JP2001235450A - Crack detection method of thin piping welding part and device - Google Patents

Crack detection method of thin piping welding part and device

Info

Publication number
JP2001235450A
JP2001235450A JP2000048261A JP2000048261A JP2001235450A JP 2001235450 A JP2001235450 A JP 2001235450A JP 2000048261 A JP2000048261 A JP 2000048261A JP 2000048261 A JP2000048261 A JP 2000048261A JP 2001235450 A JP2001235450 A JP 2001235450A
Authority
JP
Japan
Prior art keywords
thin
ultrasonic
welded portion
wave
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000048261A
Other languages
Japanese (ja)
Inventor
Satoru Hara
悟 原
Motonori Yasunaga
元則 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Nondestructive Inspection Co Ltd
Toshiba Plant Construction Corp
Original Assignee
Shin Nippon Nondestructive Inspection Co Ltd
Toshiba Plant Construction Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Nondestructive Inspection Co Ltd, Toshiba Plant Construction Corp filed Critical Shin Nippon Nondestructive Inspection Co Ltd
Priority to JP2000048261A priority Critical patent/JP2001235450A/en
Publication of JP2001235450A publication Critical patent/JP2001235450A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/045External reflections, e.g. on reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds
    • G01N2291/2675Seam, butt welding

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently detect the presence of the inferiority of a welding part in thin piping such as instrument piping with high reliability. SOLUTION: An ultrasonic wave transmitted from an ultrasonic probe 11 is reflected by using a triangular mirror 14 to be incident on the welding part 3 of the thin piping 2a, the reflected wave is detected by the ultrasonic probe 11, and the transmission wave is detected by an ultrasonic probe 12 arranged on the contrary side to judge the presence of the inferiority of welding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は計装配管等の薄肉配
管における溶接部の不良の有無を超音波で検査する探傷
方法および探傷装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flaw detection method and a flaw detection apparatus for inspecting a welded portion of a thin pipe such as an instrumentation pipe by using an ultrasonic wave.

【0002】[0002]

【従来の技術】油圧配管や空気圧配管等の計装配管はス
テンレス系、鋼系または銅系などの配管が使用され、継
手や溶接によって接続される。しかし原子力発電設備等
における計装配管のように重要なものは、一般にSUS
−304等のステンレス系配管を使用し溶接により接続
している。このような計装配管は小口径の薄肉配管であ
って、口径は10mm〜20mm程度、肉厚は1.5m
m〜3mm程度の範囲にある。一般に溶接による配管の
接続は、配管どうしの端部を突き合わせて行うが、配管
端部が完全に溶け込んだ溶融状態で溶接されていない
と、強度が低下したり漏洩の原因になる。また、この溶
接部を放射線透過試験で確認したところ、接合部に密着
した溶け込み不良があっても、検査フィルム上でそれを
確認することができなく、他に適当な検査方法が見つか
らなかった。
2. Description of the Related Art Instrumentation pipes such as hydraulic pipes and pneumatic pipes are made of stainless steel, steel or copper, and are connected by joints or welding. However, important things such as instrumentation piping in nuclear power plants are generally SUS
It is connected by welding using stainless steel piping such as -304. Such an instrumentation pipe is a small-diameter thin-walled pipe having a diameter of about 10 mm to 20 mm and a thickness of 1.5 m.
m to about 3 mm. Generally, connection of pipes by welding is performed by abutting the ends of the pipes. If the pipe ends are not welded in a completely melted state, the strength is reduced or leakage occurs. Further, when this welded portion was confirmed by a radiation transmission test, it was found that even if there was a poor penetration that adhered to the joint, it could not be confirmed on the inspection film, and no other suitable inspection method was found.

