JPS59120952A - Flaw detector for copying welded steel pipe - Google Patents

Flaw detector for copying welded steel pipe

Info

Publication number
JPS59120952A
JPS59120952A JP57227384A JP22738482A JPS59120952A JP S59120952 A JPS59120952 A JP S59120952A JP 57227384 A JP57227384 A JP 57227384A JP 22738482 A JP22738482 A JP 22738482A JP S59120952 A JPS59120952 A JP S59120952A
Authority
JP
Japan
Prior art keywords
weld
welded
steel pipe
welded steel
position information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57227384A
Other languages
Japanese (ja)
Inventor
Takeshi Yagi
健 八木
Koji Kawamura
河村 皓二
Yasuo Kimiya
康雄 木宮
Kiyoharu Hiramoto
平本 清春
Takeo Mizuno
水野 武雄
Hideyuki Shimada
島田 英幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd, Nippon Steel Corp filed Critical Tokyo Keiki Co Ltd
Priority to JP57227384A priority Critical patent/JPS59120952A/en
Publication of JPS59120952A publication Critical patent/JPS59120952A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds
    • G01N2291/2675Seam, butt welding

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To improve the reliability and to make the device small-sized, simple, and low-cost, by propagating ultrasonic pulses along a weld line and providing a weld position detecting device on a common base coaxially. CONSTITUTION:A transmitting oscillator 3 and a receiving oscillator 4 are provided along the weld line of a weld 2 so as to face each other, and the ultrasonic beam radiated from the transmitting oscillator 3 is made incident to a welded steel pipe 1 at a prescribed angle and is propagated along the weld line while being reflected prescribed-number of times repeatedly on inside and outside tube walls 1A and 1B and is received by the receiving oscillator 4. Since the variance of the level of transmission pulses in the weld reaches about >=20dB which is >=10 times as high as that in a base material part 8 where there are no variance of thickness, defects, etc., the position of the weld is detected accurately. Since a weld position detecting device 20 is provided on a common base 50, displacement parallel with the axis of an electric welded steel pipe 1 corresponds to devices 20 and 40 in 1:1, and copying control of a flaw detector 40 is performed directly with a weld position signal, which the weld position detecting device 20 detects, for displacement around the axis of the pipe.

Description

【発明の詳細な説明】 本発明は、倣い式溶接鋼管の溶接部探傷装置に係り、と
くに、超音波を利用して溶接鋼管の溶接部位置検出を行
なう倣い式溶接鋼管の溶接部探傷装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a copying type welded steel pipe welded part flaw detection apparatus, and more particularly to a copying type welded steel pipe welded part flaw detection apparatus that detects the welded part position of a welded steel pipe using ultrasonic waves. .

一般に、電縫鋼管の溶接部を超音波探傷する場合、数ミ
リ幅程度の溶接部に発生する欠陥を見逃しなく検出する
ためには溶接部の外面、内面、肉質部等に正1.<超音
波ビームを入射させなければならない。ところがこの超
音波ビームは通常数ミリ以下の有効ビーム幅しか有して
おらず、一方、溶接鋼管の検査搬送中に溶接部は僅がな
からも絶えず位置変化を生じ、このため溶接部と検査用
探触子の相対位置を正確に一定とすることが探1易の精
度・信頼性を上げるうえで最も重要となる。ここに検査
用探触子を溶接部の位置変化に倣わせるため溶接部の位
置検出を正確に行なわなければならない理由がある。
Generally, when performing ultrasonic flaw detection on welded parts of ERW steel pipes, in order to detect defects that occur in welded parts with a width of several millimeters without overlooking them, it is necessary to conduct ultrasonic flaw detection on the outer surface, inner surface, fleshy part, etc. of the welded part. <Ultrasonic beam must be incident. However, this ultrasonic beam usually has an effective beam width of only a few millimeters or less, and on the other hand, the position of the weld constantly changes, even if only slightly, while the welded steel pipe is being transported for inspection. It is most important to accurately maintain the relative position of the probes in order to improve the accuracy and reliability of the probe. This is the reason why it is necessary to accurately detect the position of the weld in order to make the inspection probe follow the changes in the position of the weld.

従来より、前記溶接部の位置検出には、溶接部と母材部
の組成の相違を検知する渦電流方式、溶接部の高熱状態
を検知する熱検知方式、溶接部の溶接色(青みがかった
色)を検知する色検知方式等積々の方法が試みられてい
るがいずれも実用件・信頼性に欠けるものばかりであっ
た。例えば、通常、溶接直後にアンニーリング処置が行
なわれる電縄′#!4管では、溶接部と母材部の材質が
略均−化される結果、渦電流方式、色検知方式の採用は
困難であり、また試料が冷却した後は当然熱検知方式の
使用も不可能である。このため、倣い式による溶接部の
探傷は、止むなく検査探触子金目視或いは工業用TV等
による手@操作で行ない倣い誤差を考慮したチャンネル
数で検査をせざるを得す、検査要員の増加および検査の
信頼性・再現性に難点があり、かつ、装置全体が複雑化
し、高価なものになるという欠点があった。!!た、倣
い方式によらず溶接部探傷を行なう場合には、予め溶接
線の相対位#変化を見越したチャンネル数だけ検査探触
子を配IDL7:cければならないが、溶接直後のオン
ライン検査r於ても数十チャンネルを要し、装置が極め
て大型化し信号処理も複雑になり、一方、切断後の単管
検査では浴接線位置が不將定なため事実上検査不能であ
るという不都合があった。
Conventionally, the position of the weld has been detected using an eddy current method that detects the difference in composition between the weld and the base metal, a heat detection method that detects the high temperature state of the weld, and a weld color (bluish color) of the weld. ), a number of methods have been tried, including color detection methods, but none of them have been practical or reliable. For example, an electric rope is usually annealed immediately after welding. With four tubes, the materials of the welded part and the base metal are almost equalized, making it difficult to use the eddy current method or color detection method, and it is also unnecessary to use the heat detection method after the sample has cooled. It is possible. For this reason, flaw detection of welded parts using the tracing method has no choice but to be carried out by visual inspection of the inspection probe or by manual operation using an industrial TV, etc., and the number of channels that takes into account tracing errors is required. There are disadvantages in that the reliability and reproducibility of the test are increased, and that the entire device becomes complicated and expensive. ! ! In addition, when performing weld flaw detection without using the tracing method, it is necessary to arrange in advance the number of inspection probes corresponding to the number of channels in anticipation of changes in the relative position of the weld line. However, it requires dozens of channels, making the equipment extremely large and the signal processing complicated.On the other hand, there is the disadvantage that testing a single tube after cutting is virtually impossible because the bath tangent position is undefined. Ta.

