JPH09113467A - Method for deciding defect - Google Patents

Method for deciding defect

Info

Publication number
JPH09113467A
JPH09113467A JP7272411A JP27241195A JPH09113467A JP H09113467 A JPH09113467 A JP H09113467A JP 7272411 A JP7272411 A JP 7272411A JP 27241195 A JP27241195 A JP 27241195A JP H09113467 A JPH09113467 A JP H09113467A
Authority
JP
Japan
Prior art keywords
work
defect
inspection
contour
histogram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7272411A
Other languages
Japanese (ja)
Inventor
Shigeyuki Nishi
重幸 西
Koji Yoshimura
剛治 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7272411A priority Critical patent/JPH09113467A/en
Publication of JPH09113467A publication Critical patent/JPH09113467A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Analysis (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)
  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for deciding a linear defect surely through image processing in the defect inspection by fluorescent penetration. SOLUTION: An image processor determines a plurality of inspection windows and an approximate expression for the outline of work based on the images being picked up. In each inspection window, histogram of luminance is determined in the longitudinal and lateral direction of fluorescent pattern and a feature amount measuring window is set from the intersection of the peak waveform of each histogram and a preset threshold value. A defect is determined by calculating the feature amount of inner fluorescent pattern.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、機械部品等(以下
ワークという。)の外観検査方法に関し、特に、蛍光浸
透探傷法による外観検査における、画像処理による欠陥
判別方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a visual inspection method for machine parts and the like (hereinafter referred to as a work), and more particularly to a defect discrimination method by image processing in a visual inspection by a fluorescent penetrant inspection method.

【0002】[0002]

【従来の技術】ワークの表面に存在する欠陥を検出する
方法の一つに蛍光浸透探傷法がある。これは、ワーク表
面の欠陥部分に蛍光液を浸透させ、これに紫外光を照射
して発光させることにより、輝度レベルが異なる蛍光模
様を描き出し、この蛍光模様に基づいてワーク表面に存
在する欠陥を検査するものである。そして、このような
蛍光浸透探傷法においては、蛍光模様をテレビカメラ等
の撮像装置によって撮像することにより、ワーク表面に
存在する欠陥を画像処理により検査する方法が提案され
ている。この方法の実用化のポイントは、塵や汚れと、
傷との識別を確実に行える画像処理方法を開発するかに
係っている。
2. Description of the Related Art Fluorescent penetrant inspection is one of the methods for detecting defects existing on the surface of a work. This is because a fluorescent solution is permeated into the defective part of the work surface, and ultraviolet light is emitted to this to make it emit light, thereby drawing out a fluorescent pattern with different brightness levels, and based on this fluorescent pattern, the defects existing on the surface of the work are detected. It is something to inspect. In such a fluorescent penetrant inspection method, a method of inspecting a defect existing on the surface of a work by image processing by capturing an image of a fluorescent pattern with an image capturing device such as a television camera has been proposed. The point of practical application of this method is dust and dirt,
He is involved in developing an image processing method that can reliably identify scratches.

