect candidate moves in the same manner as the surface to be inspected 6, so it is determined that the probability of the defect is high, and the number of matches of the defect candidate is determined. The variable m is incremented by one (S13). Such a series of processing is performed on the image data that is continuous in time series, and when the variable m becomes a predetermined value or more, the defect candidate is determined to be a defect and stored (S14). That is, the defect 7 moves as shown in FIG. 4 with a change in time, and if this movement coincides with the movement of the inspection surface 6 itself, it is determined that the defect 7 is a real defect. Note that the processing procedure, determination method, and the like in the image processing unit and the defect detection unit are not limited to the present embodiment.

【0017】次に、第3の実施の形態を説明する。この
実施の形態は請求項2に対応する実施の形態である。図
5のように、欠陥部の凹凸の角度θが大きいほど明暗パ
ターン境界線の歪みは大きくなる。よって、より小さい
欠陥を検出するためには、明暗パターンの間隔を狭くす
れば良いが、狭くしすぎると欠陥とはならない“ゆず
肌”による凹凸の影響が大きくなってしまう。また、本
発明は欠陥による明暗パターン境界線の歪み、および被
検査面もしくはカメラと照明装置の移動を利用する検出
原理であるため、1画面当たりに映る上記境界線の数は
2本以上が望ましい。よって、上記のように角度θやゆ
ず肌の影響および1画面当たりの境界線数を考慮し、明
暗パターンを設定する。
Next, a third embodiment will be described. This embodiment is an embodiment corresponding to claim 2. As shown in FIG. 5, the larger the angle θ of the irregularities of the defective portion, the greater the distortion of the light-dark pattern boundary line. Therefore, in order to detect a smaller defect, the interval between the light and dark patterns may be narrowed. However, if the distance is too narrow, the influence of irregularities due to “yuzu skin” which does not become a defect increases. Further, since the present invention is based on a detection principle utilizing distortion of a light-dark pattern boundary line due to a defect and movement of a surface to be inspected or a camera and a lighting device, the number of the boundary lines reflected per screen is preferably two or more. . Therefore, as described above, the light and dark pattern is set in consideration of the angle θ, the influence of the yuzu skin, and the number of boundaries per screen.

【0018】例えば、検出したいデコヘコ欠陥の最小サ
イズのサンプルを用意し、この欠陥の三次元形状を測定
し上記角度θを求め、この最小サイズの欠陥が検出可能
となるような、つまり明暗パターン境界線の歪みがカメ
ラ受光画像に捕らえることのできる明暗パターンのピッ
チや明暗パターン幅の比率を上記角度θから算出する
か、もしくは実験的に決定すればよい。
For example, a sample of the minimum size of a deco healing defect to be detected is prepared, the three-dimensional shape of the defect is measured, the angle θ is obtained, and the defect of the minimum size can be detected. The pitch of the light and dark patterns and the ratio of the light and dark pattern widths at which the line distortion can be captured in the image received by the camera may be calculated from the angle θ or determined experimentally.

【0019】次に、第3の実施の形態を説明する。この
第3の実施の形態は請求項3に対応する実施の形態であ
る。本発明は、被検査面6に加工部位といった検査不要
の領域、つまり非検査領域がある場合、その領域を検出
し、かつその非検査領域に対しては上記欠陥検出処理を
行わないようにするものである。図6のように、孔など
の非検査領域5では光の反射がほとんどないため、その
輝度値は周囲の表面に比べて低い、つまり暗い領域とな
って映る。従って、所定のしきい値で被検査面と上記孔
とを分離し、図6のように非検査領域5を抽出すること
ができる。この非検査領域5に対して前記欠陥検出処理
を行わないようにすれば、非検査領域5によって明暗パ
ターン境界線が歪んでも、非検査領域5をマスクして処
理するので、欠陥のみを検出することができる。なお、
上記非検査領域の抽出方法は本実施の形態に限定される
ものではない。
Next, a third embodiment will be described. This third embodiment is an embodiment corresponding to claim 3. According to the present invention, when there is an area that does not need to be inspected such as a processed part on the surface 6 to be inspected, that is, a non-inspection area, the area is detected and the defect detection processing is not performed on the non-inspection area. Things. As shown in FIG. 6, since the light is hardly reflected in the non-inspection area 5 such as a hole, the brightness value is lower than the surrounding surface, that is, the area is dark. Therefore, it is possible to separate the surface to be inspected from the hole at a predetermined threshold value and extract the non-inspection region 5 as shown in FIG. If the defect detection processing is not performed on the non-inspection area 5, even if the light-dark pattern boundary line is distorted by the non-inspection area 5, the processing is performed by masking the non-inspection area 5, so that only the defect is detected. be able to. In addition,
The method for extracting the non-inspection area is not limited to the present embodiment.

