JP2001056318A - Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detector - Google Patents
Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detectorInfo
- Publication number
- JP2001056318A JP2001056318A JP11234202A JP23420299A JP2001056318A JP 2001056318 A JP2001056318 A JP 2001056318A JP 11234202 A JP11234202 A JP 11234202A JP 23420299 A JP23420299 A JP 23420299A JP 2001056318 A JP2001056318 A JP 2001056318A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- ultrasonic
- probe
- pipe
- incident
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/11—Analysing solids by measuring attenuation of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/26—Arrangements for orientation or scanning by relative movement of the head and the sensor
- G01N29/265—Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/025—Change of phase or condition
- G01N2291/0258—Structural degradation, e.g. fatigue of composites, ageing of oils
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/048—Transmission, i.e. analysed material between transmitter and receiver
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Acoustics & Sound (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、超音波を利用した
配管の検査方法及びその装置の係り、特に、長尺管の腐
食による減肉部を検出するのに適した配管検査方法及び
装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a piping inspection method and apparatus using ultrasonic waves, and more particularly to a piping inspection method and apparatus suitable for detecting a thinned portion due to corrosion of a long pipe. .
【0002】[0002]
【従来の技術】化学プラントにおいては、各種の液体原
料や燃料等を輸送するための配管が多数使用されている
が、それらの配管として鋼管が使用される場合が少なく
ない。そして、これらのうち屋外に配管されているもの
については、長い年月が経過するうちに腐食が生じるた
め、腐食が進んで漏洩が生じる前に発見することが事故
を未然に防ぐためにも肝要である。鋼管の腐食により鋼
管の板厚は減肉されるが、その減肉部を検出するための
手段として超音波を利用する検査法がある。2. Description of the Related Art In a chemical plant, a large number of pipes for transporting various liquid raw materials and fuels are used, and steel pipes are often used as those pipes. Of these, those that are piped outdoors will corrode over a long period of time, so it is imperative to discover them before corrosion progresses and leaks occur to prevent accidents. is there. Although the thickness of the steel pipe is reduced by corrosion of the steel pipe, there is an inspection method using an ultrasonic wave as a means for detecting the thinned portion.
【0003】図1は、超音波を利用した一般的な配管の
肉厚検査法を示す。図1に示されるように管壁面に超音
波肉厚計探触子2を配置し、管厚を測定することにより
減肉部を検出する方法である。超音波肉厚計探触子2は
管1の表面より内面に向けて超音波ビームを発し、内面
からの反射波を測定して肉厚を測定するもので肉厚を精
度よく測定できる。FIG. 1 shows a general pipe thickness inspection method using ultrasonic waves. As shown in FIG. 1, an ultrasonic thickness gauge probe 2 is arranged on the wall surface of a pipe, and the wall thickness is measured to detect a thinned portion. The ultrasonic thickness gauge probe 2 emits an ultrasonic beam from the surface of the tube 1 toward the inner surface, and measures the reflected wave from the inner surface to measure the wall thickness, so that the wall thickness can be accurately measured.
【0004】図2は他の方式を示す。図2(a)は反射
法と呼ばれるもので、管の表面に管軸に対し所定の傾斜
角度で超音波を送受信する送受信部を有する送受信探触
子3を配置し、超音波を送受信することにより管肉部の
異常箇所、例えば、減肉部やひび割れ等を検知するもの
である。この方式は、管軸に対して角度を以て入射した
超音波ビームが異常部において反射して送受信部まで戻
ってくる反射ビームをを検知して異常部の存在を検知す
るものである。FIG. 2 shows another method. FIG. 2A shows a so-called reflection method in which a transmission / reception probe 3 having a transmission / reception unit for transmitting / receiving ultrasonic waves at a predetermined inclination angle with respect to the tube axis is arranged on the surface of the tube to transmit / receive ultrasonic waves. Thus, an abnormal portion of the pipe wall portion, for example, a thinned portion or a crack is detected. In this method, the presence of an abnormal part is detected by detecting a reflected beam in which an ultrasonic beam incident at an angle to the tube axis is reflected at an abnormal part and returns to a transmitting / receiving part.
【0005】また、図2(b)は透過法と呼ばれるもの
で、管の表面に管軸に対し所定の傾斜角度で超音波を送
受信する送信探触子4と所定の間隔を置いて配置した受
信探触子5とを使用し、受信探触子5に到達する超音波
の性状、特に減衰状況から音波の伝達経路上の変化を把
握する方法である。図示のように「A」部に正常でない
腐食等の変化が生じていれば、受信探触子5に到達する
音波は「B」での反射より音波の伝達時間は短くなる。
また、「A」部が腐食等で凹凸が著しい場合は散乱し、
受信探触子に到達する音波は減衰し弱くなっている。こ
れらの度合いにより板厚の変化を定量的に把握すること
ができる。この方法は曲率のある管の周方向でも行われ
ている。FIG. 2B shows a so-called transmission method, in which a transmission probe 4 for transmitting and receiving ultrasonic waves at a predetermined inclination angle with respect to the tube axis is arranged at a predetermined distance on the surface of the tube. This is a method of using the reception probe 5 and grasping the change in the transmission path of the sound wave from the properties of the ultrasonic waves reaching the reception probe 5, particularly the attenuation state. As shown in the figure, if an abnormal change such as corrosion occurs in the portion "A", the sound wave reaching the receiving probe 5 has a shorter sound wave transmission time than the reflection at "B".
In addition, when the “A” part has significant irregularities due to corrosion or the like, it is scattered,
Sound waves reaching the receiving probe are attenuated and weakened. The change in the plate thickness can be quantitatively grasped by these degrees. This method is also used in the circumferential direction of a curved tube.
【0006】図3は、入射超音波を周回させて受信する
送受信探触子を使用する例を示す。この場合、送受信探
触子6は、送信振動子7と受信振動子8を一体的に設た
探触子9を使用し、送信振動子7の入射位置と略同位置
で周回した超音波を受信振動子8で受信するようにして
いる。FIG. 3 shows an example in which a transmission / reception probe for receiving an incident ultrasonic wave while rotating it is used. In this case, the transmission / reception probe 6 uses a probe 9 in which a transmission vibrator 7 and a reception vibrator 8 are integrally provided, and transmits an ultrasonic wave circulating at substantially the same position as the incident position of the transmission vibrator 7. The receiving oscillator 8 receives the signal.
