JPS6170459A - Method and apparatus for adjusting sensitivity of ultrasonic flow detector - Google Patents

Method and apparatus for adjusting sensitivity of ultrasonic flow detector

Info

Publication number
JPS6170459A
JPS6170459A JP59193772A JP19377284A JPS6170459A JP S6170459 A JPS6170459 A JP S6170459A JP 59193772 A JP59193772 A JP 59193772A JP 19377284 A JP19377284 A JP 19377284A JP S6170459 A JPS6170459 A JP S6170459A
Authority
JP
Japan
Prior art keywords
probe
sensitivity adjustment
tube
sensitivity
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59193772A
Other languages
Japanese (ja)
Other versions
JPH0562299B2 (en
Inventor
Shigetoshi Hyodo
兵藤 繁敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP59193772A priority Critical patent/JPS6170459A/en
Publication of JPS6170459A publication Critical patent/JPS6170459A/en
Publication of JPH0562299B2 publication Critical patent/JPH0562299B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

PURPOSE:To adjust sensitivity even if a pipe with small diameter and thin thickness is used by forming a probe so as to be moved and rotated on the side of a sensitivity adjusting pipe on which artificial flaws are formed on its inner and outer surface so that respective positions of the axial length direction are different each other. CONSTITUTION:The titled device is provided with the sensitivity adjusting pipe 1, the probe 2, the artificial flaws A, B, photoelectric switches 3, 4, ultrasonic flaw detector 5, an operation controller 7, a probe moving device 8, etc. The pipe 1 is spirally sent in water in the axial length direction and the artificial inside and outside flaws A, B are formed. The switches 3, 4 and the probe 2 are arranged on the carrying area of the pipe 1 and the detecting signal of the probe 2 is applied to the controller 7. On the other hand, the probe 2 generates ultrasonic waves and catches echoes from the inside flaw A, the outside flaw B and the surface of the pipe to send the catched echoes to the flaw detector 5. Gates for detecting echoes are set up in the detector 5 by the controller 7. The probe 2 is fitted to the device 8 and can be moved in the horizontal and vertical directions which are rectangular to the axis of the pipe 1 and also rotated around the Z axis. Thus, the sensitivity can be adjusted even if a thin pipe is used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 一 本発明ば探触子により水中にて管、特に小径薄肉管を超
音波探傷するに先立つ超音波探傷装置の感度調整方法及
び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for adjusting the sensitivity of an ultrasonic flaw detection device prior to ultrasonic flaw detection of a pipe, particularly a small-diameter thin-walled pipe, underwater using a probe.

〔従来技術〕[Prior art]

鋼管の品質保証は、一般に水浸法を用いた超音波探傷装
置による疵検査に基づいて行われている。
Quality assurance of steel pipes is generally performed based on flaw inspection using an ultrasonic flaw detector using a water immersion method.

この疵検査には第13図に示す如く一般に斜角法が適用
されており、超音波探触子2は°軸長方向の疵を検査す
る場合には水中を搬送されるようになした被検査材たる
鋼管1′の表面に対して管軸に直交する方向に所定の入
射角ψとなるように配される。超音波探触子(以下単に
探触子という)2より発振された超音波は管に入射され
るとその内。
As shown in Fig. 13, the oblique angle method is generally applied to this flaw inspection, and when inspecting for flaws in the longitudinal direction of the ° axis, the ultrasonic probe 2 is placed under a cover that is conveyed underwater. It is arranged at a predetermined incident angle ψ in a direction perpendicular to the tube axis with respect to the surface of the steel pipe 1', which is the test material. When the ultrasonic waves emitted by the ultrasonic probe (hereinafter simply referred to as the probe) 2 are incident on the tube, the inside of the tube is emitted.

外面にて方向を変えながら管の周方向へ伝播していき、
伝播経路に例えば内面疵Aが存在する場合は超音波がこ
れにて反射され、そのエコーは探触子2にて検出される
。このようにして欠陥の有無。
It propagates in the circumferential direction of the tube while changing direction on the outer surface,
If, for example, an internal flaw A exists in the propagation path, the ultrasonic wave is reflected by the flaw A, and the echo thereof is detected by the probe 2. In this way, the presence or absence of defects.

大きさの検査がなされるが、超音波のエネルギーが伝播
距離に応じて減衰されるため探触子2の入射角を適当に
設定していない場合は、例えば内面側と外面側とに同一
大の疵が存在していても捉えられるエコーレベルが異な
り、このため疵の大きさが異なるという誤判定がなされ
る虞れがあり、従って探触子2の鋼管1′に対する入射
角、即ち探触子2の位置、角度の設定は内面疵、外面疵
を同一感度にて検出するために重要である。そのために
角度については第14図に示すように検出エコー高さが
入射角により影響を受けるので検査前に被検査材と同一
材質1寸法であって、その内、外面夫々に同一大の人工
疵を形成させた感度調整用の鋼管を使用してこれを予め
検出し、内面疵■oの検出エコーレベルと外面a:OO
の検出エコーレベルとを比べて夫々が同値となる入射角
ψに設定している。これにより疵の存在位置に拘わらず
疵を同一感度にて検査することが可能となり、疵の大き
さを精度よく検出できる。
The size is inspected, but since the ultrasonic energy is attenuated according to the propagation distance, if the incident angle of the probe 2 is not set appropriately, for example, if the inner and outer sides are of the same size. Even if a flaw exists, the captured echo level will be different, and there is a risk of misjudgment that the size of the flaw is different. Setting the position and angle of the child 2 is important in order to detect internal and external flaws with the same sensitivity. For this reason, regarding the angle, as shown in Figure 14, the detected echo height is affected by the incident angle. This is detected in advance using a steel pipe for sensitivity adjustment formed with
The incident angle ψ is set so that the detected echo levels are the same. This makes it possible to inspect flaws with the same sensitivity regardless of the location of the flaw, and the size of the flaw can be detected with high accuracy.

しかしながらこの方法による場合は、第15図に示すよ
うに入射角設定まで行った後に内、外部底の検出エコー
レベルを同一とすべ(増幅調整し、この調整後にゲート
設定するためこの設定を誤って内、外部底の検出エコー
レベルが同一にならない場合には再度、入射角の設定を
行なわなければならず、このため特に小径薄肉管、例え
ば10.72龍φX0.64tlt鋼管のときには探触
子の位置設定を±15μmの範囲で行う必要があり、感
度調整に5〜6時間も要するという難点があった。
However, when using this method, after setting the angle of incidence as shown in Figure 15, it is necessary to make the detected echo levels of the inner and outer bottoms the same (the amplification is adjusted, and the gate is set after this adjustment, so this setting may be incorrectly done. If the detected echo levels at the inner and outer bottoms are not the same, the angle of incidence must be set again. For this reason, the probe's It was necessary to set the position within a range of ±15 μm, and the sensitivity adjustment required 5 to 6 hours.