【0003】特開平6ー160295号公報(以下公知
例と称す。)に画像処理による傷検査方法が記載されて
いる。この方法は、傷は細長い形状をして、一つの線状
に並んでいるものとして、検査対象画像の形状と方向性
を判断して、傷か否かを判断するものである。そのため
に、ワークの画像データをある閾値で2値化処理をし
て、図8に示す2値画像群11を求め、これらの2値画
像群11を構成する画素を各2値画像毎に分割した分割
領域を作り、その後に、各分割領域毎に2次モーメント
を求めて分割領域の形状と方向性を演算して傷か否かを
判断するデータを作成している。この2次モーメントと
は、分割領域を構成する各画素が任意に座標軸方向にば
らついている程度を示すものであり、分割領域の各方向
の2次モーメントを求め、これらの2次モーメントの中
の最小2次モーメントを短軸2次モーメントとすると、
この短軸2次モーメントが所定値より小さい場合には、
その短軸2次モーメントを有する分割領域が、その短軸
2次モーメントの軸に直角方向に、細長い形状を有する
ことを意味する。従って、この短軸2次モーメントを求
めて、各分割領域がどの方向に長く伸びているかを判断
し、同一方向に伸びている2つの分割領域は、1つの傷
を構成しているとして、前記各分割領域から短軸2次モ
ーメントの軸方向が同じ方向の2つの領域を融合し、こ
の融合した領域がどの方向にどの程度長く伸びているか
を判断するために融合短軸2次モーメントを求め、前記
融合短軸2次モーメントが所定値より小さい前記融合領
域について、前記融合領域の面積と、前記面積と前記融
合短軸2次モーメントとから演算して得られる形状と方
向性とを示す特徴値との組み合わせで傷か否かを判断す
るのである。
Japanese Unexamined Patent Publication No. 6-160295 (hereinafter referred to as a known example) describes a flaw inspection method by image processing. In this method, it is assumed that the scratches have an elongated shape and are arranged in a single line, and the shape and directionality of the image to be inspected are determined to determine whether or not the scratches are present. For that purpose, the image data of the work is binarized with a certain threshold value to obtain the binary image group 11 shown in FIG. 8, and the pixels forming the binary image group 11 are divided for each binary image. The divided areas are created, and thereafter, the second moment is calculated for each divided area, the shape and directionality of the divided areas are calculated, and data for determining whether or not there is a scratch is created. This secondary moment indicates the degree to which the pixels forming the divided area are arbitrarily dispersed in the coordinate axis direction. The secondary moment in each direction of the divided area is calculated, and the secondary moment If the minimum second moment is the minor moment of second axis,
If this short axis second moment is smaller than the specified value,
It means that the divided region having the minor axis second moment has an elongated shape in a direction perpendicular to the axis of the minor axis second moment. Therefore, by determining the minor axis second moment, it is determined in which direction each of the divided regions extends long, and it is assumed that the two divided regions extending in the same direction constitute one scratch. The fused short-axis second moments are obtained from each divided region by merging two regions in which the axial directions of the short-axis second moments are the same and determining in which direction and how long the fused regions extend. A characteristic of the fusion area in which the fusion minor axis second moment is smaller than a predetermined value, the area of the fusion area, and the shape and directionality obtained by calculation from the area and the fusion minor axis second moment. The combination with the value determines whether or not it is a scratch.

【0004】[0004]

【発明が解決しようとする課題】ところが、本公知例に
は、以下に記すような問題点があった。すなわち、ワー
ク表面には不良とすべき重大な欠陥や、実用上差し支え
のない欠陥や、欠陥ではない汚れ等が存在し、それぞれ
の蛍光模様を示すため、本公知例の特徴である画像の形
状と方向性だけでは重大欠陥を判別するには不十分であ
る。また、本公知例は、ワークの輪郭部からかなり離れ
た表面部分に存在する欠陥を対象としており、ワーク境
界部の2値画像と、傷に浸透した蛍光液からの2値画像
との判別については全く記載されていない。実際の欠陥
判別に当たっては、輪郭部周辺の欠陥をいかに輪郭線と
区別して正しく判定するかが一番のポイントであり、本
発明の目的とするところは、ワークの輪郭線を区別しつ
つ、重大欠陥とそれ以外の欠陥や汚れ等を確実に判別で
きる画像処理方法を提供することにある。
However, the known example has the following problems. That is, the work surface has serious defects that should be defective, defects that do not hinder practical use, stains that are not defects, and the like, and show the respective fluorescent patterns. And the directionality alone are not sufficient to identify serious defects. In addition, this known example targets a defect existing on a surface portion far away from the contour portion of the work, and discriminates between the binary image of the work boundary portion and the binary image from the fluorescent liquid penetrating the scratch. Is not listed at all. In the actual defect determination, the most important point is how to correctly distinguish the defect around the contour from the contour, and the object of the present invention is to distinguish the contour of the workpiece and An object of the present invention is to provide an image processing method capable of reliably discriminating between defects and other defects and stains.

