JP2010190794A - Thinning detection method - Google Patents

Thinning detection method Download PDF

Info

Publication number
JP2010190794A
JP2010190794A JP2009036913A JP2009036913A JP2010190794A JP 2010190794 A JP2010190794 A JP 2010190794A JP 2009036913 A JP2009036913 A JP 2009036913A JP 2009036913 A JP2009036913 A JP 2009036913A JP 2010190794 A JP2010190794 A JP 2010190794A
Authority
JP
Japan
Prior art keywords
probe
echo
inspection
thinning
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009036913A
Other languages
Japanese (ja)
Inventor
Motonori Yasunaga
元則 安永
Shinichi Tsuji
伸一 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Nondestructive Inspection Co Ltd
Original Assignee
Shin Nippon Nondestructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Nondestructive Inspection Co Ltd filed Critical Shin Nippon Nondestructive Inspection Co Ltd
Priority to JP2009036913A priority Critical patent/JP2010190794A/en
Publication of JP2010190794A publication Critical patent/JP2010190794A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thinning detection method for determining the presence or absence of a thinned part which has occurred in a section to be inspected even when the section to be inspected is not exposed due to a deposit such as a support member and a reinforcing member. <P>SOLUTION: The thinning detection method includes a first process for arranging an ultrasonic transmission-side probe 11 and an ultrasonic reception-side probe 12 at a prescribed interval in the surface of a specimen 36 having a sound thickness of a section to be inspected 14 to receive ultrasonic waves entering the specimen 36 from the transmission-side probe 11, skipping a plurality of times in such a way as to be reflected at its back and surface, and reaching the reception-side probe 12 and to obtain echoes of a sound part; a second process for arranging the transmission-side probe 11 and the reception-side probe 12 at a prescribed interval on both sides of the section to be inspected 14 to receive ultrasonic waves entering the section to be inspected 14 from the transmission-side probe 11, skipping a plurality of times, and reaching the reception-side probe 14 and to obtain echoes of the section to be inspected; and a third process for comparing the locations of occurrence of the echoes of the sound part obtained in the first process with the echoes of the section to be inspected obtained in the second process and determining the presence or absence of a thinned part 17 which has occurred in the section to be inspected 14 on the basis of their difference. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、各種プラントの板材や管材に腐食等により発生する減肉部の有無を検査する減肉検出方法に関する。 The present invention relates to a thinning detection method for inspecting the presence or absence of a thinning portion generated due to corrosion or the like in plate materials and pipe materials of various plants.

各種プラントの板材や管材に腐食等により発生する減肉の検査は、例えば、超音波垂直探触子を用いて行われている(超音波垂直探傷試験)。しかし、超音波垂直探触子を用いる方法では、超音波垂直探触子を検査部位の表面に接触させて操作するため、被検体の検査部位の上方に超音波垂直探触子を操作するための空間が必要となる。このため、例えば、管材がラックと呼ばれるH形鋼で支持されている場合における管材とラックの接触部分、板材で当て板(補強板)やサポート材が溶接されている部分では、検査部位の表面に超音波垂直探触子を接触させることができず、検査ができなかった。 Inspection of thinning caused by corrosion or the like in plate materials and pipe materials of various plants is performed using, for example, an ultrasonic vertical probe (ultrasonic vertical flaw detection test). However, in the method using the ultrasonic vertical probe, the ultrasonic vertical probe is operated by bringing the ultrasonic vertical probe into contact with the surface of the examination site, and therefore, the ultrasonic vertical probe is operated above the examination site of the subject. Space is required. For this reason, for example, when the pipe is supported by an H-shaped steel called a rack, the contact part between the pipe and the rack, the part where the backing plate (reinforcement plate) or support material is welded with the plate, the surface of the inspection site The ultrasonic vertical probe could not be brought into contact with, and the inspection could not be performed.

そこで、図12(A)に示すように、板材100で当て板101が溶接されている直下部分を検査部位102として、検査部位102に発生している減肉部103の有無を検査する場合、板材100の表面に当て板101を跨ぐように超音波の送、受信子104、105を一定の距離WAだけ開けて配置し、送、受信子104、105を、送、受信子104、105間の距離WAを一定に保って、送、受信子104、105間を結ぶ線分に直交する方向に移動させながら、図12(B)に示すように、表面波Rが送信子104から検査部位102を通過して受信子105に到達するまでの伝搬時間を測定し、予め求めておいた送、受信子104、105間の距離WAに対応して決まる表面波の基準伝播時間tWA(すなわち、減肉部103が存在しない健全状態の検査部位を表面波が通過するときの伝搬時間)と比較する。ここで、検査部位102に減肉部103が発生していると、表面波は減肉部103の表面に沿って進行するため表面波の行程が長くなって、表面波の伝搬時間tWBは、基準伝搬時間よりΔt長くなるので、表面波の伝搬時間差Δtの発生の有無から、検査部位102に発生している減肉部103の有無を判定する表面波透過法が提案されている(例えば、特許文献1参照)。 Therefore, as shown in FIG. 12 (A), when inspecting the presence / absence of the thinned portion 103 occurring in the inspection region 102 with the portion immediately below the plate member 100 welded to the plate 101 as the inspection region 102, The ultrasonic wave sending and receiving elements 104 and 105 are arranged at a certain distance WA so as to straddle the plate 101 on the surface of the plate material 100, and the sending and receiving elements 104 and 105 are arranged between the sending and receiving elements 104 and 105. As shown in FIG. 12 (B), the surface wave R is moved from the transmitter 104 to the inspection region while the distance WA is kept constant and is moved in the direction orthogonal to the line connecting the transmitter and receiver 104, 105. The propagation time until it passes through 102 and reaches the receiver 105 is measured, and the reference propagation time t WA of the surface wave determined in accordance with the distance WA between the transmission and the receivers 104 and 105 obtained in advance (that is, , Thinning part 103 Surface wave testing area no health condition is compared with the propagation time) as it passes. Here, when the thinned portion 103 is generated in the inspection region 102, the surface wave travels along the surface of the thinned portion 103, and therefore the surface wave travel becomes long, and the propagation time tWB of the surface wave is Since it is longer than the reference propagation time, a surface wave transmission method has been proposed in which the presence or absence of the thinned portion 103 occurring in the examination region 102 is determined from the presence or absence of the surface wave propagation time difference Δt (for example, , See Patent Document 1).

また、図13(A)に示すように、板材106で当て板107が溶接されている部分を検査部位108として、検査部位108の裏面側に発生している減肉部109を検査する場合、板材106の表面に当て板107を跨ぐように超音波の送、受信子110、111を配置し、送、受信子110、111を、送、受信子110、111間の距離を一定に保って、送、受信子110、111間を結ぶ線分に直交する方向に移動させながら、図13(B)に示すように、超音波Sを、送信子110から検査部位108に一定の入射角度で進入させ、検査部位108の裏及び表で複数回反射させた後に受信子111に到達して得られる透過エコー高さH´を求める。ここで、検査部位108に減肉部109が発生していると、減肉部109に入射した超音波は減肉部109の底面で反射され行程が変化して受信子111に届かなくなるため、受信子111で受信される超音波の強度が低下する。このため、透過エコー高さH´を、予め求めておいた送、受信子110、111間の距離及び検査部位108の厚みに対応して決まる基準透過エコーの高さHと比較して、透過エコー高さH´と基準透過エコーの高さHとの間にエコー高さの差ΔHが生じると、検査部位108に減肉部109が存在すると判定する斜角透過法も提案されている。 Further, as shown in FIG. 13A, when inspecting the thinned portion 109 generated on the back side of the inspection site 108, the portion where the plate 107 is welded to the plate material 106 is used as the inspection site 108. The ultrasonic wave sending and receiving elements 110 and 111 are arranged on the surface of the plate material 106 so as to straddle the contact plate 107, and the distance between the sending and receiving elements 110 and 111 is kept constant between the sending and receiving elements 110 and 111. As shown in FIG. 13B, the ultrasonic wave S is transmitted from the transmitter 110 to the examination site 108 at a constant incident angle while moving in a direction orthogonal to the line segment connecting the transmitter and receiver 110 and 111. The transmitted echo height H ′ obtained by reaching the receiver 111 after being entered and reflected several times on the back and front of the examination site 108 is obtained. Here, when the thinned portion 109 occurs in the inspection site 108, the ultrasonic wave incident on the thinned portion 109 is reflected on the bottom surface of the thinned portion 109 and the process changes and does not reach the receiver 111. The intensity of the ultrasonic wave received by the receiver 111 is lowered. For this reason, the transmission echo height H ′ is compared with the reference transmission echo height H determined in accordance with the transmission, the distance between the receivers 110 and 111 and the thickness of the examination site 108, which are obtained in advance. There has also been proposed an oblique transmission method that determines that the thinned portion 109 is present at the examination site 108 when an echo height difference ΔH occurs between the echo height H ′ and the reference transmission echo height H.

特開2002−5905号公報JP 2002-5905 A

しかしながら、表面波透過法では、検査部位(被検体)の表面が大きく荒れている場合、表面波が大きく減衰し測定が困難になり、検査部位の表面性状により測定精度が大きく左右されるという問題がある。また、表面波の伝搬時間(伝播距離)の差を求めるため、検査部位の表面に発生した減肉部しか検査できないという問題がある。
一方、斜角透過法では、検査部位の裏及び表で複数回反射して受信子に届く超音波を受信して透過エコー高さを求めるため、検査部位の表裏面の面性状により測定精度が大きく左右されるという問題がある。
However, in the surface wave transmission method, when the surface of the examination site (subject) is greatly rough, the surface wave is greatly attenuated and measurement becomes difficult, and the measurement accuracy is greatly affected by the surface properties of the examination site. There is. Further, since the difference in propagation time (propagation distance) of the surface wave is obtained, there is a problem that only the thinned portion generated on the surface of the examination site can be inspected.
On the other hand, in the oblique transmission method, the ultrasonic wave reaching the receiver after being reflected multiple times on the back and front of the examination site is received and the transmission echo height is obtained. Therefore, the measurement accuracy depends on the surface properties of the front and back sides of the examination site. There is a problem of being greatly influenced.

本発明はかかる事情に鑑みてなされたもので、サポート部材や補強部材等の付着物により検査部位が露出していない場合でも、検査部位に発生した減肉部の有無を判定できる減肉検出方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and a thinning detection method capable of determining the presence or absence of a thinned portion generated in an examination site even when the examination site is not exposed due to an adherent such as a support member or a reinforcing member. The purpose is to provide.

前記目的に沿う本発明に係る減肉検出方法は、所定の間隔を有して超音波の送信側探触子及び受信側探触子となる対となる横波斜角探触子を、検査部位の健全厚みを有する試験体の表面に配置し、前記送信側探触子から前記試験体に進入して裏及び表で反射する複数回のスキップを行い前記受信側探触子に届く超音波を受信して健全部エコーを得る第1工程と、
前記間隔を有して前記送信側探触子及び前記受信側探触子を前記検査部位の両側に配置し、該送信側探触子から該検査部位に進入して裏及び表で反射する複数回のスキップを行い該受信側探触子に届く超音波を受信して検査部エコーを求める第2工程と、
前記第1工程で得られた前記健全部エコーと前記第2工程で得られた前記検査部エコーの発生位置を比較してその相違から前記検査部位に発生している減肉部の有無を判定する第3工程とを有する。
The thinning detection method according to the present invention that meets the above-described object is characterized in that a transverse wave oblique angle probe that forms a pair that becomes a transmitting probe and a receiving probe of an ultrasonic wave with a predetermined interval is used as an inspection site. Placed on the surface of a specimen having a healthy thickness of the ultrasonic wave that enters the specimen from the transmitter probe and performs multiple skips that are reflected from the back and front, and reaches the receiver probe. A first step of receiving and obtaining a healthy part echo;
The transmitting probe and the receiving probe are arranged on both sides of the inspection region with the interval, and a plurality of light beams that enter the inspection region from the transmitting probe and reflect on the back and front sides. A second step of skipping times and receiving an ultrasonic wave reaching the receiving probe to obtain an inspection portion echo;
Compare the occurrence position of the healthy part echo obtained in the first step and the inspection part echo obtained in the second step, and determine the presence or absence of a thinned part occurring in the examination site from the difference And a third step.