而して近年、感度調整を短時間で自動的に実施できる超
音波探傷装置が開発された。この装置は探触子を予め所
定の角度に固定して感度調整を行うようになっており、
その感度調整原理は内面疵と外部底との存在位置の違い
に基づく時間差を利用している。これを詳述すると第1
6図(イ)(図中Sは表面エコー)に示す如く内面疵、
外面班の各エコー+D、ODが現れる時間帯に夫々内、
外面旋用ゲートa、bを予め設定しておき〔第6図(ロ
)〕、各ゲート内にて現れたエコーを夫々内、外部底の
エコーとして検出し、減衰によりODエコーの方がID
エコーよりも検出レベルが低下するため増幅器のゲイン
を第16図(ハ)に示すように表面エコーSを検出して
からのODエコー、10エコー夫々を検出する各時点の
間で増幅器のゲインを増大させ、この感度特性の調節に
より第16図(ニ)に示す如く内面疵、外面疵を同一感
度にて検査できる。
Therefore, in recent years, an ultrasonic flaw detection device that can automatically adjust sensitivity in a short time has been developed. This device is designed to adjust the sensitivity by fixing the probe at a predetermined angle in advance.
The sensitivity adjustment principle utilizes the time difference based on the difference in the location of the internal flaw and the external bottom. To explain this in detail, the first
As shown in Figure 6 (A) (S in the figure is a surface echo), there are internal flaws,
In the time period when each echo +D and OD of the outer surface group appear, respectively,
External turning gates a and b are set in advance [Fig. 6 (b)], and the echoes appearing inside each gate are detected as internal and external bottom echoes, respectively, and the OD echo has a higher ID due to attenuation.
Since the detection level is lower than that of the echo, the gain of the amplifier is changed between each point in time when the OD echo and 10 echoes are detected after detecting the surface echo S, as shown in Figure 16 (C). By adjusting this sensitivity characteristic, internal and external defects can be inspected with the same sensitivity as shown in FIG. 16(d).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら自動感度調整可能な装置にて薄肉鋼管を検
査する場合の感度調整について、その感度調整用の鋼管
の肉厚が極めて薄い場合には内。
However, when inspecting thin-walled steel pipes using a device that can automatically adjust the sensitivity, it is difficult to adjust the sensitivity if the wall thickness of the steel pipe used for sensitivity adjustment is extremely thin.

外面の人工疵の検出エコーの現れる時間差が殆どなく、
このためゲートによる雨検出エコーの分離が困難である
ので、感度調整ができず、また第15図に示す方法の場
合には前述した如く感度調整に時間が掛かり過ぎるとい
う問題点があった。
There is almost no time difference in the appearance of the detection echo of artificial flaws on the external surface,
For this reason, it is difficult to separate the rain detection echoes using the gate, making it impossible to adjust the sensitivity, and in the case of the method shown in FIG. 15, there is a problem in that it takes too much time to adjust the sensitivity, as described above.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は斯かる問題点を解決すべくなされたものであり
、夫々の軸長方向位置を相異せしめて内。
The present invention has been made in order to solve this problem, and the positions of the respective shafts in the longitudinal direction are made different.

外面に人工疵を形成してある感度調整用の管の側方に探
触子を移動1回動可能に設け、管表面からのエコーを探
触子にて捉えてそのエコーレベルに基づいて探触子を原
点設定し、この点から更に移動させて所定の入射角とな
るように仮設定し、次いで感度調整用の管をその軸長方
向に搬送して検出時間が異なる内、外面の人工疵からの
エコーを捉え、そのエコーレベルを同一とすべき位置を
求める為に探触子を管周りに一定の条件にて移動させる
ことにより小径薄肉管の場合であっても超音波探傷装置
の感度調整が可能な感度調整方法及び装置を提供するこ
とを目的とする。
A probe is movable once on the side of a sensitivity adjustment tube that has an artificial flaw formed on its outer surface, and the probe captures echoes from the tube surface and performs a search based on the echo level. The probe is set at the origin, moved further from this point and temporarily set to a predetermined angle of incidence, and then the tube for sensitivity adjustment is conveyed in the axial direction of the probe, and the detection time is different for the inner and outer surfaces. By moving the probe under certain conditions around the pipe in order to capture the echo from the flaw and find the position where the echo level should be the same, the ultrasonic flaw detection system can be used even in the case of small-diameter and thin-walled pipes. It is an object of the present invention to provide a sensitivity adjustment method and device that allow sensitivity adjustment.

本発明に係る超音波探傷装置の感度調整方法は、探触子
により水中にて管を超音波探傷するに先立つ超音波探傷
装置の感度調整方法において、夫々の軸長方向位置を相
異せしめて内、外面に人工疵を形成してある感度調整用
管を水中に定置し、感度調整角管側方を管軸に垂直な方
向に探触子を移動させ、またこの移動方向回りに回転さ
せ、感度調整用音表面からのエコー信号が最大レベルと
なる感度調整原点を定め、次に感度調整原点における探
触子と感度調整用音表面との水距離に等しい水距離とし
、感度調整用管に対する超音波入射角を所定値とすべく
探触子を感度調整原点から感度調整用管方向及びこれと
垂直な前記移動方向へ移動し又は該移動方向回りに回動
させて、探触子の探傷位置、角度を仮設定し、次いで管
の軸長方向に感度fIIil整用管を移用管せ、仮設定
位置、角度及びその周りの位置、角度にて感度調整用管
に超音波を入射させ、内、外面の人工疵からのエコーレ
ベルを分離検出し、これらのエコーレベル差が最小とな
る位置、角度に補正設定することを特徴とする。
A method for adjusting the sensitivity of an ultrasonic flaw detection device according to the present invention is a method for adjusting the sensitivity of an ultrasonic flaw detection device prior to ultrasonic flaw detection of a pipe in water using a probe, in which the respective axial positions are made different. A sensitivity adjustment tube with artificial flaws formed on its inner and outer surfaces is placed in water, and the probe is moved on the side of the sensitivity adjustment tube in a direction perpendicular to the tube axis, and rotated around this direction of movement. , determine the sensitivity adjustment origin where the echo signal from the sensitivity adjustment sound surface is at the maximum level, then set the water distance equal to the water distance between the probe and the sensitivity adjustment sound surface at the sensitivity adjustment origin, and set the sensitivity adjustment tube In order to set the ultrasonic incident angle to a predetermined value, the probe is moved from the sensitivity adjustment origin to the sensitivity adjustment tube direction and the movement direction perpendicular thereto, or rotated around the movement direction, and the probe is Temporarily set the flaw detection position and angle, then transfer the sensitivity adjustment tube in the axial direction of the tube, and inject ultrasonic waves into the sensitivity adjustment tube at the temporarily set position and angle and surrounding positions and angles. It is characterized by separately detecting the echo levels from the artificial flaws on the inner and outer surfaces, and setting the correction to the position and angle where the difference in these echo levels is minimized.

〔実施例〕〔Example〕

以下本発明を図面に基づき具体的に説明する。 The present invention will be specifically explained below based on the drawings.