【0005】[0005]

【課題を解決するための手段】本発明では、蛍光液を浸
透させたワークの表面に紫外光を照射し、該ワーク表面
の蛍光模様を撮像して画像信号に変換し、該画像信号を
画像処理装置で処理して該ワーク表面の欠陥を判別する
欠陥判別方法において、画像信号を記憶する画像メモリ
について、ワークの輪郭及び欠陥指示模様を抽出し、該
ワーク輪郭をもとに複数の検査ウインドウと、ワーク輪
郭近似式を算出して、検査ウインドウ内の検査範囲を決
め、検査範囲内において、蛍光模様の縦方向の輝度の和
のヒストグラムを求め、該ヒストグラムのピーク波形と
予め設定した閾値との交点から、横方向に幅を有する領
域を設定し、該領域内の横方向の輝度の和のヒストグラ
ムを求め、該ヒストグラムのピーク波形と予め設定した
閾値との交点から縦方向に幅を有する領域を設定し、こ
の領域を各欠陥の特徴量計測ウインドウとし、該特徴量
計測ウインドウ内の欠陥指示模様の物理的特徴量を算出
し、予め決めた特徴量計測ウインドウの面積及び前記特
徴量判別値に照らして欠陥を判別することを特徴とする
技術手段を有する。
In the present invention, the surface of a work permeated with a fluorescent liquid is irradiated with ultraviolet light, the fluorescent pattern on the surface of the work is imaged and converted into an image signal, and the image signal is imaged. In a defect discriminating method for discriminating defects on the surface of a work by processing with a processing device, a contour of a work and a defect designating pattern are extracted from an image memory for storing image signals, and a plurality of inspection windows are based on the contour of the work. And a work contour approximation formula is calculated to determine the inspection range within the inspection window, and within the inspection range, a histogram of the sum of the brightness in the vertical direction of the fluorescent pattern is obtained, and the peak waveform of the histogram and a preset threshold value are set. From the intersection of, set a region having a width in the horizontal direction, obtain a histogram of the sum of the horizontal luminance in the region, from the intersection of the peak waveform of the histogram and a preset threshold An area having a width in the direction is set, this area is used as a feature amount measurement window of each defect, the physical feature amount of the defect designating pattern in the feature amount measurement window is calculated, and the area of the predetermined feature amount measurement window is determined. And a technical means for discriminating a defect in light of the characteristic amount discriminating value.

【0006】[0006]

【発明の実施の形態】以下、本発明の一実施例を図面に
基づいて説明する。本実施例では、ワークとして図6に
示すような被検面が湾曲した4辺を有する形状のフェラ
イト磁石を対象とした。このワークの外観検査のポイン
トは、重大欠陥であるクラックと、欠陥ではあるが実用
上差し支えのない欠陥(以下疑似欠陥と言う。)とを判
別し、重大欠陥であるクラックを確実にリジェクトする
ことである。図7に重大欠陥であるクラックと、疑似欠
陥の例を示した。ここで、クラックは面積が小さくて細
い線状をなし、ワーク輪郭線に直交した方向性を有する
という特徴がある。これに対して、疑似欠陥のうち、カ
ケと未加工は比較的面積が大きくてワークの輪郭部に存
在し、ゴミとシミとピットは、比較的面積が小さくて縦
横比が1に近く、ワークの位置に無関係であるという特
徴がある。従って、本実施例では、ワーク輪郭線に対し
直交した方向性を有する細長い線状の欠陥を判別するこ
とを主眼としている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. In the present embodiment, a ferrite magnet having a shape having four curved sides as shown in FIG. 6 is targeted as the work. The point of the visual inspection of this work is to distinguish between a crack that is a serious defect and a defect that is a defect that does not cause any practical problems (hereinafter referred to as a pseudo defect), and reliably rejects a crack that is a serious defect. Is. FIG. 7 shows an example of a crack which is a serious defect and a pseudo defect. Here, the crack has a feature that it has a small area and is in the form of a thin line, and has a directionality orthogonal to the work contour line. On the other hand, among the pseudo defects, the chip and the unmachined have a relatively large area and exist in the contour portion of the work, and the dust, stains and pits have a relatively small area and the aspect ratio is close to 1, The feature is that it is irrelevant to the position of. Therefore, in the present embodiment, the main object is to discriminate elongated linear defects having a direction orthogonal to the workpiece contour line.