本発明に係る減肉検出方法において、前記第3工程での減肉部の有無の判定には、前記健全部エコーと前記検査部エコーの発生位置の相違の他、前記検査部エコーの高さも考慮して行うことが好ましい。 In the thinning detection method according to the present invention, in the determination of the presence or absence of the thinning portion in the third step, in addition to the difference in the generation position of the healthy portion echo and the inspection portion echo, the height of the inspection portion echo is also determined. It is preferable to take this into consideration.

本発明に係る減肉検出方法において、前記減肉部の検出は前記送信側探触子及び前記受信側探触子の中央部で行うことが好ましい。
ここで、奇数回の前記スキップを介して超音波が前記受信側探触子に届く距離に前記間隔を設定し、前記検査部位の裏面に発生している前記減肉部を検知してもよい。
また、偶数回の前記スキップを介して超音波が前記受信側探触子に届く距離に前記間隔を設定し、前記検査部位の表面に発生している前記減肉部を検知してもよい。
In the thinning detection method according to the present invention, it is preferable that the thinning portion is detected at a central portion of the transmitting probe and the receiving probe.
Here, the interval may be set to a distance at which the ultrasonic wave reaches the receiving probe through the odd number of skips, and the thinned portion generated on the back surface of the examination site may be detected. .
Moreover, the said thinning part currently generate | occur | produced on the surface of the said test | inspection site | part may be detected by setting the said space | interval to the distance which an ultrasonic wave reaches the said reception side probe through the said skip of the even number of times.

本発明に係る減肉検出方法において、前記健全部エコーと前記検査部エコーの発生位置の差から前記減肉部の深さを求めることができる。 In the thinning detection method according to the present invention, the depth of the thinning portion can be obtained from a difference between occurrence positions of the healthy portion echo and the inspection portion echo.

本発明に係る減肉検出方法において、前記送信側探触子及び前記受信側探触子の入射角は同一であって、それぞれ45度以上かつ75度以下のものを使用することが好ましい。 In the thinning detection method according to the present invention, it is preferable that the transmission side probe and the reception side probe have the same incident angle, and those of 45 degrees or more and 75 degrees or less are used.

本発明に係る減肉検出方法において、前記検査部位の表面上で前記送信側探触子及び前記受信側探触子を、前記間隔を一定に保って、該送信側探触子及び該受信側探触子間を結ぶ線分に直交する方向に移動させて、前記減肉部の範囲を測定することができる。 In the thinning detection method according to the present invention, the transmitting probe and the receiving probe are kept constant on the surface of the inspection site, and the transmitting probe and the receiving probe are kept constant. The range of the thinned portion can be measured by moving the probe in a direction orthogonal to the line segment connecting the probes.

本発明に係る減肉検出方法においては、所定の間隔を有して超音波の送信側探触子及び受信側探触子となる対となる横波斜角探触子を配置するので、サポート部材や補強部材等の付着物が検査部位の表面に存在して検査部位が露出していない場合でも検査できる。また、送信側探触子から検査部位に進入して裏及び表で反射する複数回のスキップを行い受信側探触子に届く超音波を受信するので、検査部位を広範囲に設定できる。更に、健全部エコーと検査部エコーの発生位置を比較してその相違から検査部位に発生している減肉部の有無を判定するので、検査部位の表裏面の面性状の影響を受け難く、検査部位に発生した減肉部の有無の判定を精度よく行うことができる。 In the thinning detection method according to the present invention, the transverse wave oblique angle probe which is a pair that becomes a transmitting side probe and a receiving side probe of the ultrasonic wave having a predetermined interval is disposed, so that the support member Inspection can be carried out even when deposits such as reinforcing members are present on the surface of the inspection site and the inspection site is not exposed. In addition, since the ultrasonic wave reaching the receiving probe is received by performing a plurality of skips that enter the inspection site from the transmitting probe and reflect on the back and front, the inspection site can be set in a wide range. Furthermore, since the presence or absence of the thinned portion occurring in the examination part is determined from the difference by comparing the occurrence position of the healthy part echo and the examination part echo, it is difficult to be affected by the surface properties of the front and back surfaces of the examination part, It is possible to accurately determine the presence or absence of a thinned portion occurring at the examination site.

本発明に係る減肉検出方法において、第3工程での減肉部の有無の判定を、健全部エコーと検査部エコーの発生位置の相違の他、検査部エコーの高さも考慮して行う場合、送信側探触子と受信側探触子の間に発生した減肉部を確実に検出することができる。 In the thinning detection method according to the present invention, in the case where the determination of the presence or absence of the thinning portion in the third step is performed in consideration of the height of the inspection portion echo in addition to the difference in the position where the sound portion echo and the inspection portion echo are generated. Therefore, it is possible to reliably detect the thinned portion generated between the transmission side probe and the reception side probe.

本発明に係る減肉検出方法において、減肉部の検出を送信側探触子及び受信側探触子の中央部で行う場合、減肉部の有無を健全部エコーと検査部エコーの発生位置の相違から判定できる。
ここで、奇数回のスキップを介して超音波が受信側探触子に届く距離に間隔を設定し、検査部位の裏面(底面)に発生している減肉部を検知する場合、健全部エコーを形成する超音波の行程の一部を、減肉部の裏面と検査部位の表面との間の超音波の反射の行程で置き換えることができる。また、偶数回のスキップを介して超音波が受信側探触子に届く距離に間隔を設定し、検査部位の表面に発生している減肉部を検知する場合、健全部エコーを形成する超音波の行程の一部を、減肉部の底面と検査部位の裏面との間の超音波の反射の行程で置き換えることができ、検査部エコーを健全部エコーの直近に発生させることができる。
In the thinning detection method according to the present invention, when the thinning portion is detected at the center of the transmitting side probe and the receiving side probe, the presence or absence of the thinning portion is determined as the occurrence position of the healthy portion echo and the inspection portion echo. It can be judged from the difference.
Here, when an interval is set to the distance that the ultrasonic wave reaches the receiving probe through an odd number of skips and a thinned portion occurring on the back surface (bottom surface) of the examination site is detected, the sound part echo A part of the process of the ultrasonic wave forming can be replaced with a process of reflecting the ultrasonic wave between the back surface of the thinned portion and the surface of the inspection site. In addition, when an interval is set to the distance at which the ultrasonic waves reach the receiving probe through even-numbered skips, and a thinned portion generated on the surface of the examination site is detected, an ultrasonic wave that forms a sound portion echo is formed. A part of the sound wave process can be replaced with the process of reflection of ultrasonic waves between the bottom surface of the thinned portion and the back surface of the inspection site, and the inspection part echo can be generated in the immediate vicinity of the sound part echo.

本発明に係る減肉検出方法において、健全部エコーと検査部エコーの発生位置の差から減肉部の深さを求める場合、減肉部の深さを正確かつ容易に求めることができる。 In the thinning detection method according to the present invention, when the depth of the thinned portion is obtained from the difference between the occurrence positions of the sound portion echo and the inspection portion echo, the depth of the thinned portion can be accurately and easily obtained.

本発明に係る減肉検出方法において、送信側探触子及び受信側探触子の入射角が同一であって、それぞれ45度以上かつ75度以下のものを使用する場合、送、受信側探触子間の間隔及び検査部位の厚みに応じて、健全部エコーと検査部エコーを容易に求めることができる。 In the thinning detection method according to the present invention, when the transmission side probe and the reception side probe have the same incident angle and are 45 degrees or more and 75 degrees or less, respectively, the transmission and reception side probes are used. The sound part echo and the inspection part echo can be easily obtained according to the interval between the tentacles and the thickness of the inspection part.

本発明に係る減肉検出方法において、検査部位の表面上で送信側探触子及び受信側探触子を、間隔を一定に保って、送信側探触子及び受信側探触子間を結ぶ線分に直交する方向に移動させて、減肉部の範囲を測定する場合、検査部位内の減肉部の分布を容易に求めることができる。 In the thinning detection method according to the present invention, the transmitting probe and the receiving probe are connected to each other at a constant interval on the surface of the inspection site, and the transmitting probe and the receiving probe are connected to each other. When the range of the thinned portion is measured by moving in the direction orthogonal to the line segment, the distribution of the thinned portion in the examination site can be easily obtained.

本発明の第1の実施の形態に係る減肉検出方法で使用する減肉検出装置の説明図である。It is explanatory drawing of the thinning detection apparatus used with the thinning detection method which concerns on the 1st Embodiment of this invention. (A)は健全部エコーの発生を示す説明図、(B)は健全部エコーの発生位置を示す模式図である。(A) is explanatory drawing which shows generation | occurrence | production of a sound part echo, (B) is a schematic diagram which shows the generation | occurrence | production position of sound part echo. (A)、(B)は第2工程における送信側探触子及び受信側探触子の移動方法を示す説明図である。(A), (B) is explanatory drawing which shows the movement method of the transmission side probe in a 2nd process, and a receiving side probe. (A)は減肉部が存在するときの超音波の路程の説明図、(B)は減肉部が存在する際に得られる検査部エコーと健全部エコーとの発生位置の関係を示す模式図である。(A) is explanatory drawing of the path | route of an ultrasonic wave when a thinning part exists, (B) is a model which shows the relationship of the generation | occurrence | production position of the test | inspection part echo and healthy part echo which are obtained when a thinning part exists. FIG. (A)は減肉部を送信側探触子及び受信側探触子の中央部にして、スキップ数が偶数回となるように送信側探触子及び受信側探触子の間隔を調整したときの超音波の路程の説明図、(B)は検査部エコーと健全部エコーとの発生位置の関係を示す模式図である。In (A), the interval between the transmitting probe and the receiving probe is adjusted so that the number of skips is an even number, with the thinned portion being the central portion of the transmitting probe and the receiving probe. FIG. 6B is a schematic diagram showing the relationship between the generation positions of the examination part echo and the healthy part echo. 減肉部により超音波の路程長さが変化する際の説明図である。It is explanatory drawing when the path length of an ultrasonic wave changes with a thinning part. (A)、(B)、(C)はそれぞれ本発明の第2の実施の形態に係る減肉検出方法で使用する減肉検出装置の測定治具の正面図、一部省略平面図、一部省略断面図である。(A), (B), (C) are respectively a front view, a partially omitted plan view of a measurement jig of a thinning detection device used in the thinning detection method according to the second embodiment of the present invention, FIG. (A)、(B)は実施例1の減肉検出の説明図である。(A), (B) is explanatory drawing of the thinning detection of Example 1. FIG. (A)、(B)は実施例1の透過エコーの説明図、(C)は減肉部の二次元分布図である。(A), (B) is explanatory drawing of the transmission echo of Example 1, (C) is a two-dimensional distribution map of a thinning part. (A)、(B)は実施例2の減肉検出の説明図である。(A), (B) is explanatory drawing of the thinning detection of Example 2. FIG. (A)、(B)は実施例2の透過エコーの説明図、(C)は減肉部の二次元分布図である。(A), (B) is explanatory drawing of the transmission echo of Example 2, (C) is a two-dimensional distribution map of a thinning part. (A)は従来例に係る減肉検出方法の説明図、(B)は表面波の伝搬時間の変化を示す説明図である。(A) is explanatory drawing of the thinning detection method based on a prior art example, (B) is explanatory drawing which shows the change of the propagation time of a surface wave. (A)は従来例に係る減肉検出方法の説明図、(B)は透過エコー高さの変化を示す説明図である。(A) is explanatory drawing of the thinning detection method which concerns on a prior art example, (B) is explanatory drawing which shows the change of the transmitted echo height.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。 Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.