第1図は超音波探傷装置の感度を自動調整する本発明装
置を超音波探傷装置と共に示すブロック図、第2図は探
触子移動装置8の正面図、第3図はその側面図であり、
図中1は感度調整用の鋼管を示す、鋼管1はその軸心よ
り水平方向に少し傾けた軸心の2本1組の太鼓状のロー
ル14(図には一方のみが現れている)を複数組備えた
搬送装置に水平に載置されてこのロール14が回転する
と、予めスキュー角が与えられているので、鋼管1はそ
の軸長方向(白抜矢符方向)に水中をスパイラル送りさ
れるようになっており、先端よりL2の位置に人工の内
面価Aが、内面価AよりL3の位置に人工の外面疵B示
夫々形成されている。
FIG. 1 is a block diagram showing the device of the present invention that automatically adjusts the sensitivity of the ultrasonic flaw detection device together with the ultrasonic flaw detection device, FIG. 2 is a front view of the probe moving device 8, and FIG. 3 is a side view thereof. ,
In the figure, 1 indicates a steel pipe for sensitivity adjustment.The steel pipe 1 has a set of two drum-shaped rolls 14 (only one of which is shown in the figure) whose axis is slightly tilted horizontally from its axis. When the rolls 14 are rotated while being placed horizontally on a conveying device equipped with a plurality of sets, the steel pipe 1 is spirally fed through the water in the axial direction (in the direction of the white arrow) because the skew angle is given in advance. An artificial inner surface flaw A is formed at a position L2 from the tip, and an artificial outer surface flaw B is formed at a position L3 from the inner surface flaw A.

鋼管■の搬送域には下流側から搬送速度検出用の光電ス
イッチ3.4及び探触子2が夫々距離Lo。
A photoelectric switch 3.4 for detecting the conveying speed and a probe 2 are located at a distance Lo from the downstream side in the conveying area of the steel pipe (■).

L、隔てて配されており、光電スイッチ3,4は鋼管1
先端の通過を検出するものであり、検出信号はこれらに
接続されたインターフェース6を介して演算制御器7へ
与えられる。
L, are arranged separately, and the photoelectric switches 3 and 4 are connected to the steel pipe 1.
The passage of the tip is detected, and a detection signal is given to the arithmetic controller 7 via the interface 6 connected to these.

探触子2は水中にて超音波を発振して内面7iiEA。The probe 2 oscillates ultrasonic waves underwater and the inner surface 7iiEA.

外面底B及び管表面からのエコーを捉えるものであり、
鋼管1に対する角度、位置について調整されるようにな
っている。
It captures echoes from the outer bottom B and the tube surface,
The angle and position relative to the steel pipe 1 are adjusted.

探触子2にて捉えられるエコーに関する信号は超音波探
傷装置5へ与えられる。
A signal related to the echo captured by the probe 2 is given to the ultrasonic flaw detection device 5.

超音波探傷装置5は探触子2の発振タイミングを司り、
また探触子2にて捉えられた信号を増幅。
The ultrasonic flaw detection device 5 controls the oscillation timing of the probe 2,
It also amplifies the signal captured by probe 2.

検波して探傷するものであり、演算制御器7によりエコ
ー検出用のゲートを設定できるようになっている。
It detects flaws by detecting waves, and a gate for echo detection can be set by an arithmetic controller 7.

超音波探傷装置5の出力端子には前記インターフェース
6が接続されており、捉えた信号をインターフェース6
を介して演算制御器7へ出力する。
The interface 6 is connected to the output terminal of the ultrasonic flaw detection device 5, and the captured signal is sent to the interface 6.
It is output to the arithmetic controller 7 via.

演算制御器7には入力装置11が接続されており、これ
にて前記光電スイッチ3,4の離隔能1111tLo。
An input device 11 is connected to the arithmetic controller 7, which controls the separation capacity 1111tLo of the photoelectric switches 3 and 4.

感度tll整用の鋼管1寸法、tU送装置のロール14
半径等が演算制御器7に入力され、また探傷すべき疵の
方向に基づく2つの仮設定位置への探触子2の移動方式
及びその仮設定位置での探触子2の入射角又は水距離の
補正方式を選定できるようになっている。
Steel pipe 1 dimension for sensitivity tll adjustment, roll 14 of tU feeder
The radius etc. are input to the arithmetic controller 7, and the method of moving the probe 2 to two temporarily set positions based on the direction of the flaw to be detected and the angle of incidence of the probe 2 or water at the temporarily set positions are input. It is now possible to select the distance correction method.

演算制御器7はその離隔距離LQと光電スイッチ3,4
夫々からのオン信号の立上りの時間差とに基づき鋼管1
の搬送速度を測定し、また超音波探傷装置5から出力さ
れる検出エコー高さに関する信号がインターフェース6
を介して入力され、これを読込む。
The arithmetic controller 7 calculates the separation distance LQ and the photoelectric switches 3 and 4.
Steel pipe 1 based on the difference in the rise time of the ON signal from each
A signal related to the detection echo height output from the ultrasonic flaw detector 5 is sent to the interface 6.
is entered via and reads this.

演算制御器7の出力端子には表示器12.プリンタ13
が接続されており、演算制御器7にて算出された搬送速
度及びエコー高さはこれらに表示・記録される。なお表
示器12.プリンタ13は超音波探傷装置5の感度調整
後に被検査材たる鋼管を探傷した結果を表示、記録する
ために使用される。
The output terminal of the arithmetic controller 7 has a display 12. Printer 13
are connected, and the conveyance speed and echo height calculated by the arithmetic controller 7 are displayed and recorded thereon. Note that the display 12. The printer 13 is used to display and record the results of flaw detection on the steel pipe, which is the material to be inspected, after the sensitivity of the ultrasonic flaw detection device 5 has been adjusted.

探触子2は探触子移動装置8に取付けられており、探触
子移動装置8によりX軸方向、即ち鋼管1の軸心に直交
する水平方向、Y軸方向、即ち鋼管1の軸心に直交する
鉛直方向に移動でき、またθ方向、即ちZ軸回りに回動
できるようになっている。
The probe 2 is attached to a probe moving device 8, and the probe moving device 8 moves the probe in the X-axis direction, that is, the horizontal direction perpendicular to the axial center of the steel pipe 1, and in the Y-axis direction, that is, the axial center of the steel pipe 1. It can move in the vertical direction perpendicular to the , and can also rotate in the θ direction, that is, around the Z axis.

探触子移動装置8は探触子2を取付けてこれを所定方向
に移動可能になした探触子移動機構10とこれを駆動す
る駆動装置9とから構成されており、例えば第2図、第
3図に示すようになっている。
The probe moving device 8 is composed of a probe moving mechanism 10 to which the probe 2 is attached and capable of moving it in a predetermined direction, and a drive device 9 for driving this. For example, as shown in FIG. It is as shown in Figure 3.