【0020】[0020]

【発明の効果】以上説明してきたように、本発明におい
ては、緩やかな凹凸のデコヘコ欠陥を被検査面の状態に
かかわらず精度よく検出することが出来る、という効果
が得られる。
As described above, according to the present invention, there is obtained an effect that a gently uneven deco-healing defect can be accurately detected regardless of the state of the surface to be inspected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の機能ブロック図である。FIG. 1 is a functional block diagram of the present invention.

【図2】本発明の第1の実施の形態を示す図である。FIG. 2 is a diagram showing a first embodiment of the present invention.

【図3】欠陥検出手順の説明のための画像および処理フ
ローを示す図である。
FIG. 3 is a diagram showing an image and a processing flow for explaining a defect detection procedure.

【図4】時系列の処理(動画像処理)の説明図である。FIG. 4 is an explanatory diagram of time-series processing (moving image processing).

【図5】角度θと明暗パターン境界線の歪みの関係を示
す図である。
FIG. 5 is a diagram showing a relationship between an angle θ and a distortion of a light-dark pattern boundary line.

【図6】非検査領域の抽出の説明図である。FIG. 6 is an explanatory diagram of extraction of a non-inspection area.

【符号の説明】[Explanation of symbols]

1 照明装置 2 CCDカメラ 3 画像処理装置 4 コンピュータ 5 非検査領域 6 被検査面 7 欠陥 100 被検査面 101 照明手段 102 撮像手段 103 画像処理手段 104 欠陥検出手段 DESCRIPTION OF SYMBOLS 1 Illumination device 2 CCD camera 3 Image processing device 4 Computer 5 Non-inspection area 6 Inspection surface 7 Defect 100 Inspection surface 101 Illumination means 102 Imaging means 103 Image processing means 104 Defect detection means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被検査面に光を照射し、その被検査面か
らの反射光に基づいて受光画像を作成し、この受光画像
に基づいて被検査面上の欠陥を検出する表面欠陥検査装
置において、 被検査物体表面に所定の明暗パターンを形成する照明手
段と、 上記被検査面を撮像して得られる受光画像を電気信号の
画像データに変換する撮像手段と、 上記画像データにおいて上記明パターンと暗パターンと
の境界領域を抽出し、上記明暗パターン境界領域の間隔
に基づいて欠陥候補位置を算出する画像処理手段と、 上記被検査面もしくは撮像手段および照明手段のいずれ
か一方を移動させながら任意の時刻毎に上記画像処理手
段で所定の処理を実行し、時系列に連続して得られる欠
陥候補位置が上記移動と所定の条件で一致するか否かを
判定し、一致したならばその欠陥候補を欠陥と判定する
欠陥検出手段と、 を備えたことを特徴とする表面欠陥検査装置。
1. A surface defect inspection apparatus that irradiates a surface to be inspected with light, creates a light reception image based on light reflected from the surface to be inspected, and detects a defect on the surface to be inspected based on the light reception image. An illumination unit for forming a predetermined light and dark pattern on the surface of the object to be inspected; an imaging unit for converting a received image obtained by imaging the surface to be inspected into image data of an electric signal; and the light pattern in the image data. Image processing means for extracting a boundary area between the light and dark pattern and calculating a defect candidate position based on the interval between the light and dark pattern boundary areas; and moving one of the inspection surface or the imaging means and the illumination means. A predetermined process is executed by the image processing means at an arbitrary time, and it is determined whether or not the defect candidate positions continuously obtained in time series match the movement under the predetermined condition. Surface defect inspection apparatus characterized by comprising mule and determining defect detecting means the defect candidate as a defect, a.
【請求項2】 上記照明手段の明暗パターン間隔を、欠
陥の凹凸による角度に基づいて設定することを特徴とす
る請求項1に記載の表面欠陥検査装置。
2. The surface defect inspection apparatus according to claim 1, wherein a light-dark pattern interval of the illumination means is set based on an angle due to unevenness of the defect.
【請求項3】 上記画像処理手段は、上記画像データか
ら非検査領域を検出し、検出された上記非検査領域以外
の画像データから欠陥候補位置を算出することを特徴と
する請求項1に記載の表面欠陥検査装置。
3. The image processing apparatus according to claim 1, wherein the image processing unit detects a non-inspection area from the image data, and calculates a defect candidate position from the detected image data other than the non-inspection area. Surface defect inspection equipment.
JP8162942A 1996-06-24 1996-06-24 Inspection device for surface defect Pending JPH1010053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8162942A JPH1010053A (en) 1996-06-24 1996-06-24 Inspection device for surface defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8162942A JPH1010053A (en) 1996-06-24 1996-06-24 Inspection device for surface defect