【0007】[0007]
【発明が解決しようとする課題】上記図1に示される超
音波肉厚計探触子2を使用する方式にあっては、管の肉
厚の測定するものであり、管の全長に亘って管を検査す
るためにには、超音波肉厚計探触子2を管1の全周及び
管の全長に亘って相対的に移動して走査させる必要があ
る。したがって、化学プラント等の配管においては、管
を支持する架台等が存在しているため、肉厚探触子を管
外表面の全周に亘って走査させることは困難となる場合
が多い。In the method using the ultrasonic thickness gauge probe 2 shown in FIG. 1, the thickness of the pipe is measured, and the thickness of the pipe is measured over the entire length of the pipe. In order to inspect the tube, it is necessary to move the ultrasonic thickness gage probe 2 relative to the entire circumference of the tube 1 and the entire length of the tube for scanning. Therefore, in a pipe of a chemical plant or the like, it is often difficult to scan the thickness probe over the entire circumference of the outer surface of the pipe, because a gantry or the like supporting the pipe is present.
【0008】また、図2aの方式にあっては、管の側面
の特定の範囲についての検査が可能となるが、反射ビー
ムを送信位置と同じ位置で受信するため、管の周側面を
伝達する反射ビームを的確に検出するにはその範囲に限
界がある。図2(b)の方法は、管の軸方向に超音波ビ
ームを発し、軸上に所定位置での到達するビームを検出
する方法であり、管壁部の一定の範囲を検査することが
できる。管の全周を検査するためにはかなりの範囲の周
方向に亘って移動させる必要がある。超音波ビームを円
周方向に発し、円周方向で検知する方法も同様に、全周
を検査するためには、全周に亘って移動させる必要があ
る。In the method shown in FIG. 2A, a specific range of the side surface of the tube can be inspected. However, since the reflected beam is received at the same position as the transmission position, the reflected beam is transmitted to the peripheral side surface of the tube. There is a limit to the range for accurately detecting the reflected beam. The method of FIG. 2 (b) is a method of emitting an ultrasonic beam in the axial direction of the tube and detecting a beam arriving at a predetermined position on the axis, and is capable of inspecting a certain area of the tube wall. . In order to inspect the entire circumference of the tube, it is necessary to move it over a considerable area in the circumferential direction. Similarly, the method of emitting an ultrasonic beam in the circumferential direction and detecting the ultrasonic beam in the circumferential direction also requires moving over the entire circumference in order to inspect the entire circumference.
【0009】ところで、管の表面より超音波を入射して
管の全周に超音波を伝達させる場合、図4に示すよう
に、超音波は、管の内面及び外面において反射を繰り返
して伝達する。この種の検査においては入射超音波は管
に入射するときに一様に拡散しない強い指向性を持って
いるものを使用するため、図4に示すように、入射位置
と円周を透過して周回してきた外周上の到達位置
は、管の径の大きさと肉厚によって異なる。したがっ
て、図3に示した送信振動子と受信振動子を一体に固定
した探触子を使用する場合、管径と肉厚の種類応じて探
触子を用意する必要がある。In the case where ultrasonic waves are transmitted from the surface of the tube and transmitted to the entire circumference of the tube, as shown in FIG. 4, the ultrasonic waves are repeatedly transmitted on the inner and outer surfaces of the tube. . In this type of inspection, since the incident ultrasonic wave has a strong directivity that is not uniformly diffused when entering the tube, as shown in FIG. 4, it passes through the incident position and the circumference. The arrival position on the outer circumference that has been circulated depends on the diameter and thickness of the tube. Therefore, when using a probe in which the transmitting transducer and the receiving transducer shown in FIG. 3 are integrally fixed, it is necessary to prepare a probe in accordance with the type of tube diameter and wall thickness.
【0010】また、探触子は実際には形状的に大きさの
制限があり、図4の理論上特定される周回到達位置に
配置できるとは限らない。その場合、図4の’の位
置、即ち、二周目の外面反射位置で受信するようにする
ことが想起できるが、入射波のにおける到達波と混信
するおそれがある。これを解決する方法として、図5に
示すように、送信探触子11及び受信探触子12を管1
の管軸方向にずらして一体的に配置する方法が考えられ
る。しかしながら、この方法では超音波の入射方向を管
軸の直角方向、すなわち円周断面方向とすると、受信探
触子に到達するビームは拡散ビームのみであり、透過後
の超音波は受信探触子に正確に捕捉することができない
という問題がある。Further, the probe is actually limited in size in terms of shape, and cannot always be arranged at the orbital reaching position theoretically specified in FIG. In this case, it can be imagined that the signal is received at the position 'in FIG. 4, that is, at the outer surface reflection position in the second round, but there is a possibility that interference occurs with the arrival wave of the incident wave. As a method for solving this, as shown in FIG. 5, the transmission probe 11 and the reception probe 12 are connected to the tube 1.
A method of disposing them integrally in a displaced manner in the tube axis direction can be considered. However, in this method, if the incident direction of the ultrasonic wave is the direction perpendicular to the tube axis, that is, the direction of the circumferential cross section, the beam reaching the receiving probe is only a diverging beam, and the transmitted ultrasonic wave is the receiving probe. There is a problem that can not be accurately captured.
【0011】さらに、入射波を、図4に示すように、管
表面の入射位置と管の中心軸Oに下ろす線hに対し所
定の角度θの傾斜角度で入射させる場合、内側面と外側
表面とで反射を繰り返して周回した超音波によっても、
図の外側表面のからの間、内側表面のとの間の
領域に腐食等の凹部が存在したとしても検知できないこ
とになる。Further, as shown in FIG. 4, when the incident wave is made incident at a predetermined angle θ with respect to the incident position on the tube surface and the line h lowered to the central axis O of the tube, the inner surface and the outer surface And also by the ultrasonic waves that reflected and repeated around,
Even if there is a recess such as corrosion in the region between the outer surface and the inner surface in the drawing, it cannot be detected even if there is a concave portion such as corrosion.
【0012】本発明は、上記問題に鑑みなされたもので
あり、超音波を利用した管壁の検査において、極めて狭
い探触子の移動範囲で管の全周を精度高く検査すること
ができる管の検査方法とその装置を得ることを目的とす
る。また、超音波の送信部と受信部を一体化した超音波
探触子を使用して検査するに際し、種々の管径や管の肉
厚を有する管の検査に対応できる管の検査方法及び超音
波探触子を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has been made in consideration of the above-described problem. It is an object of the present invention to obtain an inspection method and an apparatus therefor. Further, when inspecting using an ultrasonic probe in which an ultrasonic transmitting unit and an ultrasonic receiving unit are integrated, a tube inspection method and an ultra-small tube capable of coping with inspection of tubes having various tube diameters and tube wall thicknesses. It is an object to provide an acoustic probe.