【0003】図6(a)は超音波を使用した溶接部の検
査原理を説明するもので、超音波探触子1から角度αで
発信した超音波aは、配管2の管壁へ入射する際に角度
βに屈折されて溶接部3を照射する。溶接部3が完全に
溶け込んで形成された状態、すなわち正常に溶接されて
いる状態では、超音波aは溶接部3で散乱減衰されて反
射波は実質的に存在しない。しかし図6(b)のように
溶接部3に溶け込み不良の部分がある状態では、その部
分に生じる微小な隙間5によって矢印のような反射波b
が発生するので、反射波bを超音波探触子1で検出する
ことにより溶接不良を検出することができる。
FIG. 6A illustrates the principle of inspection of a welded portion using ultrasonic waves. Ultrasonic waves a transmitted at an angle α from an ultrasonic probe 1 are incident on the pipe wall of a pipe 2. At this time, it is refracted by the angle β and irradiates the weld 3. In a state where the welded portion 3 is completely melted and formed, that is, a state where the welding is normally performed, the ultrasonic waves a are scattered and attenuated by the welded portion 3, and the reflected wave does not substantially exist. However, as shown in FIG. 6 (b), in the state where there is a poor penetration part in the welded part 3, the reflected wave b
Is generated, the defective welding can be detected by detecting the reflected wave b with the ultrasonic probe 1.

【0004】[0004]

【発明が解決しようとする課題】計装配管のような肉厚
の薄い配管では、一般に配管端部が互いに密着し易く、
上記のような溶け込み不良の部分に微小な隙間5が生じ
ず、例えば図6(c)のように、薄肉配管2aの溶接部
3の溶け込み不良の部分に密着部6が形成されることも
少なくない。また、溶け込み不良部分に微小な隙間が生
ずるのは、管どうしの突き合わせ状態が良くない場合
と、何らかの不適切な溶接条件に基づく。このような密
着部6は超音波aを反射しないので、反射波を検出する
だけでは溶接不良の検出が困難である。そこで本発明は
このような問題を解決することを課題とし、そのための
新しい探傷方法および探傷装置を提供することを目的と
するものである。
In thin-walled pipes such as instrumentation pipes, the pipe ends generally tend to adhere to each other.
The small gap 5 is not generated in the portion where the penetration is poor as described above, and the adhesion portion 6 is rarely formed in the portion where the penetration is poor in the welded portion 3 of the thin pipe 2a, for example, as shown in FIG. Absent. In addition, the reason why a small gap is formed in the poorly penetrated portion is based on the case where the pipes are not in a good butted state and some inappropriate welding conditions. Since such a contact portion 6 does not reflect the ultrasonic waves a, it is difficult to detect a welding defect only by detecting a reflected wave. Therefore, an object of the present invention is to solve such a problem, and an object of the present invention is to provide a new flaw detection method and a flaw detection apparatus for that purpose.

【0005】[0005]

【課題を解決するための手段】前記のような密着部6と
超音波の関係について種々研究した結果、入射した超音
波は反射しないが、図6(c)のように反対側への透過
波cが検出可能なことが分かった。なお図6(b)のよ
うに隙間5が存在する場合は、前述のように反射波bは
検出されるが反対側への透過波cは検出されない。本発
明はかかる知見を基になされたものである。すなわち本
発明の薄肉配管における溶接部の探傷方法は、溶接部に
照射した超音波の反射波および透過波の両者を検出する
ことにより、溶接部の良否を判定することを特徴とする
ものである(請求項1)。
As a result of various studies on the relationship between the contact portion 6 and the ultrasonic wave as described above, the incident ultrasonic wave is not reflected, but the transmitted wave to the opposite side as shown in FIG. c was found to be detectable. When the gap 5 exists as shown in FIG. 6B, the reflected wave b is detected as described above, but the transmitted wave c to the opposite side is not detected. The present invention has been made based on such findings. That is, the flaw detection method for a welded portion in a thin-walled pipe according to the present invention is characterized in that the quality of the welded portion is determined by detecting both a reflected wave and a transmitted wave of an ultrasonic wave applied to the welded portion. (Claim 1).