本発明の第1の実施の形態に係る減肉検出方法で使用する減肉検出装置10は、図1に示すように、対となる横波斜角探触子からなる超音波の送信側探触子11及び受信側探触子12と、送信側探触子11及び受信側探触子12を被検体の一例である板材13の検査部位14の両側に所定の間隔Ysを有して配置すると共に、検査部位14の表面上で送信側探触子11及び受信側探触子12を、送信側探触子11と受信側探触子12との間の間隔Ysを一定に保って、しかも送信側探触子11及び受信側探触子12間を結ぶ線分に直交する方向に移動させる測定治具15と、送信側探触子11から検査部位14に横波を入射させる駆動信号を送信側探触子11に入力し、検査部位14の裏及び表で反射する複数回のスキップを行い受信側探触子12に届く超音波が受信された際に受信側探触子12から出力されるエコー信号を取出す超音波探傷器16とを有している。なお、超音波探傷器16には従来の超音波探傷器が使用できるので、詳細な説明は省略する。 As shown in FIG. 1, a thinning detection apparatus 10 used in the thinning detection method according to the first embodiment of the present invention is an ultrasonic transmission side probe comprising a pair of transverse wave oblique angle probes. The probe 11 and the receiving probe 12, and the transmitting probe 11 and the receiving probe 12 are arranged with a predetermined interval Ys on both sides of the inspection site 14 of the plate 13 which is an example of the subject. At the same time, the transmission side probe 11 and the reception side probe 12 are kept on the surface of the inspection site 14 while keeping the distance Ys between the transmission side probe 11 and the reception side probe 12 constant. A measurement jig 15 that moves in a direction orthogonal to a line segment connecting the transmission side probe 11 and the reception side probe 12 and a drive signal that causes a transverse wave to enter the inspection site 14 from the transmission side probe 11 are transmitted. Input to the side probe 11 and skip multiple times to reflect on the back and front of the test site 14 and receive side probe And a ultrasonic flaw detector 16 to take out the echo signal output from the receiving side probe 12 when the ultrasound is received reaching the 12. Since a conventional ultrasonic flaw detector can be used as the ultrasonic flaw detector 16, a detailed description is omitted.

更に、減肉検出装置10は、図2(A)に示すように、板材13と同材質で検査部位14の健全厚みと同一の厚みを有する板状の試験体36の表面に所定の間隔Ysを有して送信側探触子11及び受信側探触子12を配置し、送信側探触子11から試験体36を通過して受信側探触子12に届き超音波探傷器16を介して取出されたるエコー信号から健全部エコーを求めて記憶する健全部エコー記憶機能、間隔Ysを有して送信側探触子11及び受信側探触子12を板材13の検査部位14に配置し、送信側探触子11から検査部位14を通過して受信側探触子12に届き超音波探傷器16を介して取出されたるエコー信号から検査部エコーを求める検査部エコー検知機能と、健全部エコーと検査部エコーの発生位置を比較してその相違から検査部位14に発生している減肉部の有無を判定する第1の減肉判定機能を備えた解析手段18を有している。 Further, as shown in FIG. 2 (A), the thinning detection apparatus 10 has a predetermined interval Ys on the surface of a plate-like test body 36 that is the same material as the plate material 13 and has the same thickness as the healthy thickness of the inspection site 14. The transmission side probe 11 and the reception side probe 12 are arranged to pass through the test body 36 from the transmission side probe 11 and reach the reception side probe 12 via the ultrasonic flaw detector 16. A sound portion echo storage function for obtaining and storing sound portion echoes from the echo signals extracted in this manner, the transmitting side probe 11 and the receiving side probe 12 having an interval Ys disposed at the inspection site 14 of the plate 13. An inspection part echo detection function for obtaining an inspection part echo from an echo signal that has passed through the inspection part 14 from the transmission side probe 11 and reached the reception side probe 12 and taken out via the ultrasonic flaw detector 16; Comparison of the location of the echo of the head and the test part査部 position has analysis means 18 having a first wall thinning determination function determines the presence or absence of thinning portion occurring on 14.

ここで、測定治具15は、伸縮可能で任意の長さに固定可能な棒部材19と、棒部材19の両側にそれぞれ設けられ、送信側探触子11及び受信側探触子12をそれぞれ保持して送信側探触子11、受信側探触子12の各接触面24a、24bを板材13の検査部位14の表面に向けて一定の押圧力で付勢する探触子ホルダー20a、20bと、棒部材19の両側で探触子ホルダー20a、20bと干渉しない位置に取付けられ、棒部材19の軸心方向と平行な方向に車軸方向を向けた対となる車輪21と、一方の車輪21の回転数から棒部材19の移動距離を測定し、測定信号を解析手段18に出力するエンコーダ22とを有している。 Here, the measuring jig 15 is provided on each side of the bar member 19 that can be expanded and contracted and can be fixed to an arbitrary length, and on both sides of the bar member 19, and the transmission side probe 11 and the reception side probe 12 are respectively connected. Probe holders 20a and 20b that hold and urge the contact surfaces 24a and 24b of the transmitting probe 11 and the receiving probe 12 toward the surface of the inspection site 14 of the plate 13 with a constant pressing force. And a pair of wheels 21 which are attached to positions on both sides of the rod member 19 so as not to interfere with the probe holders 20a and 20b, and whose axle direction is oriented parallel to the axial direction of the rod member 19, and one wheel. And an encoder 22 that measures the moving distance of the bar member 19 from the number of rotations 21 and outputs a measurement signal to the analysis means 18.

このような構成とすることで、送信側探触子11、受信側探触子12の各接触面24a、24bを板材13の検査部位14の表面に接触媒質(例えば、水、グリセリン、グリース等の音波を通し易い物質)を介して押圧状態で保持することができると共に、検査部位14の表面上で送信側探触子11及び受信側探触子12を、送信側探触子11、受信側探触子12間の間隔Ysを一定に保って、しかも送信側探触子11及び受信側探触子12間を結ぶ線分に直交する方向に移動させることができる。 With such a configuration, the contact surfaces 24a and 24b of the transmitting probe 11 and the receiving probe 12 are contacted with the contact medium (for example, water, glycerin, grease, etc.) on the surface of the inspection site 14 of the plate 13. The transmission side probe 11 and the reception side probe 12 on the surface of the inspection site 14, and the transmission side probe 11 and reception. The distance Ys between the side probes 12 can be kept constant and can be moved in the direction orthogonal to the line segment connecting the transmission side probe 11 and the reception side probe 12.

送信側探触子11、受信側探触子12はそれぞれ、信号の入出力用の信号ケーブル23a、23bが接続された超音波振動素子A、Bと、超音波振動素子A、Bと接触し超音波振動素子A、Bから発射された横波を取出す導波部材(図示せず)と、一面が導波部材と接触し他面が板材13の検査部位14の表面と接触する接触面24a、24bとなる接触部(図示せず)と、超音波振動素子A、B、導波部材、及び接触部を収納する探触子ケース25a、25bとを有している。ここで、超音波振動素子A、Bの周波数は、3MHz以上、好ましくは3.5MHz以上で、7MHz以下、好ましくは5MHz以下とするのがよい。また、超音波振動素子A、Bが円形の場合、その直径は、探傷カバー範囲(減肉部17の二次元サイズ)の点から、4mm以上、好ましくは6mm以上で、15mm以下、好ましくは13mm以下とするのがよい。 The transmission side probe 11 and the reception side probe 12 are in contact with the ultrasonic vibration elements A and B to which signal input / output signal cables 23a and 23b are connected, respectively, and the ultrasonic vibration elements A and B. A waveguide member (not shown) for taking out transverse waves emitted from the ultrasonic vibration elements A and B; a contact surface 24a in which one surface is in contact with the waveguide member and the other surface is in contact with the surface of the inspection site 14 of the plate 13; 24b, contact portions (not shown), ultrasonic vibration elements A and B, waveguide members, and probe cases 25a and 25b that house the contact portions. Here, the frequency of the ultrasonic vibration elements A and B is 3 MHz or more, preferably 3.5 MHz or more, 7 MHz or less, preferably 5 MHz or less. Further, when the ultrasonic vibration elements A and B are circular, the diameter thereof is 4 mm or more, preferably 6 mm or more, 15 mm or less, preferably 13 mm from the point of the flaw detection cover range (two-dimensional size of the thinned portion 17). The following is recommended.

なお、送信側探触子11では、送信側探触子11を検査部位14に接触させた際に、接触面24aを介して検査部位14に一定の入射角、例えば、接触面24aに立てた垂線との角度θが45°以上、好ましくは50°以上で、75°以下、好ましくは70°以下の角度範囲で進入するように探触子ケース25a内における超音波振動素子A、Bと導波部材の角度及び位置が調整されている。また、受信側探触子12では、受信側探触子12を検査部位14に接触させた際に、検査部位14の表面を介して接触面24bに一定の入射角、例えば、接触面24bに立てた垂線との角度φが45°以上、好ましくは50°以上で、75°以下、好ましくは70°以下の角度範囲で入射するように探触子ケース25b内における超音波振動素子A、Bと導波部材の角度及び位置が調整されている。 In the transmitting probe 11, when the transmitting probe 11 is brought into contact with the test site 14, the test site 14 is set at a certain incident angle, for example, the contact surface 24a via the contact surface 24a. The angle θ with the perpendicular is 45 ° or more, preferably 50 ° or more, 75 ° or less, and preferably 70 ° or less, and the ultrasonic vibration elements A and B in the probe case 25a are guided. The angle and position of the wave member are adjusted. In the receiving probe 12, when the receiving probe 12 is brought into contact with the inspection site 14, a constant incident angle, for example, on the contact surface 24 b, is incident on the contact surface 24 b through the surface of the inspection site 14. The ultrasonic vibration elements A and B in the probe case 25b so that the angle φ with respect to the standing perpendicular is 45 ° or more, preferably 50 ° or more, and 75 ° or less, preferably 70 ° or less. The angle and position of the waveguide member are adjusted.