【0007】図1は本発明の撮像方法の概念図である。
蛍光液に浸漬した後洗浄し、凹部に蛍光液を浸透させた
ワーク1の被検面の上方に撮像装置4及び紫外線照射装
置3を設け、被検面の裏面方向に散乱光を発生する背景
照明装置2を設け、各々の照明装置により該被検面の蛍
光模様とワークの輪郭を撮像するのである。撮像された
画像信号は画像処理装置(図示せず。)で欠陥の判別を
行うのである。以下、処理手順を図2の手順からに
基づいて説明する。
FIG. 1 is a conceptual diagram of the imaging method of the present invention.
A background in which the imaging device 4 and the ultraviolet irradiation device 3 are provided above the surface to be inspected of the workpiece 1 in which the concave portion is soaked in the fluorescent liquid and washed, and the fluorescent liquid is permeated to generate scattered light in the direction of the back surface of the surface to be inspected. The illuminating device 2 is provided, and each illuminating device images the fluorescent pattern of the surface to be inspected and the contour of the work. An image processing device (not shown) discriminates the imaged image signal from defects. Hereinafter, the processing procedure will be described based on the procedure of FIG.

【0008】1)手順 入力された画像信号から、ワーク輪郭部及び欠陥指示模
様として現れる蛍光模様を公知の2値化処理を用いて抽
出する工程である。
1) Procedure This is a step for extracting a fluorescent pattern appearing as a work contour portion and a defect designating pattern from the input image signal by using a known binarization process.

【0009】2)手順 ワークの検査領域を決める検査ウインドウ算出工程であ
る。本実施例では、過去の本ワークの外観検査データを
もとに、欠陥種類とその発生部位、撮像装置の検出分解
能より、図3(d)に示すような5つの検査領域を設け
た。前述の入力された画像から、ワークの輪郭代表点の
抽出と5つの検査領域の作成の方法について図3をもと
に説明する。まず、画像全範囲にわたってX方向に走査
し、図3(a)に示すように一つの走査線上毎に急峻な
変化点x1sとx1e,x2sとx2e,x3sとx3
e,…を求め、x1sとx1eの距離Lx1,x2sと
x2eの距離Lx2,x3sとx3eの距離Lx3,…
をそれぞれ求める。同様に図3(b)に示すように画像
全範囲にわたってY方向に走査し、一つの走査線上毎に
急峻な変化点y1sとy1e,y2sとy2e,y3s
とy3e,…を求め、y1sとy1eの距離Ly1,y
2sとy2eの距離Ly2,y3sとy3eの距離Ly
3,…をそれぞれ求める。
2) Procedure This is an inspection window calculation step for determining the inspection area of the work. In this embodiment, five inspection areas as shown in FIG. 3D are provided on the basis of the appearance inspection data of the present work in the past, based on the defect type, the location where the defect occurred, and the detection resolution of the imaging device. A method for extracting the representative points of the contour of the work and creating the five inspection areas from the input image will be described with reference to FIG. First, the entire image range is scanned in the X direction, and steep change points x1s and x1e, x2s and x2e, x3s and x3 on each scanning line as shown in FIG. 3A.
, e, ..., The distance Lx1 between x1s and x1e, the distance Lx2 between x2s and x2e, the distance Lx3 between x3s and x3e ,.
Respectively. Similarly, as shown in FIG. 3B, scanning is performed in the Y direction over the entire image range, and steep change points y1s and y1e, y2s and y2e, y3s on each scanning line.
And y3e, ..., The distance Ly1, y between y1s and y1e
Distance Ly between 2s and y2e Ly2, Distance Ly between y3s and y3e
Ask for 3, ...

【0010】次に、Lx1,Lx2,Lx3,…を比較
してX方向の最大距離を求め、同様にLy1,Ly2,
Ly3,…を比較してY方向の最大距離を求める。ここ
でx3eとy2eは欠陥指示模様による急峻な変化点で
あり、距離Lx3とLy2はワーク輪郭間距離より小さ
い値を示す。従って、x3eとy2eはワーク輪郭点と
しては採用されない。最大距離となる4つの点を図3
(c)に示すように各輪郭の代表点xs,xe,ys,
yeとする。この4つの代表点の座標とオフセット値か
ら図3(d)に示すような五つの検査領域となる検査ウ
インドウW1,W2,W3,W4,W5を決定する。な
お、前記オフセット値は、対象ワークの欠陥発生状況の
過去のデータをもとに、予め定めた値を採用する。
Next, Lx1, Lx2, Lx3, ... Are compared to find the maximum distance in the X direction. Similarly, Ly1, Ly2,
Ly3, ... Are compared to obtain the maximum distance in the Y direction. Here, x3e and y2e are abrupt change points due to the defect design pattern, and the distances Lx3 and Ly2 show values smaller than the work contour distance. Therefore, x3e and y2e are not adopted as the work contour points. Figure 4 shows the four points with the maximum distance.
As shown in (c), the representative points xs, xe, ys of each contour,
Let's say yes. Inspection windows W1, W2, W3, W4 and W5, which are five inspection areas as shown in FIG. 3D, are determined from the coordinates and offset values of the four representative points. As the offset value, a predetermined value is adopted based on the past data of the defect occurrence status of the target work.