そこで、発明者らは斯かる従来技術の欠点に鑑み、実用
性及び信頼性の高い倣い式溶接鋼管の溶接部探傷装置を
開発するため鋭意研究を重ねた結果、溶接線に沿って入
射せしめた超音波透過法による透過パルスのレベルが溶
接部に於て著しく変化することを見い出し、この知見に
基づいて発明をなすに至った。
Therefore, in view of the shortcomings of the conventional technology, the inventors conducted extensive research in order to develop a highly practical and reliable profiling type welded steel pipe weld zone flaw detection device. It was discovered that the level of the transmitted pulse by ultrasonic transmission method changes significantly in the welded part, and the invention was made based on this knowledge.

すなわち、本発明は、溶接部位置検出部に、送信及び受
信用振動子組から成る一組の振動子組と、この振動子組
tm接鋼管の周方向へ走査せしめる手段と、超音波パル
スを溶接鋼管の浴接線と平行に入射伝播させ、その透過
パルスの母材部に対する溶接部の受信レベル変化を検知
(7溶接部位置情報を得る手段と、この溶接部位に情報
にオフセットを掛けて溶接部中心位置情報とする手段と
を備えた倣い式溶接鋼管の溶接部探傷装置を提供し、こ
れによって前述した従来技術の有する不都合全解消する
ことを、その目的とするものである。
That is, the present invention provides a welding position detection section with a transducer set including a transmitting and receiving transducer set, a means for scanning the transducer set in the circumferential direction of the welded steel pipe, and an ultrasonic pulse. The transmitted pulse is propagated parallel to the bath tangent line of the welded steel pipe, and changes in the reception level of the welded part relative to the base metal are detected (7) Means for obtaining welded part position information and welding by multiplying the information at this welded part with an offset It is an object of the present invention to provide a copy type welded steel pipe welded part flaw detection apparatus equipped with means for obtaining part center position information, thereby eliminating all the disadvantages of the prior art described above.

以下、本発明の一実施例を第1図乃至第9図に基づいて
説明する。
Hereinafter, one embodiment of the present invention will be described based on FIGS. 1 to 9.

第1図は、本発明に係る溶接鋼管の溶接部位置検出方式
を説明するための原理説明図である。図に於て、1はコ
イル伏の帯鋼から管状に形成されたのち高周波抵抗溶接
された電縫鋼管であり、溶接後アンニーリング処理及び
ビードカットがなされている。この電縫鋼管1の上端縁
(て11ま管軸方向に沿った直線状の溶接線を成す溶接
部2が形成されている。前記電縫鋼管工の外周側には、
送信及び受信用振動子3,4から成る振動子組5が装備
されている。この送信用撮動子3と受信用振動子4は前
記溶接部2の溶接線に渚って対向装備されており、前記
送信用振動子3がら発射したパルス状の超音波ビームσ
該溶接鋼管1oτIツr定角度で入射し、内、外管壁I
 A 、 I Bで所定回数反射を繰り返しながら溶接
線に沼って伝播したのち透過パルスが前記受信用振動子
4で受信されるようになっている。超音波ビームの有効
ビーム幅、溶接鋼管1に対する入射角度釜ひに管内での
反射回数は最良な条件となるよう実験的に決定される。
FIG. 1 is a principle explanatory diagram for explaining a method for detecting a welded portion position of a welded steel pipe according to the present invention. In the figure, reference numeral 1 denotes an electric resistance welded steel pipe which is formed into a tubular shape from a coiled steel strip and then welded by high frequency resistance, and is annealed and bead cut after welding. A welded portion 2 forming a linear weld line along the tube axis direction is formed at the upper end edge of this ERW steel pipe 1. On the outer peripheral side of the ERW steel pipe work,
A transducer set 5 consisting of transmitting and receiving transducers 3 and 4 is equipped. The transmitting transducer 3 and the receiving transducer 4 are installed facing each other along the weld line of the welding part 2, and the pulsed ultrasonic beam σ emitted from the transmitting transducer 3 is
The welded steel pipe 1oτI is incident at a constant angle, and the inner and outer pipe walls I
After repeating reflection a predetermined number of times at A and IB and propagating through the weld line, the transmitted pulse is received by the receiving transducer 4. The effective beam width of the ultrasonic beam, the angle of incidence on the welded steel pipe 1, and the number of reflections within the pipe are determined experimentally to provide the best conditions.

前記振動子組5は溶接鋼v1の外周を相対的に周方向へ
回転走査するように成っている。
The vibrator set 5 is configured to relatively rotate and scan the outer periphery of the welded steel v1 in the circumferential direction.

上記のような設定のもとに局部水浸法によって信号の送
受を行なわせ、振動子紙5を溶接鋼管1の周りを一周さ
せながら透過パルスレベルヲ連続的にアナログ記録した
場合の典型的な波形を第2図に示す。図から明らかな如
く、前記振動子紙5が溶接部を通過する毎に信号変化が
生じており、溶接部位置信号が得られることがわかる。
A typical example of a case where signals are transmitted and received by the local water immersion method under the above settings, and the transmitted pulse level is continuously recorded in analog form while the transducer paper 5 goes around the welded steel pipe 1. The waveform is shown in Figure 2. As is clear from the figure, a signal change occurs each time the vibrator paper 5 passes a weld, and it can be seen that a weld position signal can be obtained.