更に、解析手段18には、健全部エコーと検査部エコーの発生位置の相違及び検査部エコーの高さから減肉部17の有無の判定を行う第2の減肉判定機能と、健全部エコーと検査部エコーの発生位置の差から減肉部17の深さを求める減肉深さ検出機能と、エンコーダ22から出力される棒部材19の移動距離の測定信号と検査部エコーを基に減肉部17の範囲を測定する減肉部分布測定機能が設けられている。なお、解析手段18は、例えば、上記の各機能を発現するプログラムをマイクロコンピュータに搭載して形成することができる。 Further, the analysis means 18 includes a second thinning determination function for determining the presence or absence of the thinning portion 17 based on the difference in the generation position of the healthy portion echo and the inspection portion echo and the height of the inspection portion echo, and the healthy portion echo. Based on the difference between the detection position of the inspection portion echo and the thickness of the thinning portion 17 for obtaining the depth of the thinning portion 17, the measurement signal of the movement distance of the bar member 19 output from the encoder 22, and the inspection portion echo. A thinning portion distribution measuring function for measuring the range of the meat portion 17 is provided. The analysis means 18 can be formed, for example, by mounting a program that expresses each of the above functions on a microcomputer.

本発明の第1の実施の形態に係る減肉検出方法は、図1に示す測定治具15を用いて、図2(A)に示すように、所定の間隔Ysを有して横波の超音波の送信側探触子11及び受信側探触子12を、板材13の検査部位14の健全厚みを有する試験体36の表面に配置し、送信側探触子11から試験体36に進入して裏及び表で反射する複数回のスキップを行い受信側探触子12に届く超音波を受信して健全部エコーを得る第1工程と、図1に示すように、測定治具15を用いて所定の間隔Ysを有して送信側探触子11及び受信側探触子12を板材13の検査部位14に配置し、送信側探触子11から検査部位14に進入して裏及び表で反射する複数回のスキップを行い受信側探触子12に届く超音波を受信して検査部エコーを求める第2工程と、健全部エコーと検査部エコーの発生位置を比較してその相違から検査部位14に発生している減肉部の有無を判定する第3工程とを有している。以下、詳細に説明する。 The thinning detection method according to the first embodiment of the present invention uses a measurement jig 15 shown in FIG. 1 and has a predetermined interval Ys as shown in FIG. The sound wave transmitting side probe 11 and the receiving side probe 12 are arranged on the surface of the test body 36 having a sound thickness of the inspection site 14 of the plate member 13 and enter the test body 36 from the transmission side probe 11. The first step of obtaining the sound part echo by receiving the ultrasonic wave reaching the receiving side probe 12 by skipping a plurality of times reflected on the back and front, and using the measuring jig 15 as shown in FIG. The transmission side probe 11 and the reception side probe 12 are arranged at the inspection site 14 of the plate 13 with a predetermined interval Ys, and enter the inspection site 14 from the transmission side probe 11 to enter the back side and the front side. The second step is to obtain the inspection part echo by receiving the ultrasonic wave that reaches the receiving probe 12 by skipping multiple times reflected by Degree and, and a third step of determining whether the thinning portion occurring on the test site 14 from the difference by comparing the occurrence position of the inspection unit echo a healthy section echoes. Details will be described below.

(第1工程)
図2(A)に示すように、送信側探触子11からは、試験体36に一定の入射角θ(送信側探触子11の接触面24aに立てた垂線との角度が45°以上、好ましくは50°以上で、75°以下、好ましくは70°以下の角度範囲)で超音波が進入する。一方、受信側探触子12には、試験体36の裏面で反射して表面に向かう超音波の中で、受信側探触子12の接触面24bに一定の入射角φ(受信側探触子12の接触面24bに立てた垂線との角度が45°以上、好ましくは50°以上で、75°以下、好ましくは70°以下の角度範囲)で入射する超音波が受信される。なお、入射角θ、φは同一となる。
(First step)
As shown in FIG. 2 (A), the transmitting probe 11 has a constant incident angle θ (at an angle of 45 ° or more with a perpendicular standing on the contact surface 24a of the transmitting probe 11) on the specimen 36. The ultrasonic wave enters at an angle range of preferably 50 ° or more and 75 ° or less, and preferably 70 ° or less. On the other hand, the receiving probe 12 has a certain incident angle φ (receiving probe) on the contact surface 24b of the receiving probe 12 in the ultrasonic wave reflected from the back surface of the test body 36 and directed to the surface. The incident ultrasonic wave is received at an angle of 45 ° or more, preferably 50 ° or more, and 75 ° or less, preferably 70 ° or less) with respect to a perpendicular standing on the contact surface 24b of the child 12. The incident angles θ and φ are the same.

ここで、図2(A)に示すように、送信側探触子11から試験体36(厚みt)の表面に角度θで進入し裏面で反射して表面に戻る過程を1スキップと称すると、送信側探触子11から試験体36に進入した超音波がS回のスキップを行なって入射角度φ(=θ)で受信側探触子12に入射した場合、送信側探触子11から発射されて受信側探触子12に到達するS回のスキップの路程Wsと、送信側探触子11、12間の間隔Ysは、次の関係を満たす。
Ws=S・2t/cosθ
Ys=S・2t・tanθ
Here, as shown in FIG. 2A, the process of entering the surface of the specimen 36 (thickness t) from the transmitting probe 11 at an angle θ, reflecting on the back surface, and returning to the surface is referred to as one skip. When the ultrasonic wave that has entered the specimen 36 from the transmission side probe 11 skips S times and enters the reception side probe 12 at an incident angle φ (= θ), the transmission side probe 11 The S skip distance Ws that is fired and reaches the receiving probe 12 and the interval Ys between the transmitting probes 11 and 12 satisfy the following relationship.
Ws = S · 2t / cos θ
Ys = S · 2t · tanθ

また、図2(A)に示すように、送信側探触子11からは、入射角度θを中心として前後の角度範囲で超音波が試験体36に入射し、試験体36からは、入射角φ(=θ)を中心として前後の角度範囲で超音波が送信側探触子12に入射するので、路程Wsとは別の路程の超音波も受信側探触子12で受信される。ここで、送信側探触子11から試験体36の表面に角度θsnで進入し裏面と表面で反射するSn回のスキップを行なって入射角度θsnで受信側探触子12に入射した場合、次の関係が得られる。
Wns=Sn・2t/cosθsn
θsn=tan−1(Ys/2t・Sn)
Further, as shown in FIG. 2A, the ultrasonic wave is incident on the test body 36 from the transmitting probe 11 in the front and rear angle ranges around the incident angle θ, and the incident angle is Since ultrasonic waves are incident on the transmitting probe 12 in the front and rear angle range with φ (= θ) as the center, ultrasonic waves having a path other than the path Ws are also received by the receiving probe 12. Here, when the transmitter probe 11 enters the surface of the test body 36 at an angle θ sn and skips Sn times reflected from the back surface and the surface, the light enters the receiver probe 12 at an incident angle θ sn. The following relationship is obtained.
Wns = Sn · 2t / cos θ sn
θ sn = tan −1 (Ys / 2t · Sn)

従って、スキップ数Sを設定して、すなわち間隔Ysを決めて送信側探触子11及び受信側探触子12を試験体36の表面に配置した場合、複数の透過エコーからなる健全部エコーが得られる。受信側探触子12から出力されるエコー信号から求めた健全部エコーWs及びWnsを図2(B)にまとめて示す。なお、図2(B)では、エコー高さが最大のWsに対して短ビーム路程側に発生する健全部エコーをW−1s、W−2s、Wsに対して長ビーム路程側に発生する健全部エコーを順にW+1s、W+2s、W+3sとしている。 Therefore, when the number of skips S is set, that is, the interval Ys is determined and the transmitting probe 11 and the receiving probe 12 are arranged on the surface of the test body 36, the sound part echo composed of a plurality of transmitted echoes is generated. can get. The healthy part echoes Ws and Wns obtained from the echo signal output from the receiving probe 12 are collectively shown in FIG. In FIG. 2 (B), a healthy part echo generated on the short beam path side with respect to Ws having the maximum echo height is generated on the long beam path side with respect to W −1s , W −2s , and Ws. The partial echoes are W + 1s , W + 2s , and W + 3s in order.

ここで、健全部エコーとして複数の透過エコーが分離して求められるように、試験体36(板材13)の厚みtは、4mm以上が好ましい。なお、試験体36(板材13)の厚みtの最大値は、使用する横波の強さによって決まるが、市販の超音波探傷器を用いる場合、20mm程度となる。
また、スキップ数Sを設定して、すなわち間隔Ysを決めて送信側探触子11及び受信側探触子12を配置した場合、減肉部17の有無の判定可能な測定範囲は、送信側探触子11、12を結ぶ線分上で、送信側探触子11を起点としてYs/2Sの点からYs−Ys/2Sの点までの範囲となる。ここで、判定可能な測定範囲の最大長は、使用する超音波の強さによって決まるが、市販の超音波探傷器を用いる場合、400mm程度となる。
Here, the thickness t of the test body 36 (plate material 13) is preferably 4 mm or more so that a plurality of transmitted echoes are obtained separately as the sound part echo. In addition, although the maximum value of the thickness t of the test body 36 (plate material 13) is decided by the strength of the transverse wave to be used, it becomes about 20 mm when using a commercially available ultrasonic flaw detector.
Further, when the number of skips S is set, that is, when the transmission side probe 11 and the reception side probe 12 are arranged with the interval Ys determined, the measurement range in which the presence or absence of the thinning portion 17 can be determined is On the line segment connecting the probes 11 and 12, the range is from the point Ys / 2S to the point Ys−Ys / 2S starting from the transmitting probe 11. Here, the maximum length of the measurement range that can be determined is determined by the strength of the ultrasonic wave to be used, but is about 400 mm when a commercially available ultrasonic flaw detector is used.

ここで、減肉部17の発生の有無を判定する検査部位14の広さが設定されると、送信側探触子11から試験体36に入射する超音波の入射角θ、及び試験体36から受信側探触子12に入射する超音波の入射角φ(=θ)が決まっているので、健全部エコーが得られる条件としてスキップ数Sが決まり、送信側探触子11と受信側探触子12の間隔Ysが決まる。なお、検査部位14の裏面に発生している減肉部17を検知しようとする場合は、スキップ数Sが3回以上になるように送信側探触子11、12間の間隔Ysを設定して、そのときの健全部エコーを求めることが望ましい。また、検査部位14の表面に発生している減肉部17を検知しようとする場合は、スキップ数Sを4回以上になるように送信側探触子11、12間の間隔Ysを設定して、そのときの健全部エコーを求めることが望ましい。 Here, when the width of the inspection site 14 for determining whether or not the thinned portion 17 is generated is set, the incident angle θ of the ultrasonic wave incident on the test body 36 from the transmitting probe 11 and the test body 36 are set. Since the incident angle φ (= θ) of the ultrasonic wave incident on the receiving probe 12 is determined, the number of skips S is determined as a condition for obtaining a healthy part echo, and the transmitting probe 11 and the receiving probe An interval Ys between the touch elements 12 is determined. In addition, when it is going to detect the thinning part 17 which has generate | occur | produced in the back surface of the test | inspection site | part 14, the space | interval Ys between the transmission side probes 11 and 12 is set so that the skip number S may be 3 times or more. Therefore, it is desirable to obtain the healthy part echo at that time. In addition, when trying to detect the thinned portion 17 generated on the surface of the examination site 14, the interval Ys between the transmitting side probes 11 and 12 is set so that the skip number S is 4 times or more. Therefore, it is desirable to obtain the healthy part echo at that time.