【0006】上記方法において、溶接部の溶け込みが十
分な正常溶接の場合は、超音波の反射波および透過波は
(溶接部で、超音波の減衰が大きいため)実質的に検出
されず、溶接部の溶け込みが不十分で該部分に隙間が存
在する場合は、反射波は検出されるが透過波が検出され
ず、さらに溶接部の溶け込みが不十分で該部分に密着部
が存在する場合は、反射波は検出されないが透過波が検
出される。したがって、これらの情報から溶接部の状態
を正確に且つ高い信頼性で判定することが可能になる。
上記探傷方法において、薄肉配管への超音波の入射角
(α)を24°〜26°の範囲とすることができる(請
求項2)。この範囲でしかも超音波ビームを薄肉配管の
溶接部で集束させて検査することにより反射波や透過波
を高いS/N比で検出できる。さらに上記探傷方法にお
いて、溶接部3を挟んだ両側から超音波を切り換えて照
射することができる(請求項3)。このように超音波の
照射を切り換えることにより、溶接部の良否判定をさら
に正確に検査することができる。
In the above method, in the case of normal welding in which the penetration of the weld is sufficient, the reflected and transmitted ultrasonic waves are not substantially detected (because the ultrasonic waves are greatly attenuated at the weld), and the welding is not performed. When the penetration of the part is insufficient and there is a gap in the part, the reflected wave is detected but the transmitted wave is not detected, and when the penetration of the welded part is insufficient and the contact part exists in the part, , The reflected wave is not detected, but the transmitted wave is detected. Therefore, it is possible to determine the state of the welded portion accurately and with high reliability from these pieces of information.
In the flaw detection method, the incident angle (α) of the ultrasonic wave to the thin-walled pipe can be in a range of 24 ° to 26 ° (Claim 2). In this range, the reflected and transmitted waves can be detected with a high S / N ratio by focusing and inspecting the ultrasonic beam at the welded portion of the thin pipe. Further, in the flaw detection method, it is possible to switch and irradiate ultrasonic waves from both sides of the welded portion 3 (claim 3). By switching the irradiation of the ultrasonic waves in this way, the quality of the welded portion can be more accurately inspected.

【0007】次に本発明の探傷装置は、薄肉配管の溶接
部を超音波により探傷する装置であって、支持体と、送
受信面を対向させて前記支持体に支持された一対の超音
波探触子と、前記支持体に支持され、且つ、一方の超音
波探触子からの超音波を反射して薄肉配管の溶接部へ入
射させると共に、該溶接部からの透過波を他方の超音波
探触子へ反射させる三角ミラーと、を備えていることを
特徴とする薄肉配管溶接部の探傷装置(請求項4)であ
る。上記装置を使用することにより本発明の探傷方法を
効率良く実施することができる。さらに、薄肉配管2a
の溶接部3を超音波により探傷する装置において、超音
波探触子11,12を集束探触子とし、三角ミラー14
で反射して薄肉配管2aの溶接部3へ入射する超音波ビ
ームを溶接部3で集束させて反射波や透過波を高いS/
N比で検出することを特徴とすることができる。(請求
項5)また上記探傷装置において、支持体を薄肉配管に
装着する装着体をさらに備えることができる(請求項
6)。このような装着体を使用することにより、探傷装
置を安定して薄肉配管に装着することができる。
Next, a flaw detector of the present invention is a device for flaw-detecting a welded portion of a thin-walled pipe by using an ultrasonic wave, and comprises a support and a pair of ultrasonic detectors supported by the support with the transmitting and receiving surfaces facing each other. A probe, supported by the support, and reflects ultrasonic waves from one ultrasonic probe to be incident on a welded portion of a thin-walled pipe, and transmits a transmitted wave from the welded portion to the other ultrasonic wave. And a triangular mirror for reflecting light to a probe. By using the above device, the flaw detection method of the present invention can be efficiently performed. Furthermore, thin-walled piping 2a
In this apparatus, the ultrasonic probes 11 and 12 are used as focusing probes, and the triangular mirror 14 is used.
The ultrasonic beam that is reflected by the laser beam and incident on the welded portion 3 of the thin pipe 2a is focused by the welded portion 3 so that the reflected wave and the transmitted wave are increased in S / S
It can be characterized in that detection is performed using the N ratio. (Claim 5) Further, in the flaw detection apparatus, it is possible to further comprise a mounting body for mounting the support to the thin-walled pipe (Claim 6). By using such a mounting body, the flaw detector can be stably mounted on the thin-walled pipe.