【0013】[0013]
【課題を解決するための手段】請求項1の発明は、管体
の壁部に超音波ビームを出射し、管体を周回して伝達し
た透過ビームを受信して管体の損傷を検査する超音波探
傷方法において、超音波ビームを管の周方向に対し所定
角度だけ傾斜して入射させて超音波ビームを螺旋状に伝
達させ、超音波の受信位置を入射位置より管軸方向にず
らした位置て受信するようにした方法である。According to a first aspect of the present invention, an ultrasonic beam is emitted to a wall of a tube, and a transmitted beam transmitted around the tube is received to inspect the tube for damage. In the ultrasonic flaw detection method, the ultrasonic beam is incident at a predetermined angle with respect to the circumferential direction of the tube, the ultrasonic beam is transmitted in a spiral shape, and the ultrasonic receiving position is shifted from the incident position in the tube axis direction. This is a method of receiving data at a location.
【0014】請求項1の方法によれば、管壁に入射され
管壁を透過して周回してきた超音波ビームを効率よく受
信でき、精度の高い検査が可能となる。請求項2の発明
は、管体の壁部に超音波ビームを出射し、管体を周回し
て伝達した透過ビームを受信して管体の損傷を検査する
超音波探傷方法において、管体外側表面より管体内側表
面に向けて所定の傾斜角度をもって入射し、超音波の入
射部及び受信部を、入射位置から内側表面により反射し
て最初に外側表面に到達する位置の範囲を移動させて超
音波ビームを管壁の全周の範囲にわたり透過させるよう
にしたことを特徴とする。According to the method of the first aspect, it is possible to efficiently receive the ultrasonic beam that has entered the tube wall and has passed through the tube wall and circulated, thereby enabling highly accurate inspection. According to a second aspect of the present invention, there is provided an ultrasonic flaw detection method in which an ultrasonic beam is emitted to a wall portion of a tube, receives a transmitted beam transmitted around the tube, and inspects the tube for damage. It is incident at a predetermined inclination angle from the surface toward the inner surface of the tubular body, and the incident part and the receiving part of the ultrasonic wave are moved from the incident position to the range of the position where it is reflected by the inner surface and reaches the outer surface first. The ultrasonic beam is transmitted over the entire circumference of the tube wall.
【0015】請求項2の発明によれば、超音波探触子を
管の外表面上で周方向の一部の範囲を移動させるだけ
で、管の全周の範囲を検査することが可能となる。請求
項3の発明は、管体表面を管軸方向に移動可能な枠体
と、該枠体に支持され、管壁に向けて超音波を出射する
送信探触子と管壁を伝達して透過した超音波ビームを受
信する受信探触子を支持する回転可能に支持された探触
子支持体と、該支持体を管体表面に沿って管軸に対して
直交する方向に所定範囲移動させる周方向移動機構とを
備えたことを特徴とする管体の周方向及び軸方向の範囲
の探傷を行う超音波探傷器である。According to the second aspect of the present invention, it is possible to inspect the entire circumference of the pipe only by moving the ultrasonic probe over a part of the outer surface of the pipe in the circumferential direction. Become. According to a third aspect of the present invention, there is provided a frame capable of moving the surface of the tube in the axial direction of the tube, a transmitting probe supported by the frame and emitting ultrasonic waves toward the tube wall, and transmitting the tube wall. A rotatably supported probe support that supports a receiving probe that receives a transmitted ultrasonic beam, and moves the support over a predetermined range in a direction orthogonal to a pipe axis along a pipe surface. An ultrasonic flaw detector for detecting a flaw in a circumferential direction and an axial direction of a tubular body, comprising:
【0016】請求項3の超音波探傷器においては、送信
探触子から出射する超音波ビームを管の周方向に対し傾
斜した角度で出射し、超音波ビームを螺旋状に管壁に伝
達させ、螺旋状に伝達周回した超音波ビームを受信する
ことができる。また、超音波探触子を管軸方向に移動さ
せるとともに、管軸に対し、直交する方向に移動させる
こができ、探触子の周方向への部分的な移動で管の全周
の検査が可能となる。In the ultrasonic flaw detector according to the third aspect, the ultrasonic beam emitted from the transmitting probe is emitted at an angle inclined with respect to the circumferential direction of the tube, and the ultrasonic beam is transmitted to the tube wall in a spiral shape. , And can receive an ultrasonic beam transmitted and helically spiraled. In addition, the ultrasonic probe can be moved in the direction of the tube axis, and at the same time, can be moved in a direction perpendicular to the tube axis. Becomes possible.
【0017】請求項4の発明は、請求項3に記載の超音
波探傷器において、送信探触子と受信探触子は前記枠体
の移動方向にずれた位置に配置され、且つ送信探触子と
受信探触子は互いに平行に移動可能とされたことを特徴
とする。請求項4の発明においては、検査対象の管の径
や肉厚が変化しても、送信探触子又は受信探触子の位置
を相対的に移動させて管壁を周回する超音波ビームの送
信位置と受信位置を最適な位置に調整することが可能と
なる。According to a fourth aspect of the present invention, in the ultrasonic flaw detector of the third aspect, the transmitting probe and the receiving probe are arranged at positions shifted in the moving direction of the frame, and The probe and the receiving probe are movable parallel to each other. In the invention of claim 4, even if the diameter or the thickness of the tube to be inspected changes, the position of the transmission probe or the reception probe is relatively moved, and the ultrasonic beam orbiting around the tube wall is moved. The transmission position and the reception position can be adjusted to optimal positions.
【0018】[0018]
【発明の実施の形態】次に、本発明の実施の形態につい
て図面と共に説明する。図6は、上記課題を解決するた
めに採用された本発明に超音波検査システムのの基本的
構成を示す図である。超音波検査システムは、超音波探
傷器20と、超音波探傷器20の各種運動を制御する制
御装置30と、検査結果を表示する表示装置31と超音
波探傷器20と被検査体である管1との接触状態を良好
にするための接触媒質を供給する接触媒質供給用ポンプ
32を備える。Next, embodiments of the present invention will be described with reference to the drawings. FIG. 6 is a diagram showing a basic configuration of an ultrasonic inspection system according to the present invention adopted to solve the above problem. The ultrasonic inspection system includes an ultrasonic flaw detector 20, a control device 30 for controlling various movements of the ultrasonic flaw detector 20, a display device 31 for displaying an inspection result, the ultrasonic flaw detector 20, and a tube as an object to be inspected. A couplant supply pump 32 for supplying a couplant to improve the state of contact with the couplant 1 is provided.