即ち、鋼管1の上方には断面形状が倒立台形状の摺動台
100が長手方向を管軸に直交させて水平に設けられて
おり、その上側には移動台車101が摺動可能に係合載
置されている。移動台車101はステッピングモータ9
3の回転にて回転される摺動台100と平行の送りネジ
108にてX軸方向に進退させる変速機123によりX
軸方向に移動される。この移動台車101には鉛直方向
に長い探触子支持用の丸棒105が貫通されており、丸
棒105の下端に設けられた探触子取付部材103に取
付けられた探触子2は移動台車101の移動によりX軸
方向に移動する。移動台車101上には箱体102が固
設されテアリ、その−側面にはフの字状の支持腕104
の下部が固定されている。支持腕104の上部には出力
軸を鉛直方向としたZ軸周ステンピングモータ91が設
けられており、これにより回転駆動される送りネジ10
6を回転させて探触子2をX軸方向に移動させる、即ち
昇降させる高さ調節機構121が取付けられている。送
りネジ106は箱体102の上に設けられた後述するギ
ヤ箱122及び箱体102.移動台車101を貫通した
前記丸棒105と連結されてあって、Z軸周ステンピン
グモータ91によりその下端はX軸方向に移動する。丸
棒105は前述のギヤ箱122に設けたベアリングを介
して送りネジの回転に対して回転自在に取付けられてお
り、その外周にはキーが設けられている。この丸棒10
5の外側にはキー溝が鉛直方向に所定長さ切られてあっ
てキーを上下方向に移動可能な外筒107が外挿されて
いる。この外1LO7にはギヤ箱122内のベヘルギア
を介して回転用ステッピングモータ92に連結され、ス
テッピングモータ92の回転により外筒107.従って
探触子2をZ軸回り(θ方向)に回転するようになって
いる。
That is, above the steel pipe 1, a sliding stage 100 having an inverted trapezoidal cross section is provided horizontally with its longitudinal direction perpendicular to the pipe axis, and a moving carriage 101 is slidably engaged above the sliding stage 100. It is placed. The moving cart 101 is powered by a stepping motor 9
X by a transmission 123 that moves forward and backward in the
is moved in the axial direction. A vertically long round bar 105 for supporting a probe is passed through the movable cart 101, and the probe 2 attached to a probe mounting member 103 provided at the lower end of the round bar 105 is moved. The carriage 101 moves in the X-axis direction. A box body 102 is fixedly mounted on the movable cart 101, and a support arm 104 in a fold-back shape is attached to the side of the box body 102.
The lower part of the is fixed. A Z-axis circumferential stamping motor 91 with an output shaft in the vertical direction is provided at the upper part of the support arm 104, and the feed screw 10 is rotationally driven by the Z-axis circumferential stamping motor 91.
A height adjustment mechanism 121 is attached to rotate the probe 6 to move the probe 2 in the X-axis direction, that is, to raise and lower the probe 2. The feed screw 106 is connected to a gear box 122 and a box 102, which will be described later, provided on the box 102. It is connected to the round bar 105 that passes through the movable cart 101, and its lower end is moved in the X-axis direction by the Z-axis circumferential stamping motor 91. The round bar 105 is rotatably attached to the rotation of the feed screw via a bearing provided in the gear box 122, and a key is provided on the outer periphery of the bar 105. This round bar 10
On the outside of 5, a key groove is cut by a predetermined length in the vertical direction, and an outer cylinder 107 that allows the key to be moved in the vertical direction is inserted. This outer cylinder 1LO7 is connected to a rotating stepping motor 92 via a beher gear in a gear box 122, and as the stepping motor 92 rotates, the outer cylinder 107. Therefore, the probe 2 is rotated around the Z axis (in the θ direction).

駆動装置9はインターフェース6を介して演算制御器7
から入力される作動信号に基づきステッピングモータ9
1.92.93を正転又は逆転する。従ってこの正転、
逆転により探触子移動機構10は探触子2を、X軸方向
、X軸方向、θ方向に所定量だけ移動又は回動させ、そ
の移動量5回動量は角ステッピングモータ91.92.
93に取付けたパルスジェネレータ(図示せず)により
検出され、検出信号は演算制御器7へ与えられる。
The drive device 9 is connected to the arithmetic controller 7 via the interface 6.
Stepping motor 9 based on the operation signal input from
1.92.93 rotate forward or reverse. Therefore, this normal rotation,
By reversing the rotation, the probe moving mechanism 10 moves or rotates the probe 2 by a predetermined amount in the X-axis direction, the X-axis direction, and the θ direction.
It is detected by a pulse generator (not shown) attached to 93, and the detection signal is given to the arithmetic controller 7.

探触子2の鋼管1に対する角度1位置の設定は演算制御
器7に予め入力設定されたプログラムにより探触子移動
装置8を制御して自動的に行われる。第4図はその制御
順序を示すフローチャートである。
Setting of the angle 1 position of the probe 2 with respect to the steel pipe 1 is automatically performed by controlling the probe moving device 8 according to a program input and set to the arithmetic controller 7 in advance. FIG. 4 is a flowchart showing the control order.

以下に探触子2の鋼管1に対する角度1位置の設定につ
き説明する。被検査材たる鋼管の検査に先立ぢ、第5図
に示す如く被検査材と同一の内。
The setting of the angle 1 position of the probe 2 with respect to the steel pipe 1 will be explained below. Prior to the inspection of the steel pipe as the material to be inspected, as shown in Fig. 5, the same material as the material to be inspected.

外径を有し、予め前述の人工疵A、  Bを形成させた
感度調整用の鋼管1を探触子2の検査域に達するように
搬送し、これに対する探触子2の感度調整をすべく、入
力装置11のスタートボタンをオペレータがオンすると
、演算制御器7は探触子2の角度5位置を設定する操作
を連続的かつ自動的に行わせる。
A steel pipe 1 for sensitivity adjustment, which has an outer diameter and has the aforementioned artificial flaws A and B formed in advance, is transported so as to reach the inspection area of the probe 2, and the sensitivity of the probe 2 is adjusted for this. When the operator turns on the start button of the input device 11, the arithmetic controller 7 causes the operation of setting the five angular positions of the probe 2 to be performed continuously and automatically.

第6図は感度調整用の鋼管1の寸法に応じた探触子2の
感度調整原点への設定の説明図である。
FIG. 6 is an explanatory diagram of setting the probe 2 to the sensitivity adjustment origin according to the dimensions of the steel pipe 1 for sensitivity adjustment.

スタートボタンがオンされると演算制御器7はまず搬送
装置のロール14上に載置された鋼管1の軸心と略同高
位置のホームポジションに探触子2を移動させるべくス
テッピングモータ91へ信号を発する。この定位置はZ
軸方向及びθ方向が規定されている。
When the start button is turned on, the arithmetic controller 7 first drives the stepping motor 91 to move the probe 2 to a home position that is approximately at the same height as the axis of the steel pipe 1 placed on the roll 14 of the conveying device. emit a signal. This fixed position is Z
The axial direction and the θ direction are defined.