【0008】[0008]

【発明の実施の形態】次に、本発明の実施の形態を図面
により説明する。図1は本発明の探傷装置の1例を示す
部分断面図で、図2はその右側面図である。これらの図
において、探傷装置10は送受信面11a,12aを対
向させて支持体13に支持された一対の超音波探触子1
1、12と、支持体13に支持され、且つそれら超音波
探触子11、12の中間に配置された三角ミラー14お
よび音響媒質(水)22とを備えている。なお支持体1
3は装着体15によって薄肉配管2aに着脱自在に装着
される。同一の構造を有する超音波探触子11と超音波
探触子12は、集束探触子であって、筒状のケーシング
内に振動子が収容され、その送受信面11a,12aが
同軸になるように支持体13に支持される。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a partial sectional view showing an example of the flaw detector according to the present invention, and FIG. 2 is a right side view thereof. In these figures, a flaw detector 10 includes a pair of ultrasonic probes 1 supported on a support 13 with transmission / reception surfaces 11a and 12a facing each other.
The ultrasonic probe includes a triangular mirror 14 and an acoustic medium (water) 22 supported by a support 13 and arranged between the ultrasonic probes 11 and 12. Support 1
3 is detachably mounted on the thin-walled pipe 2a by the mounting body 15. The ultrasonic probe 11 and the ultrasonic probe 12 having the same structure are focusing probes, in which a vibrator is accommodated in a cylindrical casing, and the transmitting and receiving surfaces 11a and 12a are coaxial. As described above.

【0009】支持体13は門型に形成され、その両脚部
を貫通する取付孔に超音波探触子11、12がそれぞれ
着脱自在に取り付けられる。例えば取付孔をねじ孔と
し、超音波探触子11、12のケーシング外周面にねじ
部を形成し、取付孔のねじ孔に超音波探触子11、12
をねじ込んで取り付けることにより、超音波探触子1
1、12の相対位置関係を正確に且つ容易に調整するこ
とができる。門型に形成された支持体13の内側中間部
にプリズム型の三角ミラー14が接着等により取り付け
られる。三角ミラー14は例えば二等辺三角形のステン
レス製ブロックからなり、鏡面に磨かれた2つの反射面
の一方は超音波探触子11から送信される超音波を所定
角度で溶接部3に照射し、溶接部3で反射された超音波
を超音波探触子11で受信する。また、反射面の他方は
溶接部3を透過する超音波(透過波)を超音波探触子1
2で受信する。
The support 13 is formed in a gate shape, and the ultrasonic probes 11 and 12 are detachably mounted in mounting holes penetrating both legs. For example, the attachment holes are screw holes, thread portions are formed on the outer peripheral surfaces of the casings of the ultrasonic probes 11 and 12, and the ultrasonic probes 11 and 12 are provided in the screw holes of the attachment holes.
The ultrasonic probe 1 is screwed and attached.
The relative positional relationship between 1 and 12 can be adjusted accurately and easily. A prism type triangular mirror 14 is attached to an intermediate portion inside the support 13 formed in a gate shape by bonding or the like. The triangular mirror 14 is made of, for example, an isosceles triangular stainless steel block, and one of the two mirror-polished reflecting surfaces irradiates the ultrasonic wave transmitted from the ultrasonic probe 11 to the welding portion 3 at a predetermined angle, The ultrasonic wave reflected by the welding portion 3 is received by the ultrasonic probe 11. The other of the reflection surfaces transmits ultrasonic waves (transmitted waves) transmitted through the welded portion 3 to the ultrasonic probe 1.
2 to receive.