【0019】超音波探傷器20は、超音波の送信探触子
21と受信探触子22とからなる超音波探触子23と、
送信探触子21と受信探触子22の周方向位置調整機構
24と、周方向角度調整機構25と、周方向移動機構2
6と軸方向走行機構27と、超音波探傷器20を管上に
配置させるためのシュー28及び軸方向走行モータ及び
周方向移動機構を駆動するためのモータ及び位置検出エ
ンコーダ機構33を備える。The ultrasonic flaw detector 20 includes an ultrasonic probe 23 comprising an ultrasonic transmission probe 21 and an ultrasonic probe 22;
Circumferential position adjusting mechanism 24 for transmitting probe 21 and receiving probe 22, circumferential angle adjusting mechanism 25, and circumferential moving mechanism 2
6, an axial running mechanism 27, a shoe 28 for arranging the ultrasonic flaw detector 20 on the tube, a motor for driving the axial running motor and a circumferential moving mechanism, and a position detecting encoder mechanism 33.
【0020】制御装置30は、超音波探傷器20の各種
運動を制御し、超音波の発振・受信制御、受信データに
基づく画像形成装置、記憶装置、演算処理装置、走行モ
ータ、エンコーダ制御装置等を有している。さらに、制
御装置に30には検査結果を表示するための表示装置3
1が接続され、検査結果が表示される。超音波探傷器2
0の上記各種機構について説明する。The control device 30 controls various movements of the ultrasonic flaw detector 20, and controls the oscillation and reception of ultrasonic waves, an image forming apparatus based on received data, a storage device, an arithmetic processing device, a traveling motor, an encoder control device, and the like. have. Further, the control device 30 has a display device 3 for displaying an inspection result.
1 is connected and the inspection result is displayed. Ultrasonic flaw detector 2
The above-mentioned various mechanisms will be described.
【0021】周方向位置調整機構24は、前述の図4に
より説明したように、入射位置と円周を透過して周回
してきた外周上の到達位置は、管の径の大きさと肉厚
によって異なるため、送信探触子21と受信探触子22
の相対的な周方向位置を変えて調整できるようにしたも
ので、送信探触子21と受信探触子22を図示の矢印方
向aにスライド可能に支持するものである。これによっ
て、管径及び管厚により入射点に対して透過後の戻り位
置が異なる場合も一致させるように調整することが可能
となる。なお、管の肉厚部に超音波が入射する角度(図
4のθ)を調整することによっても入射位置と戻り位置
を調整することが可能であり、送信探触子21の入射角
度θを調整できるようにしてある。As described with reference to FIG. 4 described above, the circumferential position adjusting mechanism 24 depends on the diameter and wall thickness of the tube, the incident position and the arrival position on the outer circumference that has passed through the circumference. Therefore, the transmission probe 21 and the reception probe 22
The transmission probe 21 and the reception probe 22 are slidably supported in the direction of the arrow a shown in the figure. This makes it possible to make adjustments so that the return position after transmission differs from the incident point depending on the tube diameter and tube thickness. The incident position and the return position can also be adjusted by adjusting the angle (θ in FIG. 4) at which the ultrasonic wave is incident on the thick portion of the tube, and the incident angle θ of the transmission probe 21 can be adjusted. It can be adjusted.
【0022】周方向角度調整機構25は、図5において
説明したように、超音波が周回した時の管軸方向のズレ
の調整を行うものであり、探触子23を中心軸Oを中心
に矢印bで示すように一定角度だけ回転できるようにし
ている。図7はこの周方向角度調整機構25の作用を説
明するもので、探触子23を回転させることにより、送
信探触子21からの超音波の管軸に対する入射方向を図
7aに示すように、管軸に直角の方向より角度αだけ傾
斜させて入射させることができる。これによって超音波
は図7(b)に示すように、螺旋状に伝播し、受信探触
子の周回超音波の受信を容易にすることができる。すな
わち、図7の例では、超音波が螺旋状に周回した管軸方
向にずれた位置に受信探触子22を配置することが可能
となり、効率的に透過超音波を受信することができるよ
うになる。As described with reference to FIG. 5, the circumferential angle adjusting mechanism 25 adjusts the displacement in the tube axis direction when the ultrasonic wave circulates, and moves the probe 23 around the center axis O. As shown by the arrow b, it can be rotated by a certain angle. FIG. 7 illustrates the operation of the circumferential angle adjustment mechanism 25. By rotating the probe 23, the incident direction of the ultrasonic wave from the transmission probe 21 with respect to the tube axis is shown in FIG. 7A. Can be made to incline at an angle α from the direction perpendicular to the tube axis. As a result, the ultrasonic wave propagates spirally as shown in FIG. 7B, and the receiving probe can easily receive the orbiting ultrasonic wave. That is, in the example of FIG. 7, it becomes possible to arrange the receiving probe 22 at a position shifted in the tube axis direction where the ultrasonic wave helically circulates, so that the transmitted ultrasonic wave can be efficiently received. become.
【0023】先に図4にて説明したように、管の表面に
対し所定の角度θの傾斜角度で入射させる場合、内側面
と外側表面とで反射を繰り返して周回した超音波によっ
ても、図の外側表面のからの間、内側表面のと
の間の領域が経路外となり、腐食等の凹部が存在したと
しても検知できないことになる。周方向移動機構26
は、この経路外の領域をなくすため、入射点を管の外表
面に対し、図6中の矢印cで示すように、管軸に直交す
る方向に所定範囲移動させるようにするものである。こ
の移動範囲は、図4に入射位置と入射波が内面より反
射して外表面に到達するの位置、の間の範囲とするこ
とにり、周方向の経路外の範囲をなくすことができる。As described above with reference to FIG. 4, when the laser beam is made incident on the surface of the tube at a predetermined angle θ, the ultrasonic wave circulating around the inner surface and the outer surface by repeating reflections on the inner surface and the outer surface can also be used. The area between the outer surface and the inner surface is outside the path, so that even if there is a concave portion such as corrosion, it cannot be detected. Circumferential movement mechanism 26
In order to eliminate the area outside the path, the incident point is moved with respect to the outer surface of the tube by a predetermined range in a direction perpendicular to the tube axis as shown by an arrow c in FIG. This movement range is a range between the incident position and the position where the incident wave is reflected from the inner surface and reaches the outer surface in FIG. 4, so that the range outside the circumferential path can be eliminated.