【0011】3)手順 図4(a),(b)は先に決定した検査ウインドウ内
で、ワークの輪郭近似線をソフト的に算出する説明図で
ある。図4(a)に示すように検査ウインドウW4,W
5内各々において、矢印で示すようにX方向走査を順次
行い、急峻な変化点を求め、これを輪郭位置データとし
て抽出する。その輪郭位置データより最小自乗近似方式
で直線近似して、各々直線式ax+by+c=0を求
め、これを輪郭線とする。同様に図4(b)に示すよう
に検査ウインドウW2,W3内各々において、矢印で示
すようにY方向走査を順次行い、て急峻な変化点を求
め、これを輪郭位置データとして抽出する。ここで、こ
の部分はワークの表面は湾曲しており、撮像装置のレン
ズから等距離にないため輪郭は曲線となり、最小自乗近
似方式で2次曲線近似して、各々2次曲線式y=ax2
+bx+cを求め、これを輪郭線とする。なお、図中の
ウインドウW2,W5のハッチング部は、輪郭部の蛍光
模様の例を示す。
3) Procedure FIGS. 4 (a) and 4 (b) are explanatory diagrams for calculating the outline approximation line of the workpiece by software in the previously determined inspection window. As shown in FIG. 4A, the inspection windows W4, W
In each of the sections 5, the X-direction scanning is sequentially performed as shown by the arrow to find a steep change point, and this is extracted as contour position data. Linear approximation is performed from the contour position data by the least square approximation method to obtain linear equations ax + by + c = 0, which are defined as contour lines. Similarly, as shown in FIG. 4B, in each of the inspection windows W2 and W3, Y-direction scanning is sequentially performed as indicated by arrows to obtain a steep change point, and this is extracted as contour position data. Here, the surface of the work in this portion is curved, and since it is not equidistant from the lens of the image pickup apparatus, the contour becomes a curve, and quadratic curve approximation is performed by the least square approximation method, and each quadratic curve expression y = ax. 2
+ Bx + c is obtained and used as the contour line. The hatched portions of the windows W2 and W5 in the figure show an example of the fluorescent pattern of the contour portion.

【0012】4)手順 手順で求めた検査ウインドウについて、手順で算出
した輪郭線をもとに設定したワーク部分の輝度の和を計
測して、蛍光模様の特徴量計測ウインドウを算出する工
程である。図5(a)は、検査ウインドウW2を例にし
た輝度の和のヒストグラムの算出方法を説明する図であ
る。クラック(輪郭線に直交方向で線状)と、ゴミ、シ
ミ、ピット等面積の比較的小さい疑似欠陥画像が存在す
る場合を示す。該検査ウインドウ内において、前記手順
で算出した近似輪郭線をワーク領域方向に予め設定し
た所定量シフトし、新しい輪郭線Rを設定し、輪郭線R
で囲まれたワーク部分を検査対象範囲とする。前記所定
量は、輪郭線に沿って存在する疑似欠陥が検査対象範囲
から外れるような量に設定しておけば、この時点で明ら
かにクラックとは異なる蛍光模様をある程度排除するこ
とができ、処理効率面で有効である。
4) Procedure In the inspection window obtained in the procedure, the sum of the brightness of the work portion set based on the contour line calculated in the procedure is measured to calculate the characteristic amount measurement window of the fluorescent pattern. . FIG. 5A is a diagram for explaining a method of calculating the histogram of the sum of luminances using the inspection window W2 as an example. The case where there is a crack (linear in a direction orthogonal to the contour line) and a pseudo defect image having a relatively small area such as dust, stains, and pits is shown. In the inspection window, the approximate contour line calculated in the above procedure is shifted in the work area direction by a predetermined amount, and a new contour line R is set, and the contour line R is set.
The work part surrounded by is the inspection range. If the predetermined amount is set to such an amount that the pseudo defects existing along the contour line deviate from the inspection target range, it is possible to eliminate the fluorescent pattern which is obviously different from the crack at this point to some extent. Effective in terms of efficiency.