【0010】図3(a)および図3(b)は、三角ミラ
ー14による超音波の反射関係を示すもので、右方に位
置する超音波探触子11(図示せず)から送信された超
音波aは三角ミラー14で反射して角度αで薄肉配管2
aに入射し、さらに角度βに屈折して溶接部3を照射す
る。図3(a)のように溶接部3の溶込み不良により微
小な隙間5が存在する場合は、反射波bが三角ミラー1
4に入射して超音波探触子11で受信する。図3(b)
のように溶接部3の溶け込み不良により密着部6が存在
する場合は、図示のように透過波cが反対側から三角ミ
ラー14に入射して左方に位置する超音波探触子(図示
せず)に受信する。本発明の探傷方法は前述したような
薄肉配管2aに好適に適用されるが、実験によれば薄肉
配管2aへの超音波の入射角(α)は24°〜26°の
範囲とすると良い結果が得られた。入射角(α)を24
°より小さくするとS/N比が小さくなって検出精度が
低下する傾向にあり、逆に入射角(α)を26°より大
きくすると透過波cが小さくなって検出しずらくなって
くる。例えば入射角(α)を25.6°に設定する場合
には、三角ミラー14の隅角は計算上32.2°とな
り、屈折後の超音波の角度βは65°になる。
FIGS. 3A and 3B show the relationship of reflection of ultrasonic waves by the triangular mirror 14, which is transmitted from the ultrasonic probe 11 (not shown) located on the right side. The ultrasonic wave a is reflected by the triangular mirror 14 and the thin pipe 2 is formed at an angle α.
a, and is refracted at an angle β to irradiate the weld 3. As shown in FIG. 3A, when a minute gap 5 exists due to poor penetration of the welded portion 3, the reflected wave b
4 and is received by the ultrasonic probe 11. FIG. 3 (b)
When the contact portion 6 exists due to poor penetration of the welded portion 3 as shown in FIG. 3, the transmitted wave c is incident on the triangular mirror 14 from the opposite side as shown in the figure, and the ultrasonic probe (shown in FIG. Zu) to receive. Although the flaw detection method of the present invention is suitably applied to the thin-walled pipe 2a as described above, according to experiments, it is preferable that the incident angle (α) of the ultrasonic wave to the thin-walled pipe 2a be in the range of 24 ° to 26 °. was gotten. Incident angle (α) is 24
If it is smaller than °, the S / N ratio tends to be small and the detection accuracy tends to be reduced. Conversely, if the incident angle (α) is larger than 26 °, the transmitted wave c will be small and it will be difficult to detect. For example, when the incident angle (α) is set to 25.6 °, the corner angle of the triangular mirror 14 is calculated to be 32.2 °, and the angle β of the ultrasonic wave after refraction becomes 65 °.

【0011】図1および図2において、支持体13を薄
肉配管2aに装着するために使用される装着体15は、
全体が馬鞍形状とされ、その中間部が上下方向に開放さ
れて平面枠型に形成されている。そしてその上部に前記
支持体13の中間部以下が嵌着される。装着体15の下
面側の両側は逆V字状に形成された装着部17を有し、
その装着部17を薄肉配管2aに跨がらせることによ
り、支持体13は安定に薄肉配管2aに装着される。こ
のように支持体13を装着体15に支持させた状態にお
いて、薄肉配管2a、超音波探触子11、12の送受信
面11a,12a、三角ミラー14等によって囲まれた
空間(超音波が通過する空間)には、超音波を伝搬させ
ると共に、超音波ビームを溶接部で集束させる目的で水
が充填される。そのため該空間に接する各機器の間隙部
分や各機器と薄肉配管2aの間隙部分に沿ってゴムパッ
キン等のシール材を装着する。なお装着体15の両側部
または支持体13の両側には該空間に水を注排水するた
めの注排水口(図示せず)が設けられる。
In FIGS. 1 and 2, a mounting body 15 used to mount the support 13 on the thin pipe 2a is
The whole is horseshoe-shaped, and its middle part is opened in the vertical direction to form a flat frame. Then, the middle part and the lower part of the support 13 are fitted to the upper part. Both sides on the lower surface side of the mounting body 15 have a mounting portion 17 formed in an inverted V shape,
The support 13 is stably mounted on the thin-walled pipe 2a by straddling the mounting portion 17 over the thin-walled pipe 2a. In the state where the support body 13 is supported by the mounting body 15 in this manner, a space surrounded by the thin-walled pipe 2a, the transmitting and receiving surfaces 11a and 12a of the ultrasonic probes 11 and 12, the triangular mirror 14, etc. Is filled with water for the purpose of transmitting ultrasonic waves and focusing the ultrasonic beams at the welded portions. Therefore, a sealing material such as a rubber packing is attached along a gap between each device in contact with the space and a gap between each device and the thin pipe 2a. In addition, on both sides of the mounting body 15 or on both sides of the support body 13, a pouring and discharging port (not shown) for pouring and discharging water into the space is provided.