この溶接部位置信号の内、溶接部の透過パルスレベル変
化部分と、溶接部2との対応を第3図に示す。前記溶接
鋼管1のm接ビードは、外径側が平形カッタ、内径側が
丸形カッタで切削されるため外径側と内径側に各々図に
示す如く不連続なカッターエツジ部6,6.7,7が生
じる。外径側カッターエツジ部6,6で透過パルスレベ
ルが母材部8のそれより僅かに上昇し、内径カッター側
エツジ部7.7で大幅に減衰し、中央部では内外径が局
部的に平行をなすことから再び上昇する。Cは溶接中心
である。実験によると、この斜角軸方向透過法による溶
接部の透過パルスレベル変化は母材部8の透過パルスレ
ベルに対し約2QdB以上にも達し、母材部8と溶接部
2の識別を垂直反射法、斜角反射法などで行なった場合
に比較し桁違いに太きな値となっている。これは、本発
明者が種々の実験を行った結果、偶然発見したものであ
る。
FIG. 3 shows the correspondence between the transmission pulse level change portion of the weld and the weld 2 in this weld position signal. The m-joint bead of the welded steel pipe 1 is cut with a flat cutter on the outer diameter side and a round cutter on the inner diameter side, so there are discontinuous cutter edge parts 6, 6.7, on the outer diameter side and on the inner diameter side, respectively, as shown in the figure. 7 occurs. The transmitted pulse level is slightly higher than that of the base metal part 8 at the cutter edge parts 6, 6 on the outer diameter side, and is significantly attenuated at the cutter edge part 7, 7 on the inner diameter side, and the inner and outer diameters are locally parallel in the center part. It rises again from doing. C is the center of welding. According to experiments, the change in the transmitted pulse level of the weld by this oblique axial transmission method reached approximately 2QdB or more compared to the transmitted pulse level of the base metal part 8, and the discrimination between the base metal part 8 and the weld part 2 was determined by vertical reflection. The value is an order of magnitude larger than that obtained using the method or oblique reflection method. This was discovered by chance as a result of various experiments conducted by the inventor.

一方母材部8部分における透過レベルは8g2図に示す
様に特別な肉厚変化、欠陥等がない限り1〜2 dB以
下の変化しかない。このため、前記斜角軸方向透過法に
よる透過パルスのレベル変化に基づき溶接部位置を正確
に検出することができる。
On the other hand, as shown in Figure 8g2, the transmission level in the base material portion 8 only changes by 1 to 2 dB or less unless there is a special thickness change, defect, etc. Therefore, the weld position can be accurately detected based on the level change of the transmitted pulse by the oblique axial transmission method.

尚、溶接部の透過パルスレベル変化は、上述した様に溶
接部2の局部的形状変化が主要因であり、溶接ビートの
カッティング如何では、第4図或いは、第5図の如きパ
ターンを呈する場合もあるがいずれも母材部レベルとの
差は顕著であり、適切な信号処理を施すことによって容
易に溶接部の中心位置Cを検出出来る。また、振動子紙
を固定し電縫鋼管を回転させた場合にも同様に溶接部位
置検出を行lようことができる。
As mentioned above, the change in the transmitted pulse level of the weld zone is mainly caused by the local shape change of the weld zone 2, and depending on how the weld bead is cut, the pattern shown in FIG. 4 or 5 may occur. However, in both cases, the difference from the base metal level is significant, and the center position C of the weld can be easily detected by applying appropriate signal processing. Further, even when the vibrator paper is fixed and the electric resistance welded steel pipe is rotated, the weld position can be similarly detected.

次に上述した溶接部の位置検出方法を利用した倣い式′
fiL縫鋼管の溶接部探傷装置を第61閃乃至第9図に
基づいて説明する。第6図は、倣い式電縫鋼管の溶接部
探傷装置10を示す概略図である。
Next, a copying method using the weld position detection method described above
The welded part flaw detection device for fiL sewn steel pipes will be explained based on FIGS. 61 to 9. FIG. 6 is a schematic diagram showing a copying type electric resistance welded steel pipe welded part flaw detection apparatus 10.

図に於て、管軸方向に沼って抵抗溶接された後ピードカ
ットが行なわれ、更にアンニーリング処置が施された被
探傷物としての電縫鋼管1が紙面圧から右方向へ搬送さ
れている。この電縫鋼管1を外側から包み囲むようにし
て上流側に溶接部位置検出部としての溶接部位置検出装
置20.下流側に探傷装置40が互いに近接した位置に
設置されている。前記溶接部位置検出部[20は、装置
本体21と、この装置本体21内に回転自在に軸支され
た回転筒22と、この回転筒22を回転駆動するための
回転駆動部23とから構成されている。
In the figure, an electric resistance welded steel pipe 1 as an object to be inspected, which has been swamped in the direction of the pipe axis, resistance welded, peed cut, and annealed, is being conveyed to the right from the paper surface pressure. . A welding position detecting device 20 as a welding position detecting section is provided on the upstream side so as to surround the electric resistance welded steel pipe 1 from the outside. Flaw detection devices 40 are installed at positions close to each other on the downstream side. The welding part position detection unit [20 is composed of a device main body 21, a rotary cylinder 22 rotatably supported within the device main body 21, and a rotation drive unit 23 for rotationally driving the rotary cylinder 22. has been done.