【0013】前記設定した検査対象範囲全面について、
最初に縦方向の輝度の和のヒストグラムを算出すると、
図5(b)に示すようになる。2つの輝度のピークと、
予め設定した閾値の交点から、幅X1(本例では疑似欠
陥に対応)と幅X2(本例では線状欠陥に対応)が求ま
る。前記幅X1、X2より、縦方向の領域1と領域2を
設定する。図5(c)、(d)は、領域1、2につい
て、横方向の輝度の和のヒストグラムを算出したものを
示す。図5(b)と同様に、輝度のピークと予め設定し
た閾値より幅Y1(疑似欠陥に対応)と幅Y2(線状欠
陥に対応)を求めることができる。この様にして求めた
X1、X2、Y1、Y2から各蛍光模様を囲む特徴量計
測ウインドウ(ハッチング部分)を算出する。
With respect to the entire surface of the set inspection target range,
First, when calculating the histogram of the sum of the vertical luminance,
The result is as shown in FIG. Two brightness peaks,
The width X1 (corresponding to a pseudo defect in this example) and the width X2 (corresponding to a linear defect in this example) are obtained from the intersection of preset threshold values. Areas 1 and 2 in the vertical direction are set based on the widths X1 and X2. 5C and 5D show histograms of horizontal luminance sums calculated for the regions 1 and 2. Similar to FIG. 5B, the width Y1 (corresponding to the pseudo defect) and the width Y2 (corresponding to the linear defect) can be obtained from the luminance peak and the preset threshold value. From X1, X2, Y1, and Y2 thus obtained, a feature amount measurement window (hatched portion) surrounding each fluorescent pattern is calculated.

【0014】5)手順 最後に、前記の方法で算出した全ての特徴量計測ウイン
ドウについて、蛍光模様の特徴量詳細を計測する。ま
ず、特徴量計測ウインドウ中の実際の蛍光模様につい
て、面積S、長さL(慣性主軸の長さ)、幅W(慣性副
軸の長さ)、傾きθ(慣性主軸の傾き)、及び傾き延長
線方向のワーク輪郭線Rまでの距離を求め、更に長さL
と幅Wとの比である縦横比を計算する。該ウインドウ内
の実際の蛍光模様は、必ずしも連続した形ではなく、複
数個に分かれていることもあるが、前述した公知例で説
明したと同様に、ソフト的に一つの連続模様になるよう
に処理する。処理後の蛍光模様について、再度前記と同
様な計算処理をする。次に、前記計算値を、疑似欠陥と
クラックとを判別するための予め設定した該検査領域特
有の前記特徴量の判定基準と比較し、クラックであるか
ないかを判別する。これを前記5つの検査領域各々につ
いて行い、ワーク全体の欠陥判別をする。なお、該ウイ
ンドウ自体について、ウインドウ面積が設定量より小さ
いものは、明らかに内在する蛍光模様が形状的に細長い
線状でないと判断し、クラックの特徴を有していないと
して対象外として、処理時間の短縮を図ることもでき
る。
5) Procedure Finally, the detailed feature amount of the fluorescent pattern is measured for all the feature amount measurement windows calculated by the above method. First, the area S, the length L (the length of the principal axis of inertia), the width W (the length of the minor axis of inertia), the inclination θ (the inclination of the principal axis of inertia), and the inclination of the actual fluorescent pattern in the feature amount measurement window. Calculate the distance to the workpiece contour line R in the extension line direction, and then further length L
The aspect ratio, which is the ratio of the width W to the width W, is calculated. The actual fluorescent pattern in the window is not necessarily a continuous pattern but may be divided into a plurality of patterns. However, as described in the above-mentioned known example, one continuous pattern can be softly created. To process. With respect to the processed fluorescent pattern, the same calculation process as described above is performed again. Next, the calculated value is compared with a preset determination criterion of the characteristic amount peculiar to the inspection area for determining a pseudo defect and a crack, and it is determined whether or not there is a crack. This is performed for each of the above-mentioned five inspection areas, and the defect determination of the entire work is performed. Regarding the window itself, if the window area is smaller than the set amount, it is judged that the inherent fluorescent pattern is not a linear elongated shape, and it is excluded because it does not have the characteristics of cracks, and the processing time is Can be shortened.