【0012】図4は図1の探傷装置10とそれを把持す
る駆動装置18の正面図である。駆動装置18は探傷装
置10を薄肉配管2aの外周に沿って360°回転さ
せ、さらに薄肉配管2aの軸方向にスライドさせるもの
である。この駆動装置18は、探傷装置10をその装着
体15と共に把持する把持部19と、把持部19を薄肉
配管2aの軸方向に往復移動させる往復駆動部20と、
往復駆動部20を薄肉配管2aの外周に沿って360°
可逆回転させる回転駆動部21を備えている。把持部1
9は例えば電磁チャックなどを使用することができ、往
復駆動部20はサーボモータ等を利用することができ
る。また往復駆動部20が装着される回転駆動部21は
例えば本体とそれに連結した筒状体を有し、その筒状体
の内周部に複数設けた駆動ローラをサーボモータ等の駆
動装置で駆動することにより、本体を薄肉配管2aの外
周に沿って可逆回転させるように構成することができ
る。なお筒状体はヒンジ式とし、下方を開閉して薄肉配
管2aに装脱着できるようにすることができる。
FIG. 4 is a front view of the flaw detector 10 of FIG. 1 and a driving device 18 for holding the flaw detector. The driving device 18 rotates the flaw detector 10 by 360 ° along the outer circumference of the thin-walled pipe 2a, and further slides in the axial direction of the thin-walled pipe 2a. The driving device 18 includes a gripper 19 that grips the flaw detector 10 together with the mounting body 15, a reciprocating drive unit 20 that reciprocates the gripper 19 in the axial direction of the thin pipe 2a,
The reciprocating drive unit 20 is moved 360 ° along the outer circumference of the thin pipe 2a.
A rotation drive unit 21 for reversible rotation is provided. Gripper 1
9 can use, for example, an electromagnetic chuck, and the reciprocating drive section 20 can use a servomotor or the like. The rotary drive unit 21 to which the reciprocating drive unit 20 is attached has, for example, a main body and a tubular body connected to the main body, and drives a plurality of drive rollers provided on the inner peripheral portion of the tubular body by a drive device such as a servomotor. By doing so, the main body can be configured to be reversibly rotated along the outer periphery of the thin-walled pipe 2a. The tubular body may be a hinge type, and the lower part may be opened and closed so that it can be attached to and detached from the thin-walled pipe 2a.

【0013】次に上記探傷装置を使用して薄肉配管の溶
接部を検査する方法を説明する。先ず図4のように、薄
肉配管2aの溶接部3に接近した部分に駆動装置18を
装着する。次に装着体15に支持された探傷装置10を
その把持部19に把持させた後、例えば別途設けた制御
部(図示せず)からの操作信号により往復駆動部20を
駆動し、探傷装置10を溶接部3に対し図1のように位
置合わせする。この位置合わせは、例えば支持体13ま
たは装着体15に基準線を設け、溶接部3をその基準線
に一致させればよい。
Next, a method for inspecting a welded portion of a thin pipe using the above-described flaw detector will be described. First, as shown in FIG. 4, the driving device 18 is mounted on a portion of the thin pipe 2a close to the welded portion 3. Next, after the flaw detection device 10 supported by the mounting body 15 is gripped by the grip portion 19, the reciprocating drive unit 20 is driven by an operation signal from, for example, a separately provided control unit (not shown), and Is aligned with the weld 3 as shown in FIG. For this alignment, for example, a reference line may be provided on the support 13 or the mounting body 15, and the welded portion 3 may be made to coincide with the reference line.