【0024】軸方向走行機構27は管の軸方向dへ超音
波探傷器を移動させるものである。なお、超音波探触子
23は管の表面に対しシュウー28を介在して配置さ
れ、探触子23から発せられる超音波を鋼管の曲面に効
率良く送受させるようにしている。超音波探触子23
は、架台29により支持され、架台29に支持された状
態で、上述の各種機構を作動させて必要な位置調整がで
きるようにしている。また、超音波探傷器20は、探触
子23の周方向移動機構26と軸方向走行機構27を遠
隔的に駆動するための走行モータ及び円周スライドモー
タ及び各機構の移動位置を検出するための位置検出機構
33を備える。The axial running mechanism 27 moves the ultrasonic flaw detector in the axial direction d of the tube. The ultrasonic probe 23 is disposed on the surface of the tube with a shoe 28 interposed therebetween so that ultrasonic waves emitted from the probe 23 can be efficiently transmitted to and received from the curved surface of the steel tube. Ultrasonic probe 23
Is supported by the gantry 29, and in the state of being supported by the gantry 29, the above-described various mechanisms are operated so that necessary position adjustment can be performed. Further, the ultrasonic flaw detector 20 detects a traveling motor and a circumferential slide motor for remotely driving the circumferential moving mechanism 26 and the axial traveling mechanism 27 of the probe 23 and a moving position of each mechanism. Is provided.
【0025】次に、図6に示した超音波探傷器20の具
体的な実施例を図8〜図10を参照して説明する。図8
は、探触子23の支持構造の要部を示すもので、送信探
触子21及び受信探触子22からなる探触子23は基台
41に設けられた回転台42に支持されている。送信探
触子21と受信探触子22は矢印aで示す方向(管軸に
対し直交する方向)に移動できるようにされ、周方向位
置調整機構24を構成している。また、回転台42は前
述の周方向角度調整機構25を構成している。回転台4
2は基台41に対しねじ43により回転方向bの所定の
回転角度の位置で固定できるようにしている。なお、探
触子23は管の外径形状に適合する曲面を有するシュー
28を介して管1の外表面に配置される。また、探触子
23の送信探触子21及び受信探触子22は図11に示
す構造をしており、発振振動子21a(22a)は下側
に配置されるシュー28の上面に接するように配置され
る。Next, a specific embodiment of the ultrasonic flaw detector 20 shown in FIG. 6 will be described with reference to FIGS. FIG.
Shows a main part of a support structure of the probe 23, and the probe 23 including the transmission probe 21 and the reception probe 22 is supported by a turntable 42 provided on the base 41. . The transmission probe 21 and the reception probe 22 can move in a direction indicated by an arrow a (a direction orthogonal to the tube axis), and constitute a circumferential position adjustment mechanism 24. The turntable 42 constitutes the above-described circumferential angle adjustment mechanism 25. Turntable 4
Numeral 2 is adapted to be fixed to the base 41 at a position at a predetermined rotation angle in the rotation direction b by a screw 43. The probe 23 is disposed on the outer surface of the tube 1 via a shoe 28 having a curved surface conforming to the outer diameter of the tube. The transmission probe 21 and the reception probe 22 of the probe 23 have the structure shown in FIG. 11, and the oscillation vibrator 21a (22a) is in contact with the upper surface of the shoe 28 disposed on the lower side. Placed in
【0026】次に、図9及び図10に基づいて、周方向
移動機構26と管軸方向走行機構27について説明す
る。図9は周方向移動機構26の概要構成を示し、図1
0は、超音波探傷装置20の全体の平面図及び側面図を
示す。超音波探傷器20はフレーム51を有し、このフ
レーム51に4隅でばね52を介して弾性的に軸支され
た上部支持体53が上下方向に変位可能に設けられてい
る。上部支持体53にはレール54が設けられ、このレ
ール54によりスライド部材55が管軸に対して直交す
る方向cに移動可能に支持されている。スライド部材5
5の軸方向2箇所に設けた支持棒56により(図10側
面図参照)基台41を支持している。フレーム51には
周方向移動機構を駆動するための反復駆動モータ57が
設けられ、この反復駆動モータ57とスライド部材55
はロッド58により枢軸結合されている。基台41は支
持棒56と基台41の軸棒26が差し込み連結されてお
り、軸棒26を管軸方向の軸として管周に沿う構造とな
っている。したがって、この反復駆動モータ57の回転
によってスライド部材55が上部支持体53に対して矢
印c方向に移動可能とされる。スライド部材55のc方
向の移動により回転台42に支持されている探触子23
はc及びシュー28は 管軸に対して直交方向の矢印c
の方向に移動する。このとき、シュー28は管壁の曲面
に沿って移動するため、上部支持体53は上下に変位す
ることとなるが、この変位はばね52により吸収され
る。スライド部材55には周方向移動確認ラック61及
び周方向移動確認エンコーダ62が設けられ、周方向に
移動量を確認できるようにしてある。Next, the circumferential moving mechanism 26 and the tube axis running mechanism 27 will be described with reference to FIGS. FIG. 9 shows a schematic configuration of the circumferential moving mechanism 26, and FIG.
0 shows a plan view and a side view of the entire ultrasonic flaw detector 20. The ultrasonic flaw detector 20 has a frame 51, and upper supports 53 that are elastically supported at four corners via springs 52 at the four corners are provided on the frame 51 so as to be vertically displaceable. A rail 54 is provided on the upper support 53, and the slide member 55 is supported by the rail 54 so as to be movable in a direction c perpendicular to the tube axis. Slide member 5
The support 41 is supported by two support rods 56 provided at two locations in the axial direction (see the side view in FIG. 10). The frame 51 is provided with a repetitive drive motor 57 for driving the circumferential moving mechanism.
Are pivotally connected by a rod 58. The base 41 has a structure in which the support bar 56 and the shaft bar 26 of the base 41 are inserted and connected, and the shaft bar 26 is arranged along the circumference of the tube with the shaft 26 as an axis in the tube axis direction. Accordingly, the rotation of the repetitive drive motor 57 allows the slide member 55 to move in the direction of arrow c with respect to the upper support 53. The probe 23 supported on the turntable 42 by the movement of the slide member 55 in the direction c.
Is c and the shoe 28 is an arrow c perpendicular to the pipe axis.
Move in the direction of. At this time, since the shoe 28 moves along the curved surface of the tube wall, the upper support 53 is vertically displaced, but this displacement is absorbed by the spring 52. The slide member 55 is provided with a circumferential movement confirmation rack 61 and a circumferential movement confirmation encoder 62 so that the amount of movement can be confirmed in the circumferential direction.