(第2工程)
図1に示すように、板材13の検査部位14の表面に送信側探触子11及び受信側探触子12を配置し、送信側探触子11と受信側探触子12との間隔(探触子間距離)Ysを一定に保って探傷(移動)する。この際、送信側探触子11が配置される測定範囲の一方の端から内側(受信側探触子12側)方向にYs/Sまでの範囲と、受信側探触子12が配置される測定範囲の他方の端から外側(反送信側探触子11側)方向にYs/Sまでの範囲については、送信側探触子11と受信側探触子12をそれぞれ探傷(移動)カバー範囲が重複するように走査させる。
(Second step)
As shown in FIG. 1, the transmitting probe 11 and the receiving probe 12 are arranged on the surface of the inspection site 14 of the plate member 13, and the distance between the transmitting probe 11 and the receiving probe 12 ( The flaw detection (movement) is performed while keeping the distance between the probes Ys constant. At this time, the range from one end of the measurement range where the transmission side probe 11 is arranged to Ys / S in the inner (reception side probe 12 side) direction and the reception side probe 12 are arranged. With respect to the range from the other end of the measurement range to Ys / S in the outward (non-transmission side probe 11 side) direction, the transmission side probe 11 and the reception side probe 12 are each in the flaw detection (moving) cover range. Are scanned so that they overlap.

例えば、図3(A)に示すように、検査部位14の検査範囲の一方側にそれぞれ配置した送信側探触子11及び受信側探触子12を、送信側探触子11及び受信側探触子12間を結ぶ線分に沿って送信側探触子11から受信側探触子12に向かう方向に同時にYs/Sだけ移動させた後、送信側探触子11及び受信側探触子12間を結ぶ線分に直交する方向に沿って検査範囲の他方側に向けて予め設定した距離だけ同時に移動させてから、送信側探触子11及び受信側探触子12間を結ぶ線分に沿って受信側探触子12から送信側探触子11に向かう方向に同時にYs/Sだけ移動させ、更に送信側探触子11及び受信側探触子12間を結ぶ線分に直交する方向に沿って検査範囲の他方側に向けて予め設定した距離だけ同時に移動する単位走査を、送信側探触子11及び受信側探触子12が検査部位14の検査範囲の他方側に到達するまで繰り返す。 For example, as shown in FIG. 3 (A), the transmission side probe 11 and the reception side probe 12 respectively arranged on one side of the examination range of the examination region 14 are replaced with the transmission side probe 11 and the reception side probe. After simultaneously moving Ys / S in the direction from the transmitting probe 11 to the receiving probe 12 along the line connecting the probes 12, the transmitting probe 11 and the receiving probe A line segment connecting between the transmission-side probe 11 and the reception-side probe 12 after simultaneously moving a predetermined distance toward the other side of the inspection range along a direction orthogonal to the line segment connecting the two. Are simultaneously moved in the direction from the receiving probe 12 toward the transmitting probe 11 by Ys / S, and further orthogonal to the line segment connecting the transmitting probe 11 and the receiving probe 12. A unit run that moves simultaneously along the direction toward the other side of the inspection range by a preset distance The repeated until the transmission side probe 11 and the reception-side probe 12 reaches the other side of the inspection range of the inspection site 14.

あるいは、図3(B)に示すように、検査部位14の検査範囲の一方側にそれぞれ配置した送信側探触子11及び受信側探触子12を、送信側探触子11及び受信側探触子12間を結ぶ線分に直交する方向に沿って同時に検査範囲の他方側に移動させた後、送信側探触子11及び受信側探触子12間を結ぶ線分に沿って送信側探触子11から受信側探触子12に向かう方向に同時に予め設定した距離、例えばYs/2Sだけ移動させてから、送信側探触子11及び受信側探触子12間を結ぶ線分に直交する方向に沿って同時に検査範囲の一方側に移動させ、次いで、送信側探触子11及び受信側探触子12を、送信側探触子11及び受信側探触子12間を結ぶ線分に沿って送信側探触子11から受信側探触子12に向かう方向に同時に予め設定した距離、例えばYs/2Sだけ移動させた後、更に送信側探触子11及び受信側探触子12間を結ぶ線分に直交する方向に沿って同時に検査範囲の他方側に移動する。 Alternatively, as shown in FIG. 3B, the transmitting probe 11 and the receiving probe 12 respectively arranged on one side of the inspection range of the inspection region 14 are replaced with the transmitting probe 11 and the receiving probe. After simultaneously moving to the other side of the inspection range along the direction orthogonal to the line segment connecting the transducers 12, the transmission side along the line segment connecting the transmitter probe 11 and the receiver probe 12 The distance between the probe 11 and the receiving probe 12 is changed to a line segment connecting the transmitting probe 11 and the receiving probe 12 after moving by a preset distance, for example, Ys / 2S, in the direction from the probe 11 to the receiving probe 12 at the same time. A line that connects the transmission side probe 11 and the reception side probe 12 between the transmission side probe 11 and the reception side probe 12 is moved to one side of the inspection range at the same time along the orthogonal direction. At the same time in the direction from the transmitting probe 11 to the receiving probe 12 Distance was, for example, after moving only Ys / 2S, further moves to the other side of simultaneously testing a range along the direction perpendicular to the line segment connecting between the transmission side probe 11 and the reception-side probe 12.

これによって、送信側探触子11からYs/2Sだけ内側の位置より、受信側探触子12からYs/2Sだけ内側の位置(送信側探触子11からYs−Ys/2Sだけ内側の位置)までの範囲に存在する減肉部17を見落とすことなく検出できる。そして、送信側探触子11から検査部位14に進入して裏及び表で反射する複数回のスキップを行い受信側探触子12に届く超音波を受信し、超音波探傷器16を介して出力される横波の透過エコー信号は、一定の時間間隔で解析手段18に入力される。また、解析手段18には、エンコーダ22から送信側探触子11、12の移動距離の測定信号が入力される。 As a result, a position that is Ys / 2S from the receiving probe 12 and a position that is Ys / 2S from the receiving probe 12 (a position that is Ys-Ys / 2S from the transmitting probe 11). ) Can be detected without overlooking the thinned portion 17 existing in the range up to. Then, the ultrasonic wave reaching the reception side probe 12 is received by performing a plurality of skips that enter the inspection site 14 from the transmission side probe 11 and reflected on the back and front, and through the ultrasonic flaw detector 16. The output transverse echo signal is input to the analysis means 18 at regular time intervals. In addition, a measurement signal of the movement distance of the transmission side probes 11 and 12 is input from the encoder 22 to the analysis unit 18.

(第3工程)
解析手段18では、送信側探触子11から検査部位14に進入して裏及び表で反射する複数回のスキップを行い受信側探触子12に届く超音波を受信して検査部エコーが求められ、検査部エコーの発生位置と記憶している健全部エコーの発生位置との比較が行われる。送信側探触子11から送信され検査部位14を通過して受信側探触子12で受信される超音波の路程上に減肉部17が存在しないときは、受信側探触子12で受信して得られる検査部エコーの発生位置は健全部エコーの発生位置と一致する。一方、図4(A)に示すように、送信側探触子11から送信され検査部位14を通過して受信側探触子12で受信される超音波の路程上で検査部位14の裏面に減肉部17が存在するときは、減肉部17の底面と検査部位14の表面との間で超音波の反射が生じ、健全部エコーとは異なる位置に検査部エコーが発生する。図4(B)に、検査部エコーを健全部エコーと対比させて示す。そして、健全部エコーとは異なる位置に検査部エコーが発生した場合、検査部位14に減肉部17が存在すると判定する。
(Third step)
In the analysis means 18, the inspection part echo is obtained by receiving the ultrasonic wave that reaches the reception side probe 12 by performing a plurality of skips that enter the inspection site 14 from the transmission side probe 11 and reflect on the back and front. Then, a comparison is made between the generation position of the examination part echo and the stored position of the healthy part echo. When the thinning portion 17 does not exist on the path of the ultrasonic wave transmitted from the transmission side probe 11 and passed through the inspection site 14 and received by the reception side probe 12, the reception side probe 12 receives the signal. The inspection part echo generation position obtained in this manner matches the sound part echo generation position. On the other hand, as shown in FIG. 4A, on the back surface of the inspection site 14 on the path of ultrasonic waves transmitted from the transmission side probe 11, passing through the inspection site 14 and received by the reception side probe 12. When the thinned portion 17 is present, ultrasonic waves are reflected between the bottom surface of the thinned portion 17 and the surface of the inspection site 14, and an inspection portion echo is generated at a position different from the healthy portion echo. FIG. 4B shows the inspection part echo in contrast to the healthy part echo. And when the test | inspection part echo generate | occur | produces in the position different from the healthy part echo, it determines with the thinning part 17 existing in the test | inspection site | part 14. FIG.

また、送信側探触子11、12の移動距離に対応して変化する検査部エコーの振幅値と送信側探触子11、12の移動距離の関係から、検査部エコーの振幅の二次元分布を求める。検査部位14に減肉部17が存在しないと、検査部エコーの振幅の二次元分布は健全部エコーの振幅の二次元分布となり、検査部位14に減肉部17が存在すると、検査部エコーの振幅の二次元分布は健全部エコーの振幅の二次元分布と異なる。従って、検査部位14内での検査部エコーの振幅の二次元分布の変化から、減肉部17の分布(二次元分布)が求められる。
なお、減肉部17の分布(二次元分布)を求めるには、板材13の検査部位14の表面で少なくとも直交する2方向において超音波探触子11、12の走査を行う必要がある。すなわち、板材13の検査部位14の表面における超音波探触子11、12の走査方向を決めて第1〜第3工程を実行してX方向測定を行い、続いて、送信側探触子11及び受信側探触子12間を結ぶ線分の方向がX方向測定における超音波探触子11、12の走査方向と平行になるように送信側探触子11及び受信側探触子12を検査部位14の表面に配置し超音波探触子11、12の走査方向がX方向測定の際の走査方向と直交するように第1〜第3工程を実行してY方向測定を行う。そして、X方向測定の結果とY方向測定の結果を重ね合わせることにより、減肉部17の分布(二次元分布)を求める。そして、X方向測定、Y方向測定において、送信側探触子11と受信側探触子12との間隔Ysが同一であれば、Y方向測定における第1工程は省略できる。
Further, the two-dimensional distribution of the amplitude of the inspection portion echo is obtained from the relationship between the amplitude value of the inspection portion echo that changes corresponding to the movement distance of the transmission side probes 11 and 12 and the movement distance of the transmission side probes 11 and 12. Ask for. If the thinned portion 17 does not exist in the examination site 14, the two-dimensional distribution of the amplitude of the examination portion echo becomes the two-dimensional distribution of the amplitude of the healthy portion echo. If the thinning portion 17 exists in the examination site 14, the inspection portion echo The two-dimensional amplitude distribution is different from the two-dimensional amplitude distribution of the sound part echo. Accordingly, the distribution (two-dimensional distribution) of the thinned portion 17 is obtained from the change in the two-dimensional distribution of the amplitude of the inspection portion echo within the inspection portion 14.
In order to obtain the distribution (two-dimensional distribution) of the thinned portion 17, it is necessary to scan the ultrasonic probes 11 and 12 in at least two orthogonal directions on the surface of the inspection site 14 of the plate material 13. That is, the scanning direction of the ultrasonic probes 11 and 12 on the surface of the inspection site 14 of the plate material 13 is determined, the first to third steps are executed, and the X direction measurement is performed. The transmission side probe 11 and the reception side probe 12 are arranged so that the direction of the line connecting the reception side probe 12 and the scanning direction of the ultrasonic probes 11 and 12 in the X direction measurement is parallel. The Y-direction measurement is performed by performing the first to third steps so that the scanning direction of the ultrasonic probes 11 and 12 is arranged on the surface of the inspection site 14 and is orthogonal to the scanning direction in the X-direction measurement. And the distribution (two-dimensional distribution) of the thinning part 17 is calculated | required by superimposing the result of a X direction measurement, and the result of a Y direction measurement. In the X direction measurement and the Y direction measurement, if the distance Ys between the transmission side probe 11 and the reception side probe 12 is the same, the first step in the Y direction measurement can be omitted.