Publications (1)

Publication Number Publication Date
JPH1010053A true JPH1010053A (en) 1998-01-16

Family

ID=15764191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8162942A Pending JPH1010053A (en) 1996-06-24 1996-06-24 Inspection device for surface defect

Country Status (1)

Country Link
JP (1) JPH1010053A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002502048A (en) * 1998-01-30 2002-01-22 レオポルト・コスタール・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト Method and apparatus for detecting objects above a light-transmitting window glass
US6766047B2 (en) 2000-12-12 2004-07-20 Suzuki Motor Corporation Defect inspection method for three-dimensional object
JP5182833B1 (en) * 2012-06-19 2013-04-17 バイスリープロジェクツ株式会社 Surface inspection apparatus and surface inspection method
JP2017101977A (en) * 2015-11-30 2017-06-08 リコーエレメックス株式会社 Inspection system and inspection method
JP2017520354A (en) * 2014-05-14 2017-07-27 ウニベルシダ デ ロス アンデス Method for automatic segmentation and quantification of body tissue
JP2019178877A (en) * 2018-03-30 2019-10-17 ダイハツ工業株式会社 Surface inspection device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002502048A (en) * 1998-01-30 2002-01-22 レオポルト・コスタール・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト Method and apparatus for detecting objects above a light-transmitting window glass
US6766047B2 (en) 2000-12-12 2004-07-20 Suzuki Motor Corporation Defect inspection method for three-dimensional object
DE10161060B4 (en) * 2000-12-12 2007-04-12 Suzuki Motor Corp., Hamamatsu Error checking method for a three-dimensional object
JP5182833B1 (en) * 2012-06-19 2013-04-17 バイスリープロジェクツ株式会社 Surface inspection apparatus and surface inspection method
JP2017520354A (en) * 2014-05-14 2017-07-27 ウニベルシダ デ ロス アンデス Method for automatic segmentation and quantification of body tissue
JP2017101977A (en) * 2015-11-30 2017-06-08 リコーエレメックス株式会社 Inspection system and inspection method
JP2019178877A (en) * 2018-03-30 2019-10-17 ダイハツ工業株式会社 Surface inspection device

Similar Documents

Publication Publication Date Title
KR0180082B1 (en) Inspection system and process
JP3185559B2 (en) Surface defect inspection equipment
JPH1163959A (en) Surface-inspecting device
JP3493979B2 (en) Method and apparatus for inspecting defects on inspected surface
JP2003083907A (en) Defect inspecting method and its apparatus
JP2002148195A (en) Surface inspection apparatus and surface inspection method
JP3127758B2 (en) Method and apparatus for inspecting defects on inspected surface
JP3185599B2 (en) Surface defect inspection equipment
JPH0979988A (en) Surface defect inspecting device
JPH1010053A (en) Inspection device for surface defect
JP3688520B2 (en) Surface inspection apparatus and surface inspection method
JP4013510B2 (en) Defect inspection method and apparatus
JP3159063B2 (en) Surface defect inspection equipment
JP3201217B2 (en) Surface defect inspection equipment
JPH11101750A (en) Detection of foreign matter
JP3160838B2 (en) Surface defect inspection equipment
JP6852472B2 (en) Sliding surface width detection device and method for trolley wire
JP2004286708A (en) Defect detection apparatus, method, and program
JPH08159712A (en) Pattern recognition method
JPH09280845A (en) Surface defect inspecting device
JP3168864B2 (en) Surface defect inspection equipment
JP2001066128A (en) Surface inspecting device and its method
JP6841096B2 (en) Sliding surface width detection device and method for trolley wire
JPH0772909B2 (en) Welding condition judgment method by visual inspection
JPH0645845Y2 (en) Automatic surface smoothness inspection device