前記回転筒22は、円筒部24と、この円筒部24の左
端部にボルト等で固着された円盤状のアダプタ25とか
ら成る。このアダプタ25vCは、支持腕26を介して
振動子ホルダ27が設けられている。この振動子ホルダ
27は、縦断面が幅狭の部分円環状に形成されており、
頂部に前記電縫鋼管lの管軸に沿って配置された送信及
び受信用振動子28.29から成る振動子紙3oが装備
されている。この振動子紙30は、前述(7た斜角軸方
向透過方法による超音波パルスの送受信を行なう機能を
有している。前記振動子ホルダ27は、電縫鋼管1の表
面から僅かな距離だけ離れて設置されており、前記アダ
プタ25から強制的に供給される脱気水によって振動子
ホルダ27の送受信用振動子28.29と電縫鋼管1の
間が局部水浸されるようになっている。前記支持腕26
の電縫鋼管1側端部に該電縫鋼管1に当接するローラ(
図示せず)が装備されている。この支持腕26は、アダ
プタ25側に備えられた追動機構(図示せず)によって
常時電縫鋼管1方向へ付勢されており、このため何らか
の原因で電縫鋼管1の管軸が平行移動した場合、支持腕
26が応動し、前記振動子ホルダ27と電縫鋼管1の間
が一定の距離を保つようになっている。前記回転駆動部
23はサーボモータを有しており、このサーボモータの
回転力がベルト31′ff介]7て前記回転筒22に伝
達されるようになっている。これにより、回転筒22は
所定速度で回転される。前記回転駆動部23には、回転
筒22の基準位置通過タイミング送するための電磁カッ
プリング部、前記脱気水を供給するための給水カップリ
ング部等が備えられている。これらは周知の回転形超音
波探傷装置と略同様の構成でらジ詳細は略す。このよう
に構成された溶接部位置検出装置20に於て、電縫鋼管
1が回転筒22の内径側を通過するとき、前記振動子組
30が該電縫鋼管1の周囲を回転し/、cがら局部水浸
法により、その全体を連続的に走査し溶接部位置検出を
行なうようになっている。
The rotary cylinder 22 includes a cylindrical portion 24 and a disk-shaped adapter 25 fixed to the left end of the cylindrical portion 24 with a bolt or the like. This adapter 25vC is provided with a vibrator holder 27 via a support arm 26. This vibrator holder 27 has a longitudinal cross section formed in a partially annular shape with a narrow width.
A vibrator paper 3o consisting of transmitting and receiving vibrators 28 and 29 arranged along the tube axis of the electric resistance welded steel pipe l is provided on the top. This transducer paper 30 has a function of transmitting and receiving ultrasonic pulses by the oblique axial transmission method described in (7). The transducer holder 27 is installed at a distance between the transmission and reception transducers 28 and 29 of the transducer holder 27, and the electric resistance welded steel pipe 1 is partially immersed in water by degassed water forcibly supplied from the adapter 25. The support arm 26
A roller (
(not shown) is equipped. This support arm 26 is always urged in the direction of the ERW steel pipe 1 by a follow-up mechanism (not shown) provided on the adapter 25 side, and therefore, for some reason, the tube axis of the ERW steel pipe 1 moves in parallel. In this case, the support arm 26 responds to maintain a constant distance between the vibrator holder 27 and the electric resistance welded steel pipe 1. The rotary drive section 23 has a servo motor, and the rotational force of the servo motor is transmitted to the rotary cylinder 22 via a belt 31'ff. Thereby, the rotating cylinder 22 is rotated at a predetermined speed. The rotation drive unit 23 includes an electromagnetic coupling unit for timing the rotation tube 22 to pass through the reference position, a water supply coupling unit for supplying the degassed water, and the like. These components have substantially the same configuration as a well-known rotary ultrasonic flaw detector, and the details will be omitted. In the welded portion position detection device 20 configured as described above, when the ERW steel pipe 1 passes through the inner diameter side of the rotating tube 22, the vibrator set 30 rotates around the ERW steel pipe 1. Using the local water immersion method, the entire area is continuously scanned to detect the position of the weld.

前記探傷装置40は、装置本体41と、この装置本体4
1内に回動自在に軸支された回動筒42と、この回動筒
42を回動駆動するための回動駆動部43とから構成さ
れている。前記回動筒42は円筒部44と、この円筒部
44の右端部に固着された円盤状のアダプタ45とから
成り、このアダプタ45には、前記支持腕26.振動子
ホルダ27と略同様に構成された支持腕46.探触子ホ
ルダ47が設けられている。この探触子ホルダ47は断
面が略号部分円環状に形成されており、この探触子ちル
ダ47に電縫鋼管1の溶接部2(第1図参照)の欠陥検
査を行7ようために最小限必要なチャンネル数の探触子
48,48.・・・から成る探触子群49が設けられて
いる。この探触子ホルダ47は電縫鋼管1の表面から僅
かな距離だけ離れて設けられており、前記アダプタ45
から供給される脱気した探傷水により、探触子48゜4
8、・・・と電縫鋼管1との間が局部水浸されるように
なっている。前記支持腕46は、支持腕26と同様に追
動機構により電縫鋼管lの管軸に対する平行移動に応動
するようになっている。前記回動駆動部43はサーボモ
ータを崩しており、このサーボモータと前記回動筒42
がベルト39で連結されている。そして、前記溶接部位
置検出装置20から送られる溶接部位置信号に基づきサ
ーボモータが駆動制御されるようVCなっておりこれに
より回動筒42が必要に応じて所定量回動され前記探触
子ホルダ47に設けられた探触子群49が溶接部2の位
置変化(回転変化)をならうことができるようになつC
いる。 この回動筒42は±180° 回動しトラッキ
ング動作を行なえるようにt、仁っている。前記回動駆
動部43((は、回動筒42の現在位置発生部が設けら
れている。前記装置本体41には、前記探傷水を供給す
るための探傷水給水カップリング部が設けられており、
又、回動筒42には、探触7群49の送受信号を伝送す
るため所定の配線がなされ、ケーブルを介し7て外部の
処理装置へ接続されるように成っている。
The flaw detection device 40 includes a device main body 41 and a device main body 4.
The rotary cylinder 42 is rotatably supported within the rotary tube 1, and a rotary drive section 43 for rotationally driving the rotary cylinder 42. The rotating cylinder 42 consists of a cylindrical part 44 and a disk-shaped adapter 45 fixed to the right end of the cylindrical part 44, and the adapter 45 has the support arm 26. A support arm 46 configured in substantially the same manner as the vibrator holder 27. A probe holder 47 is provided. This probe holder 47 has a partially annular cross section, and is used to inspect the welded portion 2 (see Fig. 1) of the ERW steel pipe 1 for defects. Probes 48, 48 . with the minimum required number of channels. A probe group 49 consisting of... is provided. This probe holder 47 is provided a short distance from the surface of the electric resistance welded steel pipe 1, and is connected to the adapter 45.
The degassed detection water supplied from
8, . . . and the electric resistance welded steel pipe 1 are locally flooded with water. Like the support arm 26, the support arm 46 is adapted to respond to the parallel movement of the electric resistance welded steel pipe l with respect to the tube axis by a tracking mechanism. The rotation drive unit 43 is a servo motor, and this servo motor and the rotation cylinder 42
are connected by a belt 39. The VC is configured such that a servo motor is driven and controlled based on the welding part position signal sent from the welding part position detection device 20, so that the rotary cylinder 42 is rotated by a predetermined amount as necessary. The probe group 49 provided on the holder 47 can follow the positional change (rotation change) of the welded part 2 C.
There is. This rotary cylinder 42 is tapered by t so that it can rotate ±180° and perform a tracking operation. The rotation driving section 43 (() is provided with a current position generating section of the rotation tube 42. The device main body 41 is provided with a flaw detection water supply coupling section for supplying the flaw detection water. Ori,
Further, the rotating tube 42 is provided with predetermined wiring for transmitting and receiving signals from the probe 7 group 49, and is connected to an external processing device via a cable 7.