ここで、検査部位14の表面に送信側探触子11及び受信側探触子12を配置する際、減肉部17が送信側探触子11及び受信側探触子12の中央部となるように送信側探触子11及び受信側探触子12の位置を調整して、減肉部17の発生位置(減肉部17が検査部位14の表、裏面のいずれの側に存在するか)の判定及び減肉深さの測定を行う場合について説明する。例えば、図4(A)のように、検査部位14の裏面に減肉部17が存在している場合、図5(A)に示すように、スキップ数Sが偶数回となるように送信側探触子11と受信側探触子12の間隔Ysを調節しても図5(B)に示すように、健全部エコーのWsとW−1sとの間に検査部エコーはほとんど生じないが、図4(A)に示すように、スキップ数が奇数回となるように送信側探触子11と受信側探触子12の間隔Ysを調節すると、図4(B)に示すように、健全部エコーのWsとW−1sとの間に検査部エコーが発生するので、減肉部17の発生位置を判別することができる。 Here, when the transmission side probe 11 and the reception side probe 12 are arranged on the surface of the inspection site 14, the thinning portion 17 becomes the central portion of the transmission side probe 11 and the reception side probe 12. In this manner, the positions of the transmission side probe 11 and the reception side probe 12 are adjusted so that the thinning portion 17 is generated (whether the thinning portion 17 exists on the front side or the back side of the inspection site 14). ) And the case of measuring the thinning depth will be described. For example, as shown in FIG. 4A, when the thinned portion 17 exists on the back surface of the examination site 14, as shown in FIG. 5A, the transmission side is set so that the skip count S is an even number. Even if the interval Ys between the probe 11 and the receiving probe 12 is adjusted, as shown in FIG. 5 (B), the inspection part echo hardly occurs between Ws and W −1s of the healthy part echo. As shown in FIG. 4A, when the interval Ys between the transmitting probe 11 and the receiving probe 12 is adjusted so that the number of skips is an odd number, as shown in FIG. Since the inspection portion echo is generated between Ws and W −1s of the healthy portion echo, the generation position of the thinned portion 17 can be determined.

例えば、図6に示すように、送信側探触子11から送信され検査部位14を通過して受信側探触子12で受信される超音波の路程上で検査部位14の裏面に深さdの減肉部17が存在するようにすると、検査部位14の表面で反射し反射角θで検査部位14の裏面に入射して反射し反射角θで検査部位14の表面に入射する超音波のスキップは、検査部位14の表面で反射し反射角θ´で減肉部17の底面に入射して反射し反射角θ´で検査部位14の表面に入射する超音波のスキップに代わる。このとき、検査部エコーの路程は、健全部エコーの路程に対して2t/cosθ−2(t−d)/cosθ´だけ路程が短くなるので、検査部エコーの路程と健全部エコーの路程の差が、検査部エコーの発生位置と健全部エコーの発生位置の差Δとなる。そして、厚みtは既知の値で、Δの値は測定から得られ、θ、θ´は路程Ws(スキップ数S)及び間隔Ysにより決まる値なので、減肉部17の深さdは
d=(1−cosθ´/cosθ)t−Δcosθ´/2
から求めることができる。
For example, as shown in FIG. 6, the depth d is formed on the back surface of the inspection site 14 on the path of ultrasonic waves transmitted from the transmission side probe 11 and received by the reception side probe 12 through the inspection site 14. When the thinned portion 17 is present, the ultrasonic wave reflected on the surface of the examination site 14 is incident on the back surface of the examination site 14 at the reflection angle θ and reflected on the surface of the examination site 14 at the reflection angle θ. The skip is an alternative to skipping the ultrasonic wave that is reflected on the surface of the examination site 14 and is incident on the bottom surface of the thinned portion 17 at the reflection angle θ ′ and reflected on the surface of the examination site 14 at the reflection angle θ ′. At this time, the path of the inspection part echo is shortened by 2 t / cos θ−2 (t−d) / cos θ ′ with respect to the path of the healthy part echo. The difference is the difference Δ between the occurrence position of the examination part echo and the occurrence position of the healthy part echo. The thickness t is a known value, the values of Δ are obtained from the measurement, and θ and θ ′ are values determined by the path length Ws (the number of skips S) and the interval Ys, so the depth d of the thinned portion 17 is d = (1-cos θ ′ / cos θ) t−Δcos θ ′ / 2
Can be obtained from

本発明の第2の実施の形態に係る減肉検出方法で使用する減肉検出装置26は、図7(A)、(B)、(C)に示すように、被検体の一例である管材27の検査部位28に発生する減肉部の有無を判定するもので、第1の実施の形態に係る減肉検出方法で使用する減肉検出装置10と比較して、測定治具29の構成が異なっていることが特徴となっている。このため、測定治具29に関してのみ説明し、同一の構成部材には同一の符号を付して説明を省略する。 As shown in FIGS. 7A, 7B, and 7C, the thinning detection device 26 used in the thinning detection method according to the second embodiment of the present invention is a tube material that is an example of a subject. The configuration of the measuring jig 29 is compared with the thinning detection apparatus 10 used in the thinning detection method according to the first embodiment. Are different. For this reason, only the measurement jig 29 will be described, and the same components are denoted by the same reference numerals and description thereof will be omitted.

測定治具29は、中央部で屈折可能で任意の屈折角度に固定可能なアーム30と、アーム30の両側にそれぞれ設けられ、送信側探触子11、受信側探触子12を保持して送信側探触子11、受信側探触子12の接触面24a、24bを管材27の検査部位28の表面に向けて一定の押圧力で付勢する探触子ホルダー31と、各探触子ホルダー31の側部に取付けられ、送信側探触子11、受信側探触子12間を結ぶ線分と平行な方向に車軸を向けた対となる車輪32と、一方の車輪32の回転数からアーム30の移動距離を測定し、測定信号を解析手段18に出力する図示しないエンコーダとを有している。 The measurement jig 29 is provided on each side of the arm 30 that can be refracted at the center and can be fixed at an arbitrary refraction angle, and holds the transmitting probe 11 and the receiving probe 12. A probe holder 31 for urging the contact surfaces 24a and 24b of the transmitting probe 11 and the receiving probe 12 toward the surface of the inspection site 28 of the tube material 27 with a constant pressing force, and each probe A pair of wheels 32 which are attached to the side of the holder 31 and have their axles oriented in a direction parallel to a line segment connecting the transmitting probe 11 and the receiving probe 12, and the rotational speed of one of the wheels 32 And an encoder (not shown) for measuring the movement distance of the arm 30 and outputting a measurement signal to the analysis means 18.

ここで、各探触子ホルダー31は、送信側探触子11(受信側探触子12)を中央部に保持する探触子保持部33と、各探触子保持部33を中央部に回転可能に収納し、両側部が管材27の検査部位28の表面に当接するVブロック34と、アーム30の両側に設けられ、探触子保持部33を管材27の検査部位28の表面に向けて一定の押圧力で付勢することで送信側探触子11の接触面24a(受信側探触子12の接触面24b)を検査部位28の表面に当接させる付勢機構35とを有している。 Here, each probe holder 31 has a probe holding portion 33 for holding the transmission side probe 11 (reception side probe 12) in the central portion, and each probe holding portion 33 in the central portion. A V block 34 that is rotatably accommodated and has both side portions in contact with the surface of the inspection site 28 of the tube material 27 and both sides of the arm 30, and the probe holding portion 33 faces the surface of the inspection site 28 of the tube material 27. And an urging mechanism 35 that abuts the contact surface 24a of the transmission-side probe 11 (contact surface 24b of the reception-side probe 12) on the surface of the inspection site 28 by urging with a constant pressing force. is doing.

このような構成とすることで、送信側探触子11、受信側探触子12を管材27の検査部位28の表面に接触媒質を介して接触状態で保持することができると共に、検査部位28の表面上で送信側探触子11、受信側探触子12を、送信側探触子11、12間の距離を一定に保って、しかも送信側探触子11、12間を結ぶ線分に直交する方向に移動させることができる。 With such a configuration, the transmission side probe 11 and the reception side probe 12 can be held in contact with the surface of the inspection site 28 of the tube material 27 via the contact medium, and the inspection site 28 is also provided. A line segment connecting the transmitter-side probes 11 and 12 with the transmitter-side probe 11 and the receiver-side probe 12 maintained at a constant distance between the transmitter-side probes 11 and 12. It is possible to move in a direction orthogonal to.

更に、図7に示す送信側探触子11、受信側探触子12の一方、例えば受信側探触子12を保持している探触子ホルダー31を基準にして、送信側探触子11を保持している探触子ホルダー31のVブロック34を検査部位28の表面上で移動させると、受信側探触子12を保持している探触子ホルダー31を基準にしてアーム30も回転し、アーム30の回転に伴ってアーム30の両側に付勢機構35を介して取付けられた探触子保持部33も回転する。このため、探触子ホルダー31の移動に合わせて、送信側探触子11、受信側探触子12の方向を変えることができる。 Further, one of the transmission side probe 11 and the reception side probe 12 shown in FIG. 7, for example, a probe holder 31 holding the reception side probe 12, is used as a reference, and the transmission side probe 11. When the V block 34 of the probe holder 31 holding the probe is moved on the surface of the inspection site 28, the arm 30 also rotates with reference to the probe holder 31 holding the receiving probe 12 As the arm 30 rotates, the probe holder 33 attached to both sides of the arm 30 via the biasing mechanism 35 also rotates. For this reason, the directions of the transmitting probe 11 and the receiving probe 12 can be changed in accordance with the movement of the probe holder 31.

これによって、送信側探触子11と受信側探触子12を結ぶ線分が管材27の軸方向と平行になるように送信側探触子11、受信側探触子12を配置して、送信側探触子11、受信側探触子12を管材27の円周方向に移動させることができ、管材27の円周方向に減肉部が発生しているかを判定できる。また、送信側探触子11と受信側探触子12を結ぶ線分が管材27の軸方向と直交するように送信側探触子11、受信側探触子12を配置して、送信側探触子11、受信側探触子12を管材27の軸方向に移動させることができ、管材27の軸方向に減肉部が発生しているかを判定できる。更に、送信側探触子11と受信側探触子12を結ぶ線分が管材27の軸方向と交差するように送信側探触子11、受信側探触子12を配置して、送信側探触子11、受信側探触子12を管材27の表面を螺旋状に移動させることで、管材27を円周方向及び軸方向同時に検査して減肉部の発生の有無を判定できる。
なお、本発明の第2の実施の形態に係る減肉検出方法は、第1の実施の形態に係る減肉検出方法と同様に行うことができるので、詳細な説明は省略する。
Thereby, the transmission side probe 11 and the reception side probe 12 are arranged so that the line segment connecting the transmission side probe 11 and the reception side probe 12 is parallel to the axial direction of the tube material 27, The transmission side probe 11 and the reception side probe 12 can be moved in the circumferential direction of the tube material 27, and it can be determined whether or not a thinned portion is generated in the circumferential direction of the tube material 27. Further, the transmission side probe 11 and the reception side probe 12 are arranged so that the line segment connecting the transmission side probe 11 and the reception side probe 12 is orthogonal to the axial direction of the tube material 27, and the transmission side probe The probe 11 and the receiving probe 12 can be moved in the axial direction of the tube material 27, and it can be determined whether or not a thinned portion is generated in the axial direction of the tube material 27. Further, the transmission side probe 11 and the reception side probe 12 are arranged so that the line segment connecting the transmission side probe 11 and the reception side probe 12 intersects the axial direction of the tube material 27, and the transmission side probe By moving the probe 11 and the receiving probe 12 in a spiral manner on the surface of the tube material 27, the tube material 27 can be inspected simultaneously in the circumferential direction and the axial direction to determine whether or not a thinned portion has occurred.
The thinning detection method according to the second embodiment of the present invention can be performed in the same manner as the thinning detection method according to the first embodiment, and thus detailed description thereof is omitted.