ホームポジションに相当する探触子移動機構10の所定
位置に設けられたりミントスイッチが作動せられると探
触子2はホームポジションにて停止せしめられる。
When the probe 2 is placed at a predetermined position of the probe moving mechanism 10 corresponding to the home position or when a mint switch is activated, the probe 2 is stopped at the home position.

次いで演算制御器7は予め入力されている搬送装置のロ
ール14半径、鋼管1の半径及び下記(11式に基づい
てロール14の軸心より高さHoだけ高い位置、つまり
鋼管1の軸心と同高となる位置を算出し、その算出値と
ホームポジションとの高さ関係に基づいてZ軸周のステ
ッピングモータ91へ信号を出力し、探触子2をZ軸方
向の上方又は下方に移動させてその高さHoの位置に占
位させる。
Next, the arithmetic controller 7 determines the radius of the roll 14 of the conveying device, the radius of the steel pipe 1 and the following (based on equation 11), which are input in advance, at a position higher than the axial center of the roll 14 by a height Ho, that is, the axial center of the steel pipe 1. Calculates the position where the height is the same, outputs a signal to the stepping motor 91 around the Z-axis based on the height relationship between the calculated value and the home position, and moves the probe 2 upward or downward in the Z-axis direction. and occupy the position at the height Ho.

但し、R:ロール14の半径 r:鋼管1の半径 L:ロール14の軸心間距離 この高さHo位置へ探触子2が移動されたあと、演算制
御器7は超音波探傷装置5を起動し、第7図に示す如く
超音波探傷装置5が発振信号Tを出力すると、探触子2
は表面エコーs、、s2・・・を捉えるようになり、超
音波探傷装置5からの発振信号Tが演算制御器7へ入力
されると、演算制御器7は超音波探傷装置5に表面エコ
ーゲートをT〜S1の時間差に基づいてSlを含む可及
的に狭い範囲に設定する。これにより超音波探傷装置5
は表面エコーS1のみを検出する。
However, R: Radius of the roll 14 r: Radius of the steel pipe 1 L: Distance between the axes of the roll 14 After the probe 2 is moved to the height Ho position, the arithmetic controller 7 controls the ultrasonic flaw detection device 5. When the ultrasonic flaw detector 5 starts up and outputs an oscillation signal T as shown in FIG.
starts to capture surface echoes s, s2, etc., and when the oscillation signal T from the ultrasonic flaw detector 5 is input to the arithmetic controller 7, the arithmetic controller 7 detects the surface echoes in the ultrasonic flaw detector 5. The gate is set in the narrowest possible range including Sl based on the time difference between T and S1. As a result, the ultrasonic flaw detection device 5
detects only the surface echo S1.

高さH8は針算上求められる鋼管1の軸心と同高さレベ
ルに探触子2が位1する高さであり、表面エコーゲート
が設定されると演算制御器7は探触子2を鋼管1からの
表面エコーレベルが最大となる角度1位置へ探触子2を
設定すべく以下のようにしてその探査を開始する6まず
演算制御器7はステッピングモータ91を作動させ、高
さH8を中心としてその上下方向(Z軸方向)に探触子
2を移動させて探査し、第8図(探査結果を示すアナロ
グチャート)に示す如く表面エコーのピークとなる高さ
位置H1を求め、ステッピングモータ91を作動させて
その高さ位置H1に探触子2を移動させ、次にステッピ
ングモータ92を作動させて探触子2をθ、−θ方向に
回転させる。このときの表面エコーのピークとなる角度
θ1を求める。
The height H8 is the height at which the probe 2 is at the same height level as the axis of the steel pipe 1, which is determined by calculation.When the surface echo gate is set, the arithmetic controller 7 In order to set the probe 2 to the angle 1 position where the surface echo level from the steel pipe 1 is maximum, the exploration is started as follows.6 First, the arithmetic controller 7 operates the stepping motor 91 to adjust the height. The probe 2 is moved in the vertical direction (Z-axis direction) with H8 as the center for exploration, and the height position H1 at which the surface echo peaks is determined as shown in Figure 8 (analog chart showing the exploration results). , the stepping motor 91 is operated to move the probe 2 to the height position H1, and the stepping motor 92 is then operated to rotate the probe 2 in the θ and −θ directions. An angle θ1 at which the surface echo peaks at this time is determined.

以後、前同様の操作を例えば2回繰り返して計3回行う
。これによりピーク位置、角度として演算制御器7は3
回目の探傷結果のH3,θ3を感度調整原点として記憶
する。
Thereafter, the same operation as before is repeated, for example, twice, for a total of three times. As a result, the calculation controller 7 calculates 3 as the peak position and angle.
H3 and θ3 of the first flaw detection result are stored as the sensitivity adjustment origin.

この感度調整原点(H3,θ3)が定まると演算制御器
7は定まった感度調整原点(H3,θ3)を基準として
探触子2を予め設定されている入射角αとなる仮設定位
置に探触子2を占位せしめるべく必要なステッピングモ
ータ91,92.93へ作動信号を出力する。
Once this sensitivity adjustment origin (H3, θ3) is determined, the arithmetic controller 7 searches the probe 2 at a temporary setting position at a preset incident angle α using the determined sensitivity adjustment origin (H3, θ3) as a reference. An operating signal is output to the stepping motors 91, 92, and 93 necessary to position the tentacle 2.

この仮設定については、探傷すべき疵の方向により設定
方式が異なり、軸長方向の疵を探傷するように選定した
場合には、第9図に示すように感度調整原点、つまり最
大表面エコーレベルが得られるときの水距離(超音波が
探触子から鋼管に達するまでの距離)を一定として、Z
軸方向に下記(2)式にて算出される高さH4、またX
軸方向に下記(3)式にて算出される距離x1だけ探触
子2を移動させる。
Regarding this temporary setting, the setting method differs depending on the direction of the flaw to be detected. If you select to detect flaws in the axial direction, the sensitivity adjustment origin, that is, the maximum surface echo level, as shown in Figure 9, When the water distance (distance from the probe to the steel pipe) is constant, Z
In the axial direction, the height H4 is calculated using the following formula (2), and the height
The probe 2 is moved in the axial direction by a distance x1 calculated by the following equation (3).

)(4=rsinα    −(21 x 1 = r −r cosα−(31この移動によ
り探触子2は鋼管1の周方向に対して所定の入射角αと
なる角度1位置に仮設定される。
)(4=rsinα-(21x1=r-rcosα-(31) Through this movement, the probe 2 is temporarily set at an angle 1 position at a predetermined incident angle α with respect to the circumferential direction of the steel pipe 1.

一方、周方向の疵を探傷するように入力装置11にて選
定した場合には、第10図に示す如く水距離及びX軸方
向、即ち高さを一定として、θ方向へαだけ回転させ、
またX軸方向へ下記(4)式にて算出される距離x2だ
け探触子2を移動させる。
On the other hand, when the input device 11 selects to detect flaws in the circumferential direction, as shown in FIG.
Further, the probe 2 is moved in the X-axis direction by a distance x2 calculated by the following equation (4).

X2 = (D+E)  (1−cosα)  =(4
)但し、D:水距離 E:探触子先端〜振動子間距離 この移動により探触子2は鋼管lの軸長方向に対して所
定の入射角αとなる角度1位置に仮設定される。
X2 = (D+E) (1-cosα) = (4
) However, D: Water distance E: Distance between the tip of the probe and the transducer Through this movement, the probe 2 is temporarily set at an angle 1 position at a predetermined incident angle α with respect to the axial direction of the steel pipe l. .

次に最適探傷条件角度2伎置への補正設定がなされる。Next, correction settings are made to the optimum flaw detection condition angle 2°.

この設定には入射角を補正する方式と水距離を補正する
方式とがある0例えば入射角を補正する方式を選定した
場合には演算制御器7は次のよ°うに演算制御する。ま
ず、仮設定位置にて欠陥エコーゲートの設定をすべく、
第5図に示す如く鋼管1をスパイラル送りしてその先端
が光電スイッチ3.4を夫々通過すると、光電スイッチ
3と4の検出信号の立上り時間差と、入力されている離
隔圧!1iItL、とに基づいて搬送速度■を測定する
This setting includes a method of correcting the angle of incidence and a method of correcting the water distance. For example, when the method of correcting the angle of incidence is selected, the calculation controller 7 performs calculation control as follows. First, in order to set the defective echo gate at the temporary setting position,
As shown in FIG. 5, when the steel pipe 1 is spirally fed and its tips pass through the photoelectric switches 3 and 4, the rise time difference between the detection signals of the photoelectric switches 3 and 4 and the input separation pressure! 1iItL, and the conveyance speed (■) is measured based on the following.

そして演算制御器7は超音波探傷装置5に、充電スイッ
チ4を鋼管1の先端が通過してからの時間(Ll +L
2 )/Vを中心として内面疵を検出できる可及的に狭
い時間範囲に内面底周ゲートを設定し、更に時間(L、
 +l、2 +L3 ) /Vを中心として外面底を検
出できる可及的に狭い時間範囲に外面底周ゲートを設定
する。これにより超音波探傷装置5は内、外面の人工疵
からのエコーを夫々検出するようになる。
The arithmetic controller 7 then informs the ultrasonic flaw detector 5 of the time (Ll +L
2) Set the inner bottom circumference gate in the narrowest possible time range in which inner surface flaws can be detected, centering on /V, and
+l, 2 +L3 ) The outer surface bottom circumference gate is set in the narrowest possible time range in which the outer surface bottom can be detected, centering on /V. As a result, the ultrasonic flaw detection device 5 detects echoes from the artificial flaws on the inner and outer surfaces, respectively.

なおこのゲート設定のときに増幅器又は減衰器(超音波
探傷装置5に内蔵されている)のゲインを調整する。
Note that during this gate setting, the gain of the amplifier or attenuator (built in the ultrasonic flaw detection device 5) is adjusted.

このようにして仮設定の角度1位置にて探査を行って欠
陥エコー用ゲートが設定された後、演算制御器7は探触
子2を第11図に示すごとく仮設定角度1位置での水距
離を保持したままステッピングモータ91.93の作動
により仮設定位置の入射角qを中心としてその上下方向
へ一定の角度Δαのピッチにて入射角を変更すべく、X
軸方向に下記(5)式に示される高さH5、またX軸方
向に下記(6)式にて示される距離x3となる位置に探
触子2を順次移動する。
After the defect echo gate is set by performing the inspection at the temporarily set angle 1 position in this way, the arithmetic controller 7 moves the probe 2 into the water at the temporarily set angle 1 position as shown in FIG. X
The probe 2 is sequentially moved to a position having a height H5 shown in the following equation (5) in the axial direction and a distance x3 shown in the following equation (6) in the X-axis direction.

Hs ”r sin (cr+H、Δα)  −(51
但し、n−−3,2,−1,0,L、2,3Xコニ=ツ
1r−rcos(α+n−Δα)…(6)これにより探
触子2は仮設定位置の入射角αを中心としてその上側へ
3点(Δα、2Δα、3Δα)、下11J ヘ3 点(
−Δα、−2Δα、−3Δα)移動される。
Hs ”r sin (cr+H, Δα) −(51
However, n--3, 2,-1, 0, L, 2,3 3 points to the upper side (Δα, 2Δα, 3Δα), 3 points to the lower 11J (
−Δα, −2Δα, −3Δα).

そして各変更角度2位置にて鋼管1を搬送して探査し、
演算制御器7は検出した内、外面の人工疵からのエコー
レベルの差を求めてそれが最小となる角度を選定し、ス
テッピングモータ91.93を作動させてその角度をと
る位置に探触子2を占位させる。つまり最適探傷条件位
置への補正設定がなされる。
Then, the steel pipe 1 is transported and explored at each of the two changing angle positions,
The arithmetic controller 7 calculates the difference in the echo levels from the detected inner and outer artificial flaws, selects the angle at which the difference is minimum, and operates the stepping motors 91 and 93 to position the probe at that angle. Let 2 be ruled. In other words, the correction setting is made to the optimum flaw detection condition position.

なおこの最適条件角度1位置の最終設定は水距離を補正
する方式によってもよい。その場合は次のようになされ
る。
Note that the final setting of this optimum condition angle 1 position may be performed by a method of correcting the water distance. In that case, it is done as follows.

即ち、第12図に示す如く演算制御器7の出力信号に基
づき探触子移動装置8は入射角αを一定としたまま仮設
定位置を中心として探触子2の水距離を一定ピッチΔβ
にて変更し、例えば水距離が短かくなる方向へ3点、逆
に長くなる方向へ3点移動し、探触子2.超音波探傷装
置5は各変更位置にてスパイラル送りされる鋼管1の内
面圧、外面疵の検出を行い、演算制御器7はその検出結
果に基づいて前方式同様に雨検出エコー差が最小となる
角度とすべくいずれかの位置に探触子を設定する。
That is, as shown in FIG. 12, based on the output signal of the arithmetic controller 7, the probe moving device 8 moves the water distance of the probe 2 at a constant pitch Δβ around the temporarily set position while keeping the incident angle α constant.
For example, move 3 points in the direction where the water distance becomes shorter and move 3 points in the direction where it becomes longer, and move the probe 2. The ultrasonic flaw detection device 5 detects the internal pressure and external surface flaws of the steel pipe 1 being sent spirally at each change position, and the arithmetic controller 7 detects the minimum rain detection echo difference based on the detection results as in the previous method. Set the probe at one of the positions to achieve the angle.

なおこの最終設定は入射角を補正する方式、水距離を補
正する方式のいずれか一方に限らず、両方式の探査を行
った後、内、外面の人工疵の検出エコー差が最小となる
角度1位置に探触子2を設定するようにしてもよい。
Note that this final setting is not limited to either the method that corrects the incident angle or the method that corrects the water distance, but is the angle that minimizes the difference in detected echoes of artificial flaws on the inner and outer surfaces after performing both methods of exploration. The probe 2 may be set at one position.

更にこのような最適位置への補正設定は第10図に示す
周方向圧の場合にも同様にして行われる。
Further, such correction setting to the optimum position is similarly performed in the case of the circumferential pressure shown in FIG. 10.

以上のように本発明では内外の疵の位置を相違させるこ
とによって薄肉管の場合にあっても感度調整が可能とな
るのである。
As described above, in the present invention, sensitivity can be adjusted even in the case of thin-walled tubes by differentiating the positions of the inner and outer flaws.

〔効果〕〔effect〕

以上詳述した如く本発明は超音波探傷装置の感度調整を
入射角の仮設定の後に感度調整用の管の軸長方向に離隔
形成させた内面底と外面底とを検出し、この検出結果に
基づき入射角を補正して感度tll整するので金属管、
特に薄肉管であっても感度調整ができると共にその位置
に拘わらず疵を同一感度での検出が可能であり、また本
発明により感度調整を30分程度で行うことが可能とな
り、大幅な時間短縮が図れ、本発明装置による場合は自
動的に感度調整できる等、本発明は優れた効果を奏する
As described in detail above, the present invention adjusts the sensitivity of an ultrasonic flaw detection device by temporarily setting the angle of incidence and then detecting the inner and outer bottoms formed apart in the axial direction of the tube for sensitivity adjustment. Since the sensitivity is adjusted by correcting the incident angle based on the metal tube,
In particular, sensitivity can be adjusted even for thin-walled tubes, and flaws can be detected with the same sensitivity regardless of their location.Furthermore, the present invention makes it possible to adjust sensitivity in about 30 minutes, significantly reducing time. The present invention has excellent effects, such as the ability to automatically adjust sensitivity when using the device of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置を超音波探傷装置と共に示すブロッ
ク図、第2図、第3図は探触子移動装置の正面図及び側
面図、第4図は本発明の感度調整順序を示すフローチャ
ート、第5図はゲート設定の説明図、第6図は探触子の
原点設定説明図、第7図は探触子の感度調整用鋼管に対
するZ軸方向の位置設定に伴って検出される表面エコー
とゲート設定の説明図、第8図は探触子の感度調整原点
設定の説明図、第9図、第10図は探触子の仮設定説明
図、第11図、第12図は最適探傷条件角度1伎置の設
定の説明図、第13図、第14図、第16図は従来の感
度調整の説明図、第15図は従来の感度調整方法のフロ
ーチャートである。 1・・・感度調整用鋼管 2・・・探触子 3.4・・
・光電スイッチ 5・・・超音波探傷装置 7・・・演
算制御器 8・・・探触子移動装置 特 許 出願人  住友金属工業株式会社代理人 弁理
士  河  野  登  夫第2図 第3図 第 G 図 H+      θ+        Ff2    
    θ2 門3  θ3第  8  口
FIG. 1 is a block diagram showing the device of the present invention together with an ultrasonic flaw detection device, FIGS. 2 and 3 are front and side views of the probe moving device, and FIG. 4 is a flowchart showing the order of sensitivity adjustment of the present invention. , Fig. 5 is an explanatory diagram of gate setting, Fig. 6 is an explanatory diagram of probe origin setting, and Fig. 7 is a surface detected by setting the position of the probe in the Z-axis direction with respect to the steel tube for sensitivity adjustment. An explanatory diagram of echo and gate settings, Fig. 8 is an explanatory diagram of the probe sensitivity adjustment origin setting, Figs. 9 and 10 are explanatory diagrams of the temporary probe settings, and Figs. 11 and 12 are the optimum settings. FIG. 13, FIG. 14, and FIG. 16 are explanatory diagrams of the setting of the flaw detection condition angle 1, FIG. 16 are explanatory diagrams of conventional sensitivity adjustment, and FIG. 15 is a flowchart of the conventional sensitivity adjustment method. 1...Steel tube for sensitivity adjustment 2...Probe 3.4...
・Photoelectric switch 5... Ultrasonic flaw detection device 7... Arithmetic controller 8... Probe moving device patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Norio Kono Figure 2 Figure 3 Figure G H+ θ+ Ff2
θ2 Gate 3 θ3 8th Gate

Claims (1)

【特許請求の範囲】 1、探触子により水中にて管を超音波探傷するに先立つ
超音波探傷装置の感度調整方法において、 夫々の軸長方向位置を相異せしめて、内、外面に人工疵
を形成してある感度調整用管を水中に定置し、 感度調整用管側方を管軸に垂直な方向に探 触子を移動させ、またこの移動方向回りに回転させ、感
度調整用音表面からのエコー信号が最大レベルとなる感
度調整原点を定め、 次に感度調整原点における探触子と感度調 整用管表面との水距離に等しい水距離とし、感度調整用
管に対する超音波入射角を所定値とすべく探触子を感度
調整原点から感度調整用管方向及びこれと垂直な前記移
動方向へ移動し又は該移動方向回りに回動させて、探触
子の探傷位置、角度を仮設定し、 次いで管の軸長方向に感度調整用管を移動 させ、仮設定位置、角度及びその周りの位置角度にて感
度調整用管に超音波を入射させ、内、外面の人工疵から
のエコーレベルを分離検出し、これらのエコーレベル差
が最小となる位置、角度に補正設定することを特徴とす
る感度調整方法。 2、夫々の軸長方向位置を相異せしめて内、外面に人工
疵を形成してある感度調整用管を水中にてその軸長方向
に移動させ、この間に探触子から超音波を発振して感度
調整用管に入射し、人工疵からのエコーを検出し、この
検出結果に基づいて超音波探傷装置の感度調整を行う装
置において、 探触子を感度調整用管の軸長方向及び管軸 と垂直な方向に移動させ、また管軸と垂直な方向回りに
回動させるべく取付けてある探触子移動装置と、 探触子にて捉えられるエコー信号に基づき 該探触子移動装置を制御して探触子の移動位置及び回動
角度位置を調節するものであつて、感度調整用管表面か
らのエコー信号に基づきこれが最大レベルとなる探触子
の管軸と垂直な方向の位置及びこの方向回りの回動角度
位置を決定し、この決定位置からその水距離を保持した
まま入射角を所定値とすべく管の軸長方向及び管軸と垂
直な方向へ移動し、又は該移動方向回りに回動させ、更
に管に軸長方向に搬送される感度調整用管の内、外面の
人工疵からのエコーレベルを分離検出し、これらのエコ
ーレベル差を最小とすべく探触子の位置及び回動角度位
置を補正する演算制御器と を具備することを特徴とする感度調整装置。
[Claims] 1. In a method for adjusting the sensitivity of an ultrasonic flaw detection device prior to ultrasonic flaw detection of a pipe underwater with a probe, the positions in the longitudinal direction of the respective shafts are made different, and the inner and outer surfaces are artificially Place the sensitivity adjustment tube with the flaw in the water, move the probe on the side of the sensitivity adjustment tube in a direction perpendicular to the tube axis, and rotate it around this direction of movement to emit the sensitivity adjustment sound. Determine the sensitivity adjustment origin where the echo signal from the surface reaches its maximum level, then set the water distance equal to the water distance between the probe and the sensitivity adjustment tube surface at the sensitivity adjustment origin, and set the ultrasonic incident angle to the sensitivity adjustment tube. In order to set the flaw detection position and angle to a predetermined value, the probe is moved from the sensitivity adjustment origin in the direction of the sensitivity adjustment tube and in the movement direction perpendicular thereto, or rotated around the movement direction, and the flaw detection position and angle of the probe are adjusted. Temporarily set, then move the sensitivity adjustment tube in the axial direction of the tube, and apply ultrasonic waves to the sensitivity adjustment tube at the temporary setting position, angle, and surrounding position angles to eliminate artificial flaws on the inner and outer surfaces. A sensitivity adjustment method characterized by separately detecting the echo levels of and setting the correction at a position and angle where the difference in these echo levels is minimized. 2. The sensitivity adjustment tube, which has artificial flaws formed on its inner and outer surfaces at different axial positions, is moved underwater in the axial direction, and during this time the probe emits ultrasonic waves. In a device that detects echoes from artificial flaws by entering the sensitivity adjustment tube and adjusts the sensitivity of the ultrasonic flaw detection device based on the detection results, the probe is placed in the axial direction of the sensitivity adjustment tube and A probe moving device installed to move in a direction perpendicular to the tube axis and rotate around a direction perpendicular to the tube axis, and a probe moving device based on echo signals captured by the probe. The device controls the moving position and rotational angle position of the probe, and is based on the echo signal from the sensitivity adjustment tube surface in the direction perpendicular to the tube axis of the probe where the echo signal reaches the maximum level. Determine the position and rotation angle position around this direction, and move from this determined position in the longitudinal direction of the tube axis and in the direction perpendicular to the tube axis in order to set the incident angle to a predetermined value while maintaining the water distance, or The echo levels from the artificial flaws on the inner and outer surfaces of the sensitivity adjustment tube, which is rotated around the moving direction and further conveyed in the axial direction of the tube, are detected separately, and a search is made to minimize the difference in these echo levels. A sensitivity adjustment device comprising: an arithmetic controller that corrects the position and rotational angle position of a feeler.
JP59193772A 1984-09-13 1984-09-13 Method and apparatus for adjusting sensitivity of ultrasonic flow detector Granted JPS6170459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59193772A JPS6170459A (en) 1984-09-13 1984-09-13 Method and apparatus for adjusting sensitivity of ultrasonic flow detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59193772A JPS6170459A (en) 1984-09-13 1984-09-13 Method and apparatus for adjusting sensitivity of ultrasonic flow detector

Publications (2)

Publication Number Publication Date
JPS6170459A true JPS6170459A (en) 1986-04-11
JPH0562299B2 JPH0562299B2 (en) 1993-09-08

Family

ID=16313546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59193772A Granted JPS6170459A (en) 1984-09-13 1984-09-13 Method and apparatus for adjusting sensitivity of ultrasonic flow detector

Country Status (1)

Country Link
JP (1) JPS6170459A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236794A (en) * 2008-03-28 2009-10-15 Sumitomo Metal Ind Ltd Ultrasonic flaw detecting method and device of pipe
JP2011102750A (en) * 2009-11-11 2011-05-26 Daido Steel Co Ltd Ultrasonic flaw detection method
WO2013176039A1 (en) * 2012-05-23 2013-11-28 新日鐵住金株式会社 Method for adjusting flaw detection sensitivity of ultrasonic probe and abnormality diagnostic method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4837425B2 (en) * 2006-04-05 2011-12-14 川崎重工業株式会社 Inspection method and apparatus for spot welds

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122476A (en) * 1977-03-31 1978-10-25 Mitsubishi Heavy Ind Ltd Ultrasonic inspector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53122476A (en) * 1977-03-31 1978-10-25 Mitsubishi Heavy Ind Ltd Ultrasonic inspector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236794A (en) * 2008-03-28 2009-10-15 Sumitomo Metal Ind Ltd Ultrasonic flaw detecting method and device of pipe
JP2011102750A (en) * 2009-11-11 2011-05-26 Daido Steel Co Ltd Ultrasonic flaw detection method
WO2013176039A1 (en) * 2012-05-23 2013-11-28 新日鐵住金株式会社 Method for adjusting flaw detection sensitivity of ultrasonic probe and abnormality diagnostic method
JP2013245956A (en) * 2012-05-23 2013-12-09 Nippon Steel & Sumitomo Metal Method for adjusting flaw detection sensitivity of ultrasonic probe
US10416123B2 (en) 2012-05-23 2019-09-17 Nippon Steel Corporation Flaw detection sensitivity adjustment method and abnormality diagnosis method for ultrasonic probe

Also Published As

Publication number Publication date
JPH0562299B2 (en) 1993-09-08

Similar Documents

Publication Publication Date Title
KR200436664Y1 (en) Apparatus for positioning a radial emission part of undestroyed tester to protect against radiation exposure
CN112355440B (en) Ultrasonic tracking system for underwater welding seam
CN214473004U (en) Ultrasonic phased array pipeline detection device for small-diameter pipe weld joint
JP4345734B2 (en) Quality inspection method for welded steel pipe welds
JPH1183817A (en) Pipe welding part inspection apparatus and ultrasonic flaw detection method
JPS6170459A (en) Method and apparatus for adjusting sensitivity of ultrasonic flow detector
JP2017075828A (en) Ultrasonic flaw detection device
JP2001056318A (en) Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detector
JP3744444B2 (en) Ultrasonic flaw detection method
JP4560796B2 (en) Ultrasonic flaw detector
JPS63236959A (en) Ultrasonic flaw detecting method for round rod metallic body
JPH04161848A (en) Automatic ultrasonic flaw detecting apparatus
JP3612392B2 (en) Ultrasonic flaw detection scanner
JPH0422223B2 (en)
JPS63256851A (en) Ultrasonic flaw detector
JPH0197856A (en) Ultrasonic wave flaw detecting apparatus
JPS6221058A (en) Transporting system of specimen
JP2001074712A (en) Apparatus and method for ultrasonic flaw detection inspection to small diameter piping weld part
JPS59120952A (en) Flaw detector for copying welded steel pipe
CN215894498U (en) Ultrasonic phased array detection scanning device for corner weld joints of connecting pipes
JPS6411144B2 (en)
JPH06288991A (en) Nondestructive testing device
JPH04247Y2 (en)
JPH10246793A (en) Inspection method and device for welding part of nuclear fuel rod end plug
JP2564558Y2 (en) Ultrasonic flaw detector