このように構成された探傷装置40に於て、電縫横管1
が回動筒42の内径側を通過するとき、前記探触子群4
9が溶接線の変化に追動(2ながら局部水浸法により連
続的に溶接部の欠陥検査を行なうようになっている。
In the flaw detection device 40 configured in this way, the electric resistance welded horizontal pipe 1
When the probe group 4 passes through the inner diameter side of the rotating tube 42, the probe group 4
9 follows changes in the weld line (2) The weld is continuously inspected for defects using the local water immersion method.

前記浴接部位置検出装置20と探傷装置40id、各々
の回転筒22と回動筒42が汀、いに同軸とfるように
配設されており、かつ、共通の基台50上に固定されて
いる。この基台50は、手ω]操作で昇降自在tこ成っ
ている。前記電縫横管1け、溶接部位f面検出装置20
の前方及び探傷装置40の後方に装備された送りローラ
71.72により搬送されるようになっている。搬送中
、電縫鋼管1は、何らかの原因で、管軸回りに回転変位
を生じたり、或いは管軸と平行な方向(搬送方向に対し
垂直な方向)(′こ変位を生じたりする。これらの電縫
横管1に生ずる変位の内、管軸と平行7【変位に対し−
C前記支持腕26が追動動作を行なうように成っている
が、この追動動作の際、前記振動子ホルダ27が回転筒
22に対し相対的に回転変位する場合があり、これがた
め′d縫釧管1自身に管軸回りの変位が生じていなくて
も、溶接部位t?誤検出する恐れがある。かかる誤検出
を無くす1ヒめには、非常に↑j雑な信号補正処理が必
要となり、かつ、探傷装置40 fllllでの電縫鋼
管1の管軸に対する平行変位量(溶接部位置検出装置2
0と探傷装置40が各々別個の基台に搭載されると@は
、各々の装置位置における電縫鋼管lの平行変位量は同
量とならない)を考慮してならい制御量を決定しなけれ
ばならず、実際上不可能に近い。この点に関し、前記溶
接部位置検出装置20と探傷装[40が共通基台50上
に装備されると、電縫鋼管lの管軸に平行な変位が各々
の装置2.0.40に対し1:1となり、支持腕26.
46の追動動作が同一となる結果、振動子ホルダ27と
探触子ホルダ47の回転筒22と回転m42に対する相
対的回転量も同一となり、溶接部位置の前記検出誤差が
相殺された形となる。よって、電縫鋼管lの管軸と平行
な変位は無視出来、管軸回りの変位に対し溶接部位置検
出装置20の検出した溶接部位置信号で直接探傷装置4
0をならい制御略せることができる。
The bath contact position detection device 20, the flaw detection device 40id, and the respective rotary tubes 22 and 42 are arranged so as to be coaxial with each other, and are fixed on a common base 50. has been done. This base 50 can be raised and lowered by manual operation. 1 piece of electric resistance welding horizontal pipe, welding part f-plane detection device 20
The flaw detection device 40 is conveyed by feed rollers 71 and 72 provided in front of the flaw detection device 40 and at the rear of the flaw detection device 40 . During transportation, the ERW steel pipe 1 may undergo rotational displacement around the tube axis or displacement in a direction parallel to the tube axis (perpendicular to the conveyance direction) for some reason. Of the displacements that occur in the ERW horizontal tube 1, the displacement parallel to the tube axis 7 [with respect to displacement -
C The support arm 26 is configured to perform a follow-up operation, but during this follow-up operation, the vibrator holder 27 may be rotationally displaced relative to the rotary cylinder 22, and this may result in 'd Even if there is no displacement around the tube axis in the sewing tube 1 itself, the welding area t? There is a risk of false detection. The first step in eliminating such false detections requires extremely complicated signal correction processing, and the amount of parallel displacement of the ERW steel pipe 1 with respect to the pipe axis (the weld position detection device 2
0 and the flaw detection device 40 are each mounted on separate bases, the amount of parallel displacement of the ERW steel pipe l at each device position will not be the same). It is almost impossible in practice. In this regard, when the weld position detection device 20 and the flaw detection device [40] are installed on the common base 50, the displacement parallel to the tube axis of the ERW steel pipe l will be 1:1, and the support arm 26.
As a result, the relative rotation amounts of the transducer holder 27 and the probe holder 47 with respect to the rotary tube 22 and the rotation m42 are also the same, and the detection error of the weld position is canceled out. Become. Therefore, the displacement parallel to the pipe axis of the ERW steel pipe l can be ignored, and the flaw detection device 4 can directly detect the displacement around the pipe axis using the weld position signal detected by the weld position detection device 20.
Following the example of 0, the control can be omitted.

第7図は、溶接部位置信号1(基づき倣い制御を行なわ
しめるための電気的構成例金示すブロック図である。図
に於て、溶接部位置検出装置20の振動子紙30は、超
音阪送受信回路51(#こよって動作され斜角軸方向透
過法に基づく超音波パルスの送受を行なう。この振動子
紙30は、電縫鋼管1の周囲を所定速度で回転し連続的
に走査する。
FIG. 7 is a block diagram showing an example of an electrical configuration for performing tracing control based on the weld position signal 1. In the figure, the transducer paper 30 of the weld position detection device 20 is Transmission/reception circuit 51 (#) is operated to transmit and receive ultrasonic pulses based on the oblique axial transmission method. This transducer paper 30 rotates around the ERW steel pipe 1 at a predetermined speed and continuously scans it. .

前記超音波送受信器51fd受信用振動子29の受信し
た透過パルスレベルの変化を連続的なアナログ信号に変
換し溶接部位置アナログ信号として出力する。この溶接
部位置アナログ信号はビードカットの状態により例えは
前記第4図に示す形状をしており、これを波形整形回路
52で波形整形しパルス状の溶接部位置信号を得る。一
方、前記回転筒22の周方向の基準点、例えば、支持腕
26の追動機構が原位置復帰した状態における振動子紙
30の位置が該回転筒22の回転で天井位置を通過する
毎に、前記基準位置通過タイミング発生部80にパルス
状の基準位置信号全発生させる。
The ultrasonic transmitter/receiver 51fd converts the change in the transmitted pulse level received by the receiving transducer 29 into a continuous analog signal and outputs it as a welding position analog signal. This weld position analog signal has the shape shown in FIG. 4, for example, depending on the state of the bead cut, and is waveform-shaped by the waveform shaping circuit 52 to obtain a pulsed weld position signal. On the other hand, each time the reference point in the circumferential direction of the rotary tube 22, for example, the position of the vibrator paper 30 in a state where the tracking mechanism of the support arm 26 has returned to its original position, passes through the ceiling position due to the rotation of the rotary tube 22, , the reference position passage timing generating section 80 generates all pulsed reference position signals.