(実施例1)
図8(A)に示すように、長さ400mm、幅が100mm、厚さが15mmの板材の裏面側の中央部に直径が4mm、深さが4mmの人工的な減肉部を形成した。そして、図8(A)に示すように板材の表面で板材の幅方向の一方側の位置1に、長手方向に沿って300mm離して対となる横波斜角探触子を配置し、一方の横波斜角探触子を送信側探触子、他方の横波斜角探触子を受信側探触子に用いて、図8(B)に示すように、板材の裏及び表で反射する複数回のスキップを行い受信側探触子に届く超音波を受信して健全部エコーを得た。
Example 1
As shown in FIG. 8 (A), an artificial thinning portion having a diameter of 4 mm and a depth of 4 mm was formed in the central portion on the back side of a plate member having a length of 400 mm, a width of 100 mm, and a thickness of 15 mm. Then, as shown in FIG. 8 (A), a pair of transverse wave oblique probes that are 300 mm apart from each other along the longitudinal direction are arranged at one position 1 in the width direction of the plate material on the surface of the plate material. Using the transverse wave oblique angle probe as the transmitting side probe and the other transverse wave oblique angle probe as the receiving side probe, as shown in FIG. The sound part echo was obtained by skipping the number of times and receiving the ultrasonic wave reaching the receiving probe.

次いで、板材の表面上で送信側探触子、受信側探触子を、図8(A)の位置1から位置4まで、送信側探触子と受信側探触子間の距離を一定に保って送信側探触子、受信側探触子を結ぶ線分に直交する方向(板材の幅方向)に移動させながら、送信側探触子から板材内に進入させ板材内を伝搬する超音波を受信側探触子で受信し、検査部エコーを求めた。
板材の表面上で送信側探触子と受信側探触子が図8(A)の位置1から位置2の手前まで移動する間、及び位置2を通過して位置4に到る間に得られる検査部エコーの発生位置は、位置1で求めた健全部エコーの発生位置に一致し、送信側探触子と受信側探触子が位置2に到達した際に得られる検査部エコーの発生位置のみが異なった。送信側探触子と受信側探触子を図8(A)の位置2に配置した際に得られた検査部エコーを健全部エコーと重ね合わせて図9(A)に示す。また、送信側探触子と受信側探触子を図8(A)の位置3に配置した際に得られた検査部エコーを健全部エコーと重ね合わせて図9(B)に示す。また、図9(C)に検査部エコーの振幅の二次元分布を示す。
Next, on the surface of the plate material, the transmission side probe and the reception side probe are kept at a constant distance between the transmission side probe and the reception side probe from position 1 to position 4 in FIG. Ultrasonic waves that enter the plate from the transmitter probe and propagate through the plate while moving and moving in the direction perpendicular to the line connecting the transmitter and receiver probes (width direction of the plate) Was received by the probe on the receiving side, and the inspection part echo was obtained.
Obtained while the transmitting probe and the receiving probe move from position 1 to the position before position 2 in FIG. 8A and through position 2 to position 4 on the surface of the plate. The generation position of the inspection part echo to be obtained coincides with the generation position of the healthy part echo obtained at position 1, and the generation of the inspection part echo obtained when the transmission side probe and the reception side probe reach position 2 Only the position was different. FIG. 9 (A) shows the inspection portion echo obtained when the transmitting side probe and the receiving side probe are arranged at position 2 in FIG. 8 (A) superimposed on the healthy portion echo. Further, FIG. 9B shows the inspection portion echo obtained when the transmission side probe and the reception side probe are arranged at position 3 in FIG. 8A and superimposed on the healthy portion echo. FIG. 9C shows a two-dimensional distribution of the amplitude of the inspection portion echo.

図9(A)から、送信側探触子から受信側探触子に到達する超音波の路程上に減肉部が存在すると、検査部エコーは健全部エコーの発生位置とは異なる位置に発生することが分かる。一方、図9(B)から、送信側探触子から受信側探触子に到達する超音波の路程上に減肉部が存在しないと、検査部エコーと健全部エコーは一致することが分かる。また、図9(C)の分布図からも、減肉部が存在しない場所の検査部エコーに対応する縞模様は健全部エコーに対応する縞模様と同一で、減肉部が存在する場所には、健全部エコーに対応する縞模様とは異なる場所に縞模様の発生が認められる。従って、予め検査部位の厚みに対応して決まる健全部エコーを求めておき、検査部位の検査で得られた検査部エコーと比較し、検査部エコーの発生位置が異なると、検査部位に減肉部が存在すると判定できる。 From FIG. 9A, when a thinned portion exists on the ultrasonic path reaching the receiving probe from the transmitting probe, the inspection echo is generated at a position different from the position where the sound echo is generated. I understand that On the other hand, from FIG. 9B, it can be seen that if the thinning portion does not exist on the path of the ultrasonic wave that reaches the receiving probe from the transmitting probe, the inspection echo and the healthy echo match. . Further, from the distribution diagram of FIG. 9C, the striped pattern corresponding to the inspection part echo in the place where the thinned part does not exist is the same as the striped pattern corresponding to the healthy part echo, and the thinned part exists in the place. The occurrence of a striped pattern is observed at a location different from the striped pattern corresponding to the sound part echo. Therefore, a sound part echo determined in advance corresponding to the thickness of the examination part is obtained, and compared with the examination part echo obtained by the examination of the examination part, if the occurrence position of the examination part echo is different, the thinned part in the examination part is reduced. It can be determined that there is a part.

(実施例2)
図10(A)に示すように、長さ400mm、幅が100mm、厚さが15mmの板材の裏面側の中央部に直径が8mm、深さが8mmの人工的な減肉部を形成した。
そして、図10(A)に示すように板材の表面で板材の幅方向の一方側の位置1に、長手方向に沿って300mm離して対となる横波斜角探触子を配置し、一方の横波斜角探触子を送信側探触子、他方の横波斜角探触子を受信側探触子に用いて、図10(B)に示すように、板材の裏及び表で反射する複数回のスキップを行い受信側探触子に届く超音波を受信して健全部エコーを得た。
(Example 2)
As shown in FIG. 10 (A), an artificial thinning portion having a diameter of 8 mm and a depth of 8 mm was formed at the center of the back side of a plate member having a length of 400 mm, a width of 100 mm, and a thickness of 15 mm.
Then, as shown in FIG. 10 (A), a pair of transverse wave oblique angle probes is arranged at a position 1 on one side of the plate material in the width direction on the surface of the plate material at a distance of 300 mm along the longitudinal direction. Using the transverse wave oblique angle probe as the transmitting side probe and the other transverse wave oblique angle probe as the receiving side probe, as shown in FIG. The sound part echo was obtained by skipping the number of times and receiving the ultrasonic wave reaching the receiving probe.

次いで、板材の表面上で送信側探触子、受信側探触子を、図10(A)の位置1から位置4まで、送信側探触子と受信側探触子間の距離を一定に保って送信側探触子、受信側探触子を結ぶ線分に直交する方向(板材の幅方向)に移動させながら、送信側探触子から板材内に進入させ板材内を伝搬する超音波を受信側探触子で受信し、検査部エコーを求めた。
板材の表面上で送信側探触子と受信側探触子が図10(A)の位置1から位置2の手前まで移動する間、及び位置2通過して位置4に到る間に得られる検査部エコーの発生位置は、位置1で求めた健全部エコーの発生位置に一致し、送信側探触子と受信側探触子が位置2に到達した際に得られる検査部エコーの発生位置のみが異なった。送信側探触子と受信側探触子を図10(A)の位置2に配置した際に得られた検査部エコーを健全部エコーと重ね合わせて図11(A)に示す。また、送信側探触子と受信側探触子を図10(A)の位置3に配置した際に得られた検査部エコーを健全部エコーと重ね合わせて図11(B)に示す。また、図11(C)に検査部エコーの振幅の二次元分布を示す。
Next, the distance between the transmitting probe and the receiving probe is kept constant from position 1 to position 4 in FIG. Ultrasonic waves that enter the plate from the transmitter probe and propagate through the plate while moving and moving in the direction perpendicular to the line connecting the transmitter and receiver probes (width direction of the plate) Was received by the probe on the receiving side, and the inspection part echo was obtained.
It is obtained while the transmitting side probe and the receiving side probe move from the position 1 to the position before the position 2 in FIG. The generation position of the inspection section echo coincides with the generation position of the healthy section echo obtained at position 1, and the generation position of the inspection section echo obtained when the transmission side probe and the reception side probe reach position 2. Only different. FIG. 11 (A) shows the inspection portion echo obtained when the transmitting side probe and the receiving side probe are arranged at position 2 in FIG. 10 (A) superimposed on the healthy portion echo. Further, FIG. 11B shows the inspection portion echo obtained when the transmitting side probe and the receiving side probe are arranged at position 3 in FIG. 10A and superimposed on the healthy portion echo. FIG. 11C shows a two-dimensional distribution of the amplitude of the inspection portion echo.

図11(A)から、送信側探触子から受信側探触子に到達する超音波の路程上に減肉部が存在すると、検査部エコーは健全部エコーの発生位置とは異なる位置に発生することが分かる。一方、図11(B)から、送信側探触子から受信側探触子に到達する超音波の路程上に減肉部が存在しないと、検査部エコーと健全部エコーは一致することが分かる。また、図11(C)の分布図からも、減肉部が存在しない場所の検査部エコーに対応する縞模様は健全部エコーに対応する縞模様と同一で、減肉部が存在する場所には、健全部エコーに対応する縞模様とは異なる場所に縞模様の発生が認められる。従って、予め検査部位の厚みに対応して決まる健全部エコーを求めておき、検査部位の検査で得られた検査部エコーと比較し、検査部エコーの発生位置が異なると、検査部位に減肉部が存在すると判定できる。 From FIG. 11A, when a thinned portion exists on the ultrasonic path from the transmitting probe to the receiving probe, the inspection unit echo is generated at a position different from the position where the sound portion echo is generated. I understand that On the other hand, from FIG. 11B, it can be seen that if there is no thinning part on the ultrasonic path from the transmitting probe to the receiving probe, the inspection part echo matches the sound part echo. . Also, from the distribution diagram of FIG. 11C, the striped pattern corresponding to the inspection part echo in the place where the thinned part does not exist is the same as the striped pattern corresponding to the healthy part echo, and the thinned part exists in the place. The occurrence of a striped pattern is observed at a location different from the striped pattern corresponding to the sound part echo. Therefore, a sound part echo determined in advance corresponding to the thickness of the examination part is obtained, and compared with the examination part echo obtained by the examination of the examination part, if the occurrence position of the examination part echo is different, the thinned part in the examination part is reduced. It can be determined that there is a part.