【0027】フレーム51は軸方向走行駆動用モータ7
0を備え、ベルト71を介して移動用マグネット車輪7
2を駆動するようにしている。フレーム51は、また、
軸方向移動用補助車輪75を備え、この軸方向移動用補
助車輪75はフレーム51の前後左右の横側に4個、角
度調整機構76を介して設けられている。この角度調整
機構76を利用して管の径に合わせて軸方向移動用補助
車輪75の角度を調整することができる。The frame 51 includes an axial traveling drive motor 7.
0, and the moving magnet wheel 7 via the belt 71
2 is driven. The frame 51 also
An auxiliary wheel 75 for axial movement is provided. Four auxiliary wheels 75 for axial movement are provided on the front, rear, left, and right sides of the frame 51 via an angle adjusting mechanism 76. Using this angle adjusting mechanism 76, the angle of the auxiliary wheel 75 for axial movement can be adjusted according to the diameter of the pipe.
【0028】フレーム51には、更に、高さ調整機構8
1に支持された軸方向移動量算出エンコーダ80が設け
られ軸方向の移動量を確認できるようにしている。上記
構成になる超音波検査システムを使用して管の探傷検査
を行う操作について述べる。先ず、検査に先立ち、検査
対象の管径、肉厚についてのデータを得、図4に示す入
射位置、周回到達位置、最初の外表面反射位置の
位置を確認する。The frame 51 further includes a height adjusting mechanism 8.
An axial movement amount calculation encoder 80 supported by 1 is provided so that the movement amount in the axial direction can be confirmed. An operation for performing a flaw detection inspection of a pipe using the ultrasonic inspection system having the above configuration will be described. First, prior to the inspection, data on the diameter and thickness of the tube to be inspected is obtained, and the positions of the incident position, the orbital arrival position, and the first outer surface reflection position shown in FIG. 4 are confirmed.
【0029】この得られてデータに基づいて、周方向位
置調整機構24の調整を、送信探触子21と受信探触子
22の位置を調整して行う。次に、周方向角度調整機構
25の調整を探触子23が支持された回転台42を所定
角度回転させて調整し、所定の回転角度でねじ43によ
り固定する。なお、この回転角は図7に示したように、
入射位置から周回して伝達した超音波ビームが軸方向に
ずれた受信位置に到達するように調整する。Based on the obtained data, the adjustment of the circumferential position adjustment mechanism 24 is performed by adjusting the positions of the transmission probe 21 and the reception probe 22. Next, the adjustment of the circumferential angle adjusting mechanism 25 is adjusted by rotating the turntable 42 on which the probe 23 is supported by a predetermined angle, and fixed by screws 43 at a predetermined rotation angle. Note that this rotation angle is as shown in FIG.
Adjustment is made so that the ultrasonic beam transmitted from the incident position and circulating reaches the receiving position shifted in the axial direction.
【0030】以上の操作は、探傷検査のに先立ち、超音
波探傷器20を管壁にセットする前に実行する。次に、
探傷装置20を管1上に配置し、超音波ビームを送信探
触子21より管壁内に出射し検査を行う。入射されて管
壁を透過伝達し、周回してきた超音波ビームは受信探触
子22で受信され、この検出信号を所定の演算処理を施
して表示装置31に表示する。超音波探傷器20は軸方
向走行機構27の駆動モータ70を駆動して管軸方向に
移動させられるが、これと同時に周方向移動機構26も
作動させて行う。周方向移動機構26は周方向駆動反復
モータ57により探触子23を支持する基台41をシュ
ー28とともに周方向の所定距離を左右に反復しつつ移
動させる。したがって、超音波探傷器20は、左右に反
復移動しつつつ管軸方向に移動する。なお、周方向移動
機構26及び軸方向走行機構27の移動速度は、超音波
ビームが管壁内の全てを透過するようにビーム径を考慮
して定められる。周方向移動機構26による移動範囲
は、図4のとの距離でありきわめて狭い範囲であ
る。これによって、超音波ビームの管壁内の経路外とな
る範囲をなくすことができ、少ない超音波探傷器の移動
範囲で管の全周を検査することができ、軸方向の走行と
併せて効率的に管全体の検査を行うことができる。The above operation is executed before the ultrasonic flaw detector 20 is set on the tube wall before the flaw detection inspection. next,
The flaw detection device 20 is arranged on the tube 1, and an ultrasonic beam is emitted from the transmission probe 21 into the tube wall to perform an inspection. The ultrasonic beam that has entered and transmitted through the tube wall and circulated is received by the receiving probe 22, and the detection signal is subjected to predetermined arithmetic processing and displayed on the display device 31. The ultrasonic flaw detector 20 is moved in the tube axis direction by driving the drive motor 70 of the axial traveling mechanism 27, and at the same time, the circumferential moving mechanism 26 is also operated. The circumferential moving mechanism 26 moves the base 41 supporting the probe 23 with the shoe 28 by a circumferential driving repetition motor 57 while repeating a predetermined circumferential distance left and right. Therefore, the ultrasonic flaw detector 20 moves in the pipe axis direction while repeatedly moving left and right. The moving speeds of the circumferential moving mechanism 26 and the axial running mechanism 27 are determined in consideration of the beam diameter so that the ultrasonic beam penetrates all inside the tube wall. The range of movement by the circumferential movement mechanism 26 is the distance shown in FIG. 4 and is a very narrow range. This makes it possible to eliminate the range where the ultrasonic beam is out of the path inside the tube wall, and to inspect the entire circumference of the tube with a small moving range of the ultrasonic flaw detector, thereby improving the efficiency along with the axial traveling. Inspection of the whole pipe can be carried out.
【0031】受信探触子22より得られたデータは制御
装置30により演算処理が施され、表示装置31に画像
として表示させることができる。なお、制御装置30の
演算装置は、周方向移動確認エンコーダ62及び軸方向
移動量算出エンコーダ80により得られる周方向及び軸
方向の移動データを用いて管の対応位置を算出し、受信
探触子より得られるデータとともに表示できるようにし
ている。The data obtained from the receiving probe 22 is subjected to arithmetic processing by the control device 30 and can be displayed on the display device 31 as an image. The arithmetic unit of the control device 30 calculates the corresponding position of the pipe using the circumferential and axial movement data obtained by the circumferential movement confirmation encoder 62 and the axial movement amount calculation encoder 80, and It can be displayed together with the data obtained.