次に、計数回路53でクロック発生回路54が出力する
位置角度計数用のクロックパルスを前記基準位置信号を
人力してから溶接部位置信号を入力する′まで計数し目
標値信号(溶接部位置検出少とする(第8図参照)。
Next, the counter circuit 53 counts clock pulses for position and angle counting output from the clock generation circuit 54 from when the reference position signal is input manually until when the welding position signal is input, and the target value signal (welding position detection (See Figure 8).

前記探傷装置40は、溶接部位置検出装置20から送ら
れる目標値信号に基づき、前記回動駆動部43のサーボ
モータをフィードバック制御し溶接部位置変化に探触子
群491rなられせる。このフィードバック制御を詳述
すると、前記回動駆動部43の現在位置発生部が回動筒
420周方向の基準点、例えは支持腕46が原位置復帰
したときの探触子ホルダ47の中心点の天井位置からの
回動量信号(制御量信号)を発生する。そして、フィー
ドバックによりこの回!JJ量を溶接部位置検出装置2
0から送られる目標値と比較し両者が一致するようにサ
ーボモータの制御を行なう。
The flaw detection device 40 performs feedback control on the servo motor of the rotary drive unit 43 based on the target value signal sent from the weld position detection device 20, and causes the probe group 491r to follow the change in the weld position. To explain this feedback control in detail, the current position generating section of the rotation drive section 43 is a reference point in the circumferential direction of the rotation tube 420, for example, the center point of the probe holder 47 when the support arm 46 returns to its original position. Generates a rotation amount signal (controlled amount signal) from the ceiling position. And this time due to feedback! JJ amount is detected by welding position detection device 2
The servo motor is compared with the target value sent from 0 and the servo motor is controlled so that the two match.

ところで、前記溶接部位置アナログ信号が第4図に示す
波形形状をしている場合、波形整形回路52の出力パル
スの立上がりタイミングは溶接部2の中心位置より早く
なり、この結果第9図の図(1)に示す如く前記計数回
路53の出力である目標値θが溶接部2の実際の中心位
置からずれることになる。従って、前記計数回路53出
力で、そのまま探傷位置40の制御を行なうと第9図の
図(2)に示す如くΔθだけ、ならい誤差が生じてしま
う。
By the way, when the welding part position analog signal has the waveform shape shown in FIG. 4, the rising timing of the output pulse of the waveform shaping circuit 52 is earlier than the center position of the welding part 2, and as a result, the waveform shown in FIG. As shown in (1), the target value θ, which is the output of the counting circuit 53, deviates from the actual center position of the welding part 2. Therefore, if the flaw detection position 40 is directly controlled by the output of the counting circuit 53, a tracing error of Δθ will occur as shown in FIG. 9 (2).

この誤差をなくすため前記計数回路53の出力側にオフ
セット回路55が設けられている。このオフセット回路
550機能を説明すると、捷ず、オフセット回路55の
オフセット量を零とし、前記計数回路53の出力する目
標値信号で探傷装置40をならい制御させる。このとき
、前述した如く、lθだけ、ならい誤差が生じる。次に
前記オフセット回路55を手動操作し、オフセット量を
微調整しながら目標値にΔθ分だけオフセットを掛け、
目視してより前記探触ホルダ47の中心に植設された指
針60が溶接部2の中心位置に合うよウニスる。このよ
うにして一旦、目漂値のオフセット操作が完了すれば、
以後前記計数回路53の出力である目標値信号がオフセ
ット回路55によって自動的に修正され、修+E目標値
信号として探傷装置40側へ出力されることになる。こ
れにより、探傷装置40の正確なならい制御が可能とな
る。
To eliminate this error, an offset circuit 55 is provided on the output side of the counting circuit 53. To explain the function of this offset circuit 550, the offset amount of the offset circuit 55 is set to zero without switching, and the flaw detection device 40 is controlled by the target value signal outputted from the counting circuit 53. At this time, as described above, a tracing error occurs by lθ. Next, manually operate the offset circuit 55 to offset the target value by Δθ while finely adjusting the offset amount.
By visual inspection, the pointer 60 installed in the center of the probe holder 47 is aligned with the center position of the welded part 2. Once the offset operation of the target value is completed in this way,
Thereafter, the target value signal that is the output of the counting circuit 53 is automatically corrected by the offset circuit 55, and is outputted to the flaw detection apparatus 40 as a modified +E target value signal. This allows accurate tracing control of the flaw detection device 40.

上記した実施例によれば、溶接部位置検出を行なうため
の超音波パルスを溶接線方向に沿って伝播させたことに
より母材部と溶接部の間で極めて大きな透過パルスのレ
ベル差を得ることができ、しかも被検材である電縫鋼管
の温度、熱処理の有無2色変化等に対して何らの制約も
受けず任意の装置設置条件において正確な溶接部位置検
出を行なうことができる。これがため探傷装置は必要最
小限のチャンネル数を備えるだけで信頼性の高い欠陥検
査が可能と7′J1.り装置の小型・簡単化及び低廉化
を図ることができる。また、溶接部位置検出装置を共通
基台に同軸上に設置したので電縫鋼管が管軸と平行な変
位金起こしてもならい誤差を生じず、このため複雑な信
号処理を要することなく正確に7【らい制御できる。更
に、溶接部位置情報に手動操作で所定量のオフセットを
掛け、溶接部中心位置情報を得るようにしたので探傷装
置のチャンネル数を減少でき極めて簡単な構成で精度の
高い実用的な倣い式電縫鋼管溶接部探傷装置が得られる
According to the embodiment described above, by propagating the ultrasonic pulse for detecting the position of the weld along the weld line direction, an extremely large difference in the level of the transmitted pulse can be obtained between the base material and the weld. Moreover, accurate weld position detection can be performed under any device installation conditions without any restrictions on the temperature of the electric resistance welded steel pipe that is the material to be inspected, the presence or absence of heat treatment, two-color change, etc. Therefore, it is possible to perform highly reliable defect inspection by simply equipping the flaw detection device with the minimum number of channels required.7'J1. The device can be made smaller, simpler, and less expensive. In addition, since the weld position detection device is installed coaxially on a common base, there will be no error even if the ERW steel pipe is displaced parallel to the pipe axis. 7 [Leprosy can be controlled. Furthermore, by manually applying a predetermined amount of offset to the weld position information to obtain the weld center position information, the number of channels of the flaw detection device can be reduced, making it possible to reduce the number of channels of the flaw detection device and create a highly accurate and practical tracing-type detector with an extremely simple configuration. A flaw detection device for welded parts of sewn steel pipes is obtained.