また、図9(A)と図11(A)の比較、図9(C)と図11(C)の比較から、深さ4mmの減肉部が存在した場合の健全部エコーと検査部エコーとの発生位置の差は、深さ8mmの減肉部が存在した場合の健全部エコーと検査部エコーとの発生位置の差より小さいことが分かる。従って健全部エコーと検査部エコーとの発生位置の差を求めることで、減肉部の深さを知ることができることが分かる。 Further, from the comparison between FIG. 9A and FIG. 11A and the comparison between FIG. 9C and FIG. 11C, the healthy part echo and the inspection part echo in the case where the thinned part having a depth of 4 mm exists. It can be seen that the difference in the generation position is smaller than the difference in the generation position between the sound part echo and the inspection part echo when the thinned portion having a depth of 8 mm exists. Therefore, it can be seen that the depth of the thinned portion can be known by obtaining the difference between the occurrence positions of the sound portion echo and the inspection portion echo.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
例えば、第3工程での減肉部の有無の判定に、健全部エコーと検査部エコーの発生位置の相違を用いたが、減肉部の有無の判定に、健全部エコーと検査部エコーの発生位置の相違の他、検査部エコーの高さも考慮して行うこともできる。これによって、減肉部が送信側探触子から受信側探触子の中央部以外の場所に存在すること、検査部位の厚みが全体的に薄くなっていることが判定できる。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.
For example, the difference in the occurrence position of the healthy part echo and the inspection part echo was used for the determination of the presence or absence of the thinned part in the third step. In addition to the difference in the generation position, the height of the inspection part echo can be taken into consideration. Thereby, it can be determined that the thinned portion is present at a place other than the central portion of the receiving side probe from the transmitting side probe, and that the thickness of the inspection site is thin as a whole.

10:減肉検出装置、11:送信側探触子、12:受信側探触子、13:板材、14:検査部位、15:測定治具、16:超音波探傷器、17:減肉部、18:解析手段、19:棒部材、20a、20b:探触子ホルダー、21:車輪、22:エンコーダ、23a、23b:信号ケーブル、24a、24b:接触面、25a、25b:探触子ケース、26:減肉検出装置、27:管材、28:検査部位、29:測定治具、30:アーム、31:探触子ホルダー、32:車輪、33:探触子保持部、34:Vブロック、35:付勢機構、36:試験体 10: Thinning detector, 11: Transmitter probe, 12: Receiver probe, 13: Plate material, 14: Inspection site, 15: Measuring jig, 16: Ultrasonic flaw detector, 17: Thinning part , 18: analysis means, 19: rod member, 20a, 20b: probe holder, 21: wheel, 22: encoder, 23a, 23b: signal cable, 24a, 24b: contact surface, 25a, 25b: probe case , 26: thinning detection device, 27: tube material, 28: inspection site, 29: measurement jig, 30: arm, 31: probe holder, 32: wheel, 33: probe holding unit, 34: V block , 35: biasing mechanism, 36: specimen

Claims (8)

所定の間隔を有して超音波の送信側探触子及び受信側探触子となる対となる横波斜角探触子を、検査部位の健全厚みを有する試験体の表面に配置し、前記送信側探触子から前記試験体に進入して裏及び表で反射する複数回のスキップを行い前記受信側探触子に届く超音波を受信して健全部エコーを得る第1工程と、
前記間隔を有して前記送信側探触子及び前記受信側探触子を前記検査部位の両側に配置し、該送信側探触子から該検査部位に進入して裏及び表で反射する複数回のスキップを行い該受信側探触子に届く超音波を受信して検査部エコーを求める第2工程と、
前記第1工程で得られた前記健全部エコーと前記第2工程で得られた前記検査部エコーの発生位置を比較してその相違から前記検査部位に発生している減肉部の有無を判定する第3工程とを有することを特徴とする減肉検出方法。
A transverse wave oblique angle probe, which becomes a pair of ultrasonic transmitting and receiving probes with a predetermined interval, is disposed on the surface of a test body having a healthy thickness of an inspection site, and A first step of obtaining a sound portion echo by receiving ultrasonic waves reaching the receiving probe by performing a plurality of skips that enter the specimen from the transmitting probe and reflect on the back and front;
The transmitting probe and the receiving probe are arranged on both sides of the inspection region with the interval, and a plurality of light beams that enter the inspection region from the transmitting probe and reflect on the back and front sides. A second step of skipping times and receiving an ultrasonic wave reaching the receiving probe to obtain an inspection portion echo;
Compare the occurrence position of the healthy part echo obtained in the first step and the inspection part echo obtained in the second step, and determine the presence or absence of a thinned part occurring in the examination site from the difference A thinning detection method, comprising: a third step.
請求項1記載の減肉検出方法において、前記第3工程での減肉部の有無の判定には、前記健全部エコーと前記検査部エコーの発生位置の相違の他、前記検査部エコーの高さも考慮して行うことを特徴とする減肉検出方法。 2. The thinning detection method according to claim 1, wherein in the determination of the presence or absence of a thinned portion in the third step, in addition to the difference in the occurrence position of the healthy portion echo and the inspection portion echo, the height of the inspection portion echo is high. The thinning detection method characterized by performing also in consideration. 請求項1及び2のいずれか1項に記載の減肉検出方法において、前記減肉部の検出は前記送信側探触子及び前記受信側探触子の中央部で行うことを特徴とする減肉検出方法。 The thinning detection method according to any one of claims 1 and 2, wherein the thinning portion is detected at a central portion of the transmitting probe and the receiving probe. Meat detection method. 請求項3記載の減肉検出方法において、奇数回の前記スキップを介して超音波が前記受信側探触子に届く距離に前記間隔を設定し、前記検査部位の裏面に発生している前記減肉部を検知することを特徴とする減肉検出方法。 4. The thinning detection method according to claim 3, wherein the interval is set to a distance at which an ultrasonic wave reaches the receiving probe through the odd number of skips, and the reduction occurring on the back surface of the inspection site. A thinning detection method characterized by detecting a meat part. 請求項3記載の減肉検出方法において、偶数回の前記スキップを介して超音波が前記受信側探触子に届く距離に前記間隔を設定し、前記検査部位の表面に発生している前記減肉部を検知することを特徴とする減肉検出方法。 The thinning detection method according to claim 3, wherein the interval is set to a distance at which an ultrasonic wave reaches the receiving probe through the skip of the even number of times, and the reduction occurring on the surface of the inspection site is performed. A thinning detection method characterized by detecting a meat part. 請求項1〜5のいずれか1項に記載の減肉検出方法において、前記健全部エコーと前記検査部エコーの発生位置の差から前記減肉部の深さを求めることを特徴とする減肉検出方法。 In the thinning detection method of any one of Claims 1-5, the depth of the said thinning part is calculated | required from the difference of the generation | occurrence | production position of the said healthy part echo and the said test | inspection part echo. Detection method. 請求項1〜3のいずれか1項に記載の減肉検出方法において、前記送信側探触子及び前記受信側探触子の入射角は同一であって、それぞれ45度以上かつ75度以下のものを使用することを特徴とする減肉検出方法。 The thinning detection method according to any one of claims 1 to 3, wherein incident angles of the transmitting probe and the receiving probe are the same, and are 45 degrees or more and 75 degrees or less, respectively. A method for detecting thinning, characterized by using an object. 請求項1〜7のいずれか1項に記載の減肉検出方法において、前記検査部位の表面上で前記送信側探触子及び前記受信側探触子を、前記間隔を一定に保って、該送信側探触子及び該受信側探触子間を結ぶ線分に直交する方向に移動させて、前記減肉部の範囲を測定することを特徴とする減肉検出方法。
In the thinning detection method according to any one of claims 1 to 7, the transmitting probe and the receiving probe on the surface of the inspection site, the spacing being kept constant, A thinning detection method, wherein the range of the thinning portion is measured by moving in a direction orthogonal to a line segment connecting between the transmitting side probe and the receiving side probe.
JP2009036913A 2009-02-19 2009-02-19 Thinning detection method Pending JP2010190794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009036913A JP2010190794A (en) 2009-02-19 2009-02-19 Thinning detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009036913A JP2010190794A (en) 2009-02-19 2009-02-19 Thinning detection method

Publications (1)

Publication Number Publication Date
JP2010190794A true JP2010190794A (en) 2010-09-02

Family

ID=42816984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009036913A Pending JP2010190794A (en) 2009-02-19 2009-02-19 Thinning detection method

Country Status (1)

Country Link
JP (1) JP2010190794A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011081692A1 (en) 2010-08-27 2012-03-01 Yazaki Corporation Electrical connection box
CN108872379A (en) * 2018-05-14 2018-11-23 贵州省建材产品质量监督检验院 A kind of method of ultrasound examination wallboard splicing seams quality

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011081692A1 (en) 2010-08-27 2012-03-01 Yazaki Corporation Electrical connection box
CN108872379A (en) * 2018-05-14 2018-11-23 贵州省建材产品质量监督检验院 A kind of method of ultrasound examination wallboard splicing seams quality

Similar Documents

Publication Publication Date Title
US7650789B2 (en) Method and apparatus for examining the interior material of an object, such as a pipeline or a human body from a surface of the object using ultrasound
KR102251819B1 (en) Device and method for non-destructive control of tubular products using electroacoustic phased networks, in particular on site
US8037763B2 (en) Rail section weld inspection scanner
JP5800667B2 (en) Ultrasonic inspection method, ultrasonic flaw detection method and ultrasonic inspection apparatus
JP5931551B2 (en) Ultrasonic flaw detector, ultrasonic sensor support device, and ultrasonic flaw detector method
JP2018059800A (en) Flexible probe sensitivity calibration method, and ultrasonic wave flaw detection-purpose reference test piece as well as ultrasonic wave flaw detection method
JP2009540311A (en) Ultrasonic testing equipment with array probe
JP2008286640A (en) Device and method for ultrasonic flaw detection of pipe
KR101921685B1 (en) Apparatus for inspecting defect and mehtod for inspecting defect using the same
JP5840910B2 (en) Ultrasonic flaw detection method
US10197535B2 (en) Apparatus and method for full-field pulse-echo laser ultrasonic propagation imaging
JP2011027571A (en) Piping thickness reduction inspection apparatus and piping thickness reduction inspection method
JP5567471B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP5193720B2 (en) Non-contact aerial ultrasonic tube ultrasonic inspection apparatus and method
US20110126628A1 (en) Non-destructive ultrasound inspection with coupling check
JP5567472B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
RU187205U1 (en) Device for ultrasonic inspection of the pipeline
JP2010190794A (en) Thinning detection method
RU177780U1 (en) Device for automated ultrasonic testing of welded joints
WO2019150952A1 (en) Defect detecting method
KR101767422B1 (en) Seperable Ultrasonic Transducer with Enhanced Space Resolution
RU2153163C1 (en) Method of intratube ultrasonic diagnostics of condition of pipe-line
JP2011247676A (en) Ultrasonic flaw detection device
JP4112526B2 (en) Ultrasonic flaw detection method and apparatus
JP3782410B2 (en) Ultrasonic flaw detection method and apparatus using Rayleigh wave