【0032】[0032]
【発明の効果】上述の如く本発明によれば、次に述べる
種々の効果を実現することができる。管の全周に亘って
探触子を移動させることなく、狭い範囲の移動のみで管
の全周の探傷を行うことができる。したがって、プラン
ト等の敷設された管の探傷試験を高い精度で実施するこ
とができる。また、本発明の超音波探傷器によれば、周
方向移動機構と軸方向走行機構の駆動制御を自動的に行
わせることができ、使用にあたっては省力効果を高める
ことができる。また、検査対象の管の径及び肉厚が変化
しても最適な探触子の位置決めを行うことができる。According to the present invention as described above, the following various effects can be realized. Without moving the probe over the entire circumference of the pipe, flaw detection of the entire circumference of the pipe can be performed only by moving in a narrow range. Therefore, a flaw detection test of a pipe laid in a plant or the like can be performed with high accuracy. Further, according to the ultrasonic flaw detector of the present invention, the drive control of the circumferential direction moving mechanism and the axial direction running mechanism can be automatically performed, and the power saving effect can be improved in use. Further, even when the diameter and the wall thickness of the tube to be inspected change, optimal positioning of the probe can be performed.
【図1】超音波を利用した一般的な肉厚検査法を示す図
である。FIG. 1 is a diagram showing a general thickness inspection method using ultrasonic waves.
【図2】(a)は反射法による探傷方法を示し、(b)
は透過法に探傷方法を示す図である。FIG. 2A shows a flaw detection method by a reflection method, and FIG.
FIG. 3 is a diagram showing a flaw detection method in a transmission method.
【図3】入射超音波を周回させて受信する探傷方法を示
す。FIG. 3 shows a flaw detection method in which incident ultrasonic waves are circulated and received.
【図4】管を周回する超音波ビームの伝達状態を説明す
る図である。FIG. 4 is a diagram for explaining a transmission state of an ultrasonic beam circling the tube.
【図5】送信探触子と受信探触子を管軸方向にずらして
配置した例を示す図である。FIG. 5 is a diagram showing an example in which a transmission probe and a reception probe are arranged so as to be shifted in the tube axis direction.
【図6】本発明による超音波探傷システムの構成図であ
る。FIG. 6 is a configuration diagram of an ultrasonic inspection system according to the present invention.
【図7】超音波ビームを螺旋状に出射させる説明図であ
る。FIG. 7 is an explanatory diagram for spirally emitting an ultrasonic beam.
【図8】本発明の実施例に係る超音波探傷器の探触子の
支持構造を説明する図である。FIG. 8 is a diagram illustrating a support structure of a probe of the ultrasonic flaw detector according to the embodiment of the present invention.
【図9】周方向移動機構を説明する図である。FIG. 9 is a diagram illustrating a circumferential moving mechanism.
【図10】超音波探傷器の全体構成図である。(a)は
平面図、(b)は側面図を示す。FIG. 10 is an overall configuration diagram of the ultrasonic flaw detector. (A) is a plan view, and (b) is a side view.
【図11】探触子を示す図である。FIG. 11 is a diagram showing a probe.
1 管体 20 超音波探傷器 21 送信探触子 22 受信探触子 23 探触子 24 周方向位置調整機構 25 周方向角度調整機構 26 周方向移動機構 27 軸方向走行機構 28 シュー 29 枠体 30 制御装置 31 表示装置 32 接触媒質供給用ポンプ DESCRIPTION OF SYMBOLS 1 Tube 20 Ultrasonic flaw detector 21 Transmission probe 22 Reception probe 23 Probe 24 Circumferential position adjustment mechanism 25 Circumferential angle adjustment mechanism 26 Circumferential movement mechanism 27 Axial traveling mechanism 28 Shoe 29 Frame 30 Control device 31 Display device 32 Pump for supplying couplant
Claims (4)
体を周回して伝達した透過ビームを受信して管体の損傷
を検査する超音波探傷方法において、超音波ビームを管
の周方向に対し所定角度だけ傾斜して入射させて超音波
ビームを螺旋状に伝達させ、超音波の受信位置を入射位
置より管軸方向にずらした位置て受信するようにした超
音波探傷方法。1. An ultrasonic flaw detection method for emitting an ultrasonic beam to a wall of a tube, receiving a transmitted beam transmitted around the tube, and inspecting the tube for damage. An ultrasonic flaw detection method in which an ultrasonic beam is spirally transmitted by being incident at a predetermined angle with respect to the circumferential direction of the ultrasonic wave and the ultrasonic wave is received at a position shifted in the tube axis direction from the incident position. .
体を周回して伝達した透過ビームを受信して管体の損傷
を検査する超音波探傷方法において、管体外側表面より
管体内側表面に向けて所定の傾斜角度をもって入射し、
超音波の入射部及び受信部を、入射位置から内側表面に
より反射して最初に外側表面に到達する位置の範囲を移
動させて超音波ビームを管壁の全周の範囲にわたり透過
させるようにしたことを特徴とする超音波探傷法。2. An ultrasonic flaw detection method in which an ultrasonic beam is emitted to a wall of a tube, receives a transmitted beam transmitted around the tube, and inspects the tube for damage. Incident with a predetermined inclination angle toward the inner surface of the tube,
The incident part and the receiving part of the ultrasonic wave are moved from the incident position to the position where the ultrasonic wave is reflected by the inner surface and reaches the outer surface first, so that the ultrasonic beam is transmitted over the entire circumference of the tube wall. An ultrasonic flaw detection method characterized in that:
と、該枠体に支持され、管壁に向けて超音波を出射する
送信探触子と管壁を伝達して透過した超音波ビームを受
信する受信探触子を支持する回転可能に支持された探触
子支持体と、該支持体を管体表面に沿って管軸に対して
直交する方向に所定範囲移動させる周方向移動機構とを
備えたことを特徴とする管体の周方向及び軸方向の範囲
の探傷を行う超音波探傷器。3. A frame capable of moving the surface of the tube in the axial direction of the tube, a transmitting probe supported by the frame and emitting ultrasonic waves toward the tube wall, and transmitting and transmitting the tube wall. A rotatably supported probe support that supports a receiving probe that receives an ultrasonic beam, and a circumference that moves the support along a surface of the tube in a predetermined range in a direction perpendicular to the tube axis. An ultrasonic flaw detector for detecting flaws in a circumferential direction and an axial direction of a tubular body, comprising a direction moving mechanism.