尚、上記実施例に於ては、被検材に電縫鋼管を用いたが
直線状の溶接線を持つならば他の溶接鋼管でもよい。
In the above embodiment, an electric resistance welded steel pipe was used as the test material, but other welded steel pipes may be used as long as they have a straight weld line.

以上のように本発明によれば、簡単な構成で、精IWよ
く溶接部の中心位置変化を倣うことができ、従って実用
性に優れかつ信頼性の高い倣い式溶接鋼管の溶接部探傷
装置を得ることができる。
As described above, according to the present invention, it is possible to precisely trace the change in the center position of a welded part with a simple configuration, and therefore, a highly practical and reliable tracing type welded steel pipe welded part flaw detection device is provided. Obtainable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る溶接部位置検出方式を説明する原
理1ス、第2図乃至第5図は第1図の作用説明図、第6
図は本発明Vこ係る倣い式電縫yI4管の溶接部探傷装
置を示す概略正面図、第7図は第6図の1部に係る雇気
的構成図、第8図は第7図の動作を示すタイミングチャ
ート、第9図は第7図の動作説明図である。 1・・・電縫鋼管、2・・・溶接部、5,30・・・振
動子組、8・・・母材部、10・・・倣い式電縫鋼管の
溶接部探傷装置、20・・浴接部位置検出装置、22・
・・回転筒、23・・・回転駆動部、40・・・探傷装
置、53・・・計数回路、55・・・オフセット回路。 特許出願人 株式会社東京計器(+1か1名)代理人 
弁丹士 高 橋   勇 第2図 第3図 第4図 第5図 東京都千代田区大手町2丁目6 番3号 手続補正書(自発) 昭和58年3月14日 特許庁長官若杉和夫 殿 1、事件の表示 昭和57年特許願 第227384号 2、発明の名称 餐いX闇¥苗讐の輩¥誦鉦私′蒜′に 3、補正をする者 事件との関係  特許出願人 住 所 東京都太田区南蒲田2丁目16番46号名 称
  (338)株式会社 東 京 計 器代表者河野俊
助 住 所 東京都千代田区大手町二丁目6番3号名 称 
(665)新日本製鐵株式会社代表者 武 1)  豊 4、代理人 〒16410003) 361−0819
氏 名 弁理士(7916)高 橋   !I!!l]
ケ’、、’j:I: 17:5、補正の対象 明細書および図面 6、補正の内容 (I)、添付図面の内の第2図および第3図を、別紙の
如く訂正する。 (2)、明細書第7ページに関し、次の如く補正する。 ■ 第11行目の「平形」を削除し、この削除した箇所
に「曲率の大きな丸形」を挿入する。 ■ 第12行目の「内径側が」と「丸形カッタ」との間
に、「曲率の小さな」を挿入する。 ■ 第16行目の「上昇」を削除し、この削除した箇所
に「減衰」を挿入する。 ■ 第17行目の「7.7で」と「大幅に」との間に、
[凹面鏡の原理により上昇し内面カッタ部で内外径が不
平行となるため十を挿入する。 以上
FIG. 1 is a principle 1 explaining the weld position detection method according to the present invention, FIGS. 2 to 5 are diagrams explaining the operation of FIG.
The figure is a schematic front view showing a welded part flaw detection device for a copying type electric resistance welded I4 pipe according to the present invention. A timing chart showing the operation, FIG. 9 is an explanatory diagram of the operation of FIG. 7. DESCRIPTION OF SYMBOLS 1... ERW steel pipe, 2... Welded part, 5, 30... Vibrator set, 8... Base metal part, 10... Copy type ERW steel pipe welded part flaw detection device, 20.・Bath contact position detection device, 22・
...Rotating tube, 23... Rotating drive section, 40... Flaw detection device, 53... Counting circuit, 55... Offset circuit. Patent applicant Tokyo Keiki Co., Ltd. (+1 or 1 person) agent
Isamu Takahashi, Bentanshi Figure 2 Figure 3 Figure 4 Figure 5 2-6 Otemachi, Chiyoda-ku, Tokyo, No. 3 Procedural amendment (voluntary) March 14, 1980 Patent Office Commissioner Kazuo Wakasugi Tono 1 , Indication of the case 1982 Patent Application No. 227384 2. Title of the invention 2-16-46 Minami Kamata, Ota-ku, Tokyo Name (338) Tokyo Keiki Representative Shunsuke Kono Address 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (338)
(665) Nippon Steel Corporation Representative Takeshi 1) Yutaka 4, Agent 16410003) 361-0819
Name Patent Attorney (7916) Takahashi! I! ! l]
K',,'j:I: 17:5, The specification and drawing 6 to be amended, the content of the amendment (I), and Figures 2 and 3 of the attached drawings are corrected as shown in the attached sheet. (2) Regarding page 7 of the specification, the following amendments have been made. ■ Delete "flat shape" in the 11th line and insert "round shape with large curvature" in the deleted place. ■ Insert "small curvature" between "inner diameter side" and "round cutter" in the 12th line. ■ Delete "rise" in the 16th line and insert "decay" in the deleted place. ■ In line 17, between “7.7” and “significantly”,
[Due to the principle of a concave mirror, it rises and the inner and outer diameters become non-parallel at the inner cutter, so insert the that's all

Claims (2)