【0015】[0015]

【発明の効果】以上説明したように、本発明は以下の効
果を有する。 1)ソフト的に輪郭線を設定することで欠陥検出を行う
対象範囲を決めるので、実際の輪郭部近傍に存在する疑
似欠陥を予め除外することができ、処理時間の短縮が図
れる。 2)輝度の和のヒストグラムを算出して特徴量計測ウイ
ンドウを設定するので、連続した蛍光模様として検出さ
れなかった線状欠陥でも一つの特徴量計測ウインドウ内
にまとめることができ、線状欠陥を見逃すミスが少なく
なった。 3)特徴量計測ウインドウの設定時点で、対象となる線
状レベルのものかどうか判別すれば、対象外のものは前
述と同様に予め除外することができ、処理時間の短縮が
図れる。
As described above, the present invention has the following effects. 1) Since the target range for defect detection is determined by setting the contour line by software, pseudo defects existing near the actual contour portion can be excluded in advance, and the processing time can be shortened. 2) Since the histogram of the sum of brightness is calculated and the feature quantity measurement window is set, even linear defects that are not detected as a continuous fluorescent pattern can be combined in one feature quantity measurement window, and line defects can be detected. There are fewer mistakes to miss. 3) At the time of setting the feature amount measurement window, if it is determined whether or not the target linear level, the non-target can be excluded in advance in the same manner as described above, and the processing time can be shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の撮像方法を示す概念図FIG. 1 is a conceptual diagram showing an imaging method of the present invention.

【図2】本発明の画像処理手順を示す図FIG. 2 is a diagram showing an image processing procedure of the present invention.

【図3】本発明の判定ウインドウの作成方法を説明する
FIG. 3 is a diagram illustrating a method of creating a judgment window according to the present invention.

【図4】本発明のワーク輪郭算出方法を説明する図FIG. 4 is a diagram for explaining a work contour calculating method according to the present invention.

【図5】本発明の特徴量計測ウインドウを説明する図FIG. 5 is a diagram illustrating a feature amount measurement window of the present invention.

【図6】被検材の形状の説明図FIG. 6 is an explanatory view of the shape of the test material.

【図7】欠陥の代表例の説明図FIG. 7 is an explanatory diagram of a representative example of defects.

【図8】従来技術の傷の2値画像を説明する図FIG. 8 is a diagram illustrating a binary image of a scratch in the related art.

【符号の説明】[Explanation of symbols]

1 ワーク 2 背景照明 3 紫外光照明 4 撮像装置 W1〜W5 検査ウインドウ 1 Work 2 Background Illumination 3 Ultraviolet Illumination 4 Imaging Device W1-W5 Inspection Window