て、送信探触子と受信探触子は前記枠体の移動方向にず
れた位置に配置され、且つ送信探触子と受信探触子は互
いに平行に移動可能とされたことを特徴とする超音波探
傷器。4. The ultrasonic flaw detector according to claim 3, wherein the transmission probe and the reception probe are arranged at positions shifted in the moving direction of the frame, and the transmission probe and the reception probe are arranged. An ultrasonic flaw detector wherein the children can move in parallel with each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11234202A JP2001056318A (en) | 1999-08-20 | 1999-08-20 | Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11234202A JP2001056318A (en) | 1999-08-20 | 1999-08-20 | Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001056318A true JP2001056318A (en) | 2001-02-27 |
Family
ID=16967299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11234202A Pending JP2001056318A (en) | 1999-08-20 | 1999-08-20 | Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001056318A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003066012A (en) * | 2001-08-30 | 2003-03-05 | Idemitsu Eng Co Ltd | Method and device for inspecting defect by surface wave |
JP2007232373A (en) * | 2006-02-27 | 2007-09-13 | Toshiba Corp | Piping inspection device and its method |
JP2013142697A (en) * | 2012-01-09 | 2013-07-22 | Airbus Operations Ltd | Tool and method for operating transducer assembly |
CN103323534A (en) * | 2013-06-08 | 2013-09-25 | 中国商用飞机有限责任公司 | Detection apparatus for inner beam corner area of multi-beam co-cured closed structure and method thereof |
CN103728372A (en) * | 2012-10-12 | 2014-04-16 | 阿尔斯通技术有限公司 | Method for determining boiler tube cold side cracking and article for accomplishing the same |
JP2015206717A (en) * | 2014-04-22 | 2015-11-19 | 株式会社神戸製鋼所 | Coupling monitoring method of oblique ultrasonic probe |
CN114354761A (en) * | 2022-01-11 | 2022-04-15 | 重庆医科大学 | Device and method for measuring loss of acoustic waveguide |
CN115406965A (en) * | 2022-08-31 | 2022-11-29 | 广州吉祥设备租赁有限公司 | Steel pipe climbing frame quality detection device |
-
1999
- 1999-08-20 JP JP11234202A patent/JP2001056318A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003066012A (en) * | 2001-08-30 | 2003-03-05 | Idemitsu Eng Co Ltd | Method and device for inspecting defect by surface wave |
JP2007232373A (en) * | 2006-02-27 | 2007-09-13 | Toshiba Corp | Piping inspection device and its method |
JP4686378B2 (en) * | 2006-02-27 | 2011-05-25 | 株式会社東芝 | Pipe inspection device |
JP2013142697A (en) * | 2012-01-09 | 2013-07-22 | Airbus Operations Ltd | Tool and method for operating transducer assembly |
JP2014081376A (en) * | 2012-10-12 | 2014-05-08 | Alstom Technology Ltd | Method for determining boiler tube cold side cracking and device for accomplishing said method |
CN103728372A (en) * | 2012-10-12 | 2014-04-16 | 阿尔斯通技术有限公司 | Method for determining boiler tube cold side cracking and article for accomplishing the same |
JP2015163905A (en) * | 2012-10-12 | 2015-09-10 | アルストム テクノロジー リミテッドALSTOM Technology Ltd | Method for determining boiler tube cold side cracking and device for accomplishing said method |
US9995716B2 (en) | 2012-10-12 | 2018-06-12 | General Electric Technology Gmbh | Method for determining boiler tube cold side cracking and article for accomplishing the same |
CN110057909A (en) * | 2012-10-12 | 2019-07-26 | 通用电器技术有限公司 | For determining the method in boiler tubing cold side crack and realizing the article of this method |
CN103323534A (en) * | 2013-06-08 | 2013-09-25 | 中国商用飞机有限责任公司 | Detection apparatus for inner beam corner area of multi-beam co-cured closed structure and method thereof |
CN103323534B (en) * | 2013-06-08 | 2016-05-25 | 中国商用飞机有限责任公司 | Checkout gear and the method for the inner beam corner region of many beams co-curing enclosed construction |
JP2015206717A (en) * | 2014-04-22 | 2015-11-19 | 株式会社神戸製鋼所 | Coupling monitoring method of oblique ultrasonic probe |
CN114354761A (en) * | 2022-01-11 | 2022-04-15 | 重庆医科大学 | Device and method for measuring loss of acoustic waveguide |
CN114354761B (en) * | 2022-01-11 | 2024-01-12 | 重庆医科大学 | Device and method for measuring loss of acoustic waveguide tube |
CN115406965A (en) * | 2022-08-31 | 2022-11-29 | 广州吉祥设备租赁有限公司 | Steel pipe climbing frame quality detection device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8590383B2 (en) | Ultrasonic inspection probe carrier system for performing non-destructive testing | |
US7693251B2 (en) | Method and apparatus for ultrasonic inspection of reactor pressure vessel | |
US3924453A (en) | Ultrasonic testing of tubing employing a spiral wave generator | |
CN214473004U (en) | Ultrasonic phased array pipeline detection device for small-diameter pipe weld joint | |
JPS608746A (en) | Method and device for detecting defect of material | |
JP2001056318A (en) | Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detector | |
JP4897420B2 (en) | Ultrasonic flaw detector | |
JPH07333202A (en) | Flaw detector of piping | |
JPH0232249A (en) | Ultrasonic flaw detection probe | |
JPH07244028A (en) | Apparatus and method for ultrasonically detecting flaw on spherical body to be detected | |
JPH11183445A (en) | Flaw detector | |
JPS6170455A (en) | Calibrating and scanning method and apparatus for flaw detection of electro-unite tube welding part | |
JPS5933226B2 (en) | Method and device for detecting diagonal cracks in seamless pipes using ultrasonic waves | |
JP5464849B2 (en) | Ultrasonic automatic flaw detection apparatus and ultrasonic automatic flaw detection method | |
JP3389599B2 (en) | Ultrasonic flaw detection method for steel pipe and ultrasonic flaw detection apparatus for steel pipe | |
US3765228A (en) | Non-destructive testing arrangements - movable reflectors | |
JPS6170459A (en) | Method and apparatus for adjusting sensitivity of ultrasonic flow detector | |
JP2720351B2 (en) | Ultrasonic probe holder | |
JP3800133B2 (en) | Ultrasonic flaw detection method and apparatus for welded steel pipe welds | |
JP2010190794A (en) | Thinning detection method | |
JPH04161848A (en) | Automatic ultrasonic flaw detecting apparatus | |
JP2001050936A (en) | Ultrasonic probe for detecting flaw in heat transfer pipe and ultrasonic flaw-detecting device | |
JPH10246793A (en) | Inspection method and device for welding part of nuclear fuel rod end plug | |
JPH0257973A (en) | Angle beam flaw detecting head for pipe and angle beam flaw detecting apparatus using said head | |
JPS61118656A (en) | Ultrasonic flaw detection apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060315 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080520 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080924 |