【0014】次に支持体13内における超音波の通過す
る空間に水を注入し、起動指令による制御部からの制御
信号によって、超音波探触子11から超音波を送信させ
ながら回転駆動部21を駆動し、探傷装置10を薄肉配
管2aの周囲に一定速度で360°回転させ、超音波探
触子11、12で受信した溶接部3の全周に沿っての反
射波または透過波から溶接部の良否を検査する。なお完
全を期すために、超音波の送信を超音波探触子12に切
り換えて360°逆回転させて同様な検査を行うことが
好ましい。その場合には超音波探触子12が反射波の検
出を行い、超音波探触子11が透過波の検出を行う。そ
のようにすることにより、溶接部において、両薄肉配管
の軸線が不一致で、そこに段差が生じたときに検出が可
能となる。即ち、その段差部で何れか一方側からの反射
が生じ、段差の存在が検出される。
Next, water is injected into the space through which the ultrasonic wave passes in the support 13 and the ultrasonic drive 11 transmits the ultrasonic wave according to a control signal from the control unit according to the start command, and the rotation drive unit 21 transmits the ultrasonic wave. To rotate the flaw detector 10 around the thin-walled pipe 2a at a constant speed of 360 °, and welding from reflected waves or transmitted waves along the entire circumference of the welded portion 3 received by the ultrasonic probes 11 and 12. Check the quality of the part. For completeness, it is preferable to switch the transmission of the ultrasonic wave to the ultrasonic probe 12 and reversely rotate it by 360 ° to perform the same inspection. In that case, the ultrasonic probe 12 detects a reflected wave, and the ultrasonic probe 11 detects a transmitted wave. By doing so, it becomes possible to detect when the axes of the two thin-walled pipes do not coincide with each other at the welded portion and a step occurs there. That is, reflection from either side occurs at the step, and the presence of the step is detected.

【0015】次に、図5は上記各種の溶接部3の検査例
である。図5の各図における縦軸は反射波の強度
(%)、横軸は回転角度(0°〜360°)である。図
中(a),(c),(e)は超音波探触子11から送信
された超音波を同じ超音波探触子11で検出した反射
波、(b)、(d),(f)は超音波探触子11から送
信された超音波を超音波探触子12で検出した透過波で
ある。(a),(b)は溶接部3の溶け込みが十分な正
常溶接の場合で、反射波、透過波のいずれも検出されな
い。(c),(d)は溶接部3の溶け込みが不十分な場
合であって、溶接部3に隙間5(図6(b)参照)が存
在し、その部分からの反射波が検出され、透過波は検出
されない。(e),(f)は溶接部3の溶け込みが不十
分な場合であって、溶接部3に密着部6(図6(c)参
照)が存在し、その部分からの反射波は検出されない
が、透過波が検出される。
Next, FIG. 5 shows an example of inspection of the above-mentioned various welds 3. In each drawing of FIG. 5, the vertical axis represents the intensity (%) of the reflected wave, and the horizontal axis represents the rotation angle (0 ° to 360 °). In the figures, (a), (c) and (e) show reflected waves obtained by detecting the ultrasonic wave transmitted from the ultrasonic probe 11 with the same ultrasonic probe 11, (b), (d) and (f). ) Is a transmitted wave detected by the ultrasonic probe 12 of the ultrasonic wave transmitted from the ultrasonic probe 11. (A) and (b) show the case of normal welding where the penetration of the welded portion 3 is sufficient, and neither the reflected wave nor the transmitted wave is detected. (C) and (d) show the case where the penetration of the welded portion 3 is insufficient, where the gap 5 (see FIG. 6 (b)) exists in the welded portion 3 and the reflected wave from that portion is detected. No transmitted wave is detected. (E) and (f) show the case where the penetration of the welded portion 3 is insufficient, and the contact portion 6 (see FIG. 6 (c)) exists in the welded portion 3, and the reflected wave from that portion is not detected. However, a transmitted wave is detected.

【0016】上記探傷装置10により溶接部3の良否を
判定する場合、溶接部3の中心部だけを検査しても実用
上は不都合ではないが、薄肉配管2aの軸方向に複数箇
所(例えば溶接部3の中心とそれから前後0.2mm毎
に2つの計5か所など)について同様な検査を行うこと
もできる。その場合には駆動装置18の往復駆動部20
をその都度駆動して位置合わせ調整をする。このように
薄肉配管2aの軸方向に沿った複数箇所についてそれぞ
れ360°の検査をすることにより、溶接部3の立体的
な状態について判定できる利点がある。
When judging the quality of the welded portion 3 by the flaw detector 10, it is not practically inconvenient to inspect only the central portion of the welded portion 3, but it is not practically inconvenient. A similar