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蛍光液を浸透させたワークの表面に紫外
光を照射し、該ワーク表面の蛍光模様を撮像して画像信
号に変換し、該画像信号を画像処理装置で処理して該ワ
ーク表面の欠陥を判別する欠陥判別方法において、 画像信号を記憶する画像メモリについて、ワークの輪郭
及び欠陥指示模様を抽出し、該ワーク輪郭をもとに複数
の検査ウインドウと、ワーク輪郭近似式を算出して、検
査ウインドウ内のワーク輪郭近似式で区分けされたワー
ク部分を検査範囲とし、検査範囲内において、蛍光模様
の縦方向の輝度の和のヒストグラムを求め、該ヒストグ
ラムのピーク波形と予め設定した閾値との交点から、横
方向に幅を有する領域を設定し、該領域内の横方向の輝
度の和のヒストグラムを求め、該ヒストグラムのピーク
波形と予め設定した閾値との交点から縦方向に幅を有す
る領域を設定し、この領域を各蛍光模様の特徴量計測ウ
インドウとし、該特徴量計測ウインドウ内の蛍光模様の
長さ、幅、傾き、輪郭線からの距離を算出し、予め決め
た前記特徴量判別値に照らして欠陥を判別することを特
徴とする欠陥判別方法。
1. A surface of a work permeated with a fluorescent liquid is irradiated with ultraviolet light, a fluorescent pattern on the surface of the work is imaged and converted into an image signal, and the image signal is processed by an image processing device to obtain the work. In a defect discriminating method for discriminating a surface defect, a contour of a work and a defect designating pattern are extracted from an image memory storing image signals, and a plurality of inspection windows and a work contour approximation formula are calculated based on the work contour. Then, the work part divided by the work contour approximation formula in the inspection window is set as the inspection range, and the histogram of the sum of the vertical luminance of the fluorescent pattern is obtained in the inspection range, and the peak waveform of the histogram is set in advance. An area having a width in the horizontal direction is set from the intersection with the threshold value, a histogram of the sum of the horizontal brightness in the area is obtained, and a peak waveform of the histogram and a preset threshold value are set. An area having a width in the vertical direction from the intersection with is set, and this area is used as the feature amount measurement window of each fluorescent pattern, and the length, width, inclination, and distance from the contour line of the fluorescent pattern in the feature amount measurement window are set. Is calculated, and a defect is discriminated based on the predetermined characteristic amount discriminant value.
JP7272411A 1995-10-20 1995-10-20 Method for deciding defect Pending JPH09113467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7272411A JPH09113467A (en) 1995-10-20 1995-10-20 Method for deciding defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7272411A JPH09113467A (en) 1995-10-20 1995-10-20 Method for deciding defect

Publications (1)

Publication Number Publication Date
JPH09113467A true JPH09113467A (en) 1997-05-02

Family

ID=17513538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7272411A Pending JPH09113467A (en) 1995-10-20 1995-10-20 Method for deciding defect

Country Status (1)

Country Link
JP (1) JPH09113467A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005204724A (en) * 2004-01-20 2005-08-04 Olympus Corp Endoscope apparatus for measurement
JP2011058940A (en) * 2009-09-09 2011-03-24 Panasonic Electric Works Co Ltd Apparatus and method for visual inspection
CN112881424A (en) * 2021-01-13 2021-06-01 广东省特种设备检测研究院珠海检测院 AI + fluorescence permeation small-sized pipe surface defect detection and quality grading method and system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005204724A (en) * 2004-01-20 2005-08-04 Olympus Corp Endoscope apparatus for measurement
JP2011058940A (en) * 2009-09-09 2011-03-24 Panasonic Electric Works Co Ltd Apparatus and method for visual inspection
CN112881424A (en) * 2021-01-13 2021-06-01 广东省特种设备检测研究院珠海检测院 AI + fluorescence permeation small-sized pipe surface defect detection and quality grading method and system

Similar Documents

Publication Publication Date Title
US4876457A (en) Method and apparatus for differentiating a planar textured surface from a surrounding background
KR101674698B1 (en) Detecting defects on a wafer
JP3051279B2 (en) Bump appearance inspection method and bump appearance inspection device
US9171364B2 (en) Wafer inspection using free-form care areas
JP4045742B2 (en) Nondestructive inspection method and apparatus
JP2002148195A (en) Surface inspection apparatus and surface inspection method
JP4322230B2 (en) Surface defect inspection apparatus and surface defect inspection method
JP2007316019A (en) Surface defect inspection device
JP4151306B2 (en) Inspection method of inspection object
JPH06207909A (en) Inspection apparatus for surface defect
JPH11223610A (en) Surface defect inspection device and fluorescent magnetic particle flaw inspecting method
JPH08190633A (en) Defect judging method
JP2001296252A (en) Defect detection method of object surface, and device thereof
JPH09113467A (en) Method for deciding defect
JP3890844B2 (en) Appearance inspection method
JP3089079B2 (en) Circuit pattern defect inspection method
JP2000258398A (en) Defect inspection method and device and defect inspection support method
JP2010139434A (en) Test apparatus and test method for discriminating between foreign substance and scar
JPH0921763A (en) Fault discriminating method
JP3758763B2 (en) Method for optical measurement of hole position
JPH06103275B2 (en) Defect extraction method by visual inspection
JPH1019801A (en) Surface defect detector
JP2003247954A (en) Defect detection method for round body circumference
JP2954099B2 (en) Weld mark appearance inspection method
JP2563865B2 (en) Image recognition apparatus and method