【特許請求の範囲】[Claims] (1)溶接鋼管の溶接部位置検出部を有し、この溶接部
位置検出部が出力する溶接部位置情報に基づき倣い制御
動作を行なう倣い式溶し鋼管の溶接部探傷装置に於て、
前記溶接部位置検出部Vこ、送は及び受信用振動子組か
ら成る一組の振動子組と、この振動子組ケ溶接鋼管の周
方向へ走査せしめる手段と、超音波パルスを前記溶接鋼
管の浴接線と平行に入射伝播させ、その透過パルスの母
材部に対する溶接部の受信レベル変化を検知し溶接部位
置情報を得る手段と、この溶接部位置情報にオフセット
を掛けて溶接部中心位置情報とする手段とを備えたこと
を特徴とする倣い式溶接鋼管の溶接部探傷装置。
(1) In a copying type welded steel pipe welded part flaw detection device that has a welded part position detection part of a welded steel pipe and performs a copying control operation based on the welded part position information outputted by this welded part position detection part,
The welded portion position detecting section V includes a transducer set consisting of transmitting and receiving transducer sets, means for scanning the transducer set in the circumferential direction of the welded steel pipe, and means for transmitting ultrasonic pulses to the welded steel pipe. A means for obtaining weld position information by transmitting the transmitted pulse parallel to the bath tangent and detecting changes in the reception level of the weld with respect to the base metal, and a means for obtaining weld position information by applying an offset to this weld position information. A tracing type welded part flaw detection device for a welded steel pipe, characterized in that it is equipped with means for obtaining information.
(2)、溶接鋼管の溶接部位置検出部を有し、この溶接
部位置検出部が出力する浴接部位置情報に基づき倣い制
御動作を行なう倣い式溶接鋼管の溶接部探傷装置に於て
、前記溶接部位置検出部に、送信及び受信用振動子組か
「、成Z、−組の振動子組と、この振動子組を溶接鋼管
の周方向へ走査せしめる手段と、超音波パルスを前記溶
接鋼管の溶接線と平行に入射伝播させ、その透過ノ(ル
スの母材部に対する溶接部の受信レベル変化を検知し溶
接部位置情報を得る手段と、この溶接部位置情報にオフ
セットを掛けて溶接部中心位置情報とする手段とを備え
、前記溶接部位置検出部と溶接部探動部とを共通の基台
上に装備したことを特徴とした倣い式溶接鋼管の溶接部
探傷装置。
(2) In a copying type welded steel pipe welded part flaw detection device that has a welded part position detection section for welded steel pipes and performs a copying control operation based on the bath contact position information outputted by this welded section position detection section, The welded portion position detecting unit includes a transmitting and receiving transducer set or a transducer set, a means for scanning the transducer set in the circumferential direction of the welded steel pipe, and a means for scanning the transducer set in the circumferential direction of the welded steel pipe. A means for obtaining weld position information by transmitting the incident beam parallel to the weld line of a welded steel pipe and detecting a change in the reception level of the weld with respect to the base metal of the transmitted nozzle, and a means for obtaining weld position information by applying an offset to the weld position information. 1. A tracing-type welded steel pipe welded part flaw detection apparatus, characterized in that said welded part position detection part and said welded part probe part are mounted on a common base, and said welded part position detection part and said welded part probe part are equipped on a common base.
JP57227384A 1982-12-28 1982-12-28 Flaw detector for copying welded steel pipe Pending JPS59120952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57227384A JPS59120952A (en) 1982-12-28 1982-12-28 Flaw detector for copying welded steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57227384A JPS59120952A (en) 1982-12-28 1982-12-28 Flaw detector for copying welded steel pipe

Publications (1)

Publication Number Publication Date
JPS59120952A true JPS59120952A (en) 1984-07-12

Family

ID=16859965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57227384A Pending JPS59120952A (en) 1982-12-28 1982-12-28 Flaw detector for copying welded steel pipe

Country Status (1)

Country Link
JP (1) JPS59120952A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165157A (en) * 1984-09-07 1986-04-03 Furukawa Electric Co Ltd:The Detection of defect of metallic pipe
JPS62113060A (en) * 1985-11-12 1987-05-23 Idemitsu Petrochem Co Ltd Ultrasonic flaw detection method and apparatus for pipe body
JP2018036280A (en) * 2017-11-13 2018-03-08 東北特殊鋼株式会社 Ultrasonic flaw inspection device for round bar material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165157A (en) * 1984-09-07 1986-04-03 Furukawa Electric Co Ltd:The Detection of defect of metallic pipe
JPS62113060A (en) * 1985-11-12 1987-05-23 Idemitsu Petrochem Co Ltd Ultrasonic flaw detection method and apparatus for pipe body
JP2018036280A (en) * 2017-11-13 2018-03-08 東北特殊鋼株式会社 Ultrasonic flaw inspection device for round bar material

Similar Documents

Publication Publication Date Title
US5085082A (en) Apparatus and method of discriminating flaw depths in the inspection of tubular products
US3969926A (en) Alignment of ultrasonic transducer probe in pulse-echo testing
CA1108743A (en) Method and apparatus for automatic ultrasonic flaw detection
EP0139867B1 (en) Near surface inspection system
JPH02120659A (en) Non-destructive dimensions and defect inspection for thin tube weld part
JPS59120952A (en) Flaw detector for copying welded steel pipe
JP2001056318A (en) Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detector
JPS59118275A (en) System for detecting position of weld zone in welded steel pipe
JPS63236959A (en) Ultrasonic flaw detecting method for round rod metallic body
JP2985740B2 (en) Pipe end detector for automatic flaw detector
JPH04161848A (en) Automatic ultrasonic flaw detecting apparatus
JP3612392B2 (en) Ultrasonic flaw detection scanner
JP2002122573A (en) Method and apparatus for inspection of defect of round material
JPS6170459A (en) Method and apparatus for adjusting sensitivity of ultrasonic flow detector
JPS59126950A (en) Optimum condition automatically holding type ultrasonic flaw detector
JP3800133B2 (en) Ultrasonic flaw detection method and apparatus for welded steel pipe welds
JPH10246793A (en) Inspection method and device for welding part of nuclear fuel rod end plug
JPS63256851A (en) Ultrasonic flaw detector
JPS62204107A (en) Measuring method for liner thickness of duplex tube
JPS5831871B2 (en) Ultrasonic flaw detection method
JPH07294498A (en) Ultrasonic flaw detecting method and device therefor
KR20070005767A (en) Laser using welding flaw detecting for spiral welding pipe
JP2001235450A (en) Crack detection method of thin piping welding part and device
JPS6335363Y2 (en)
JPH0463342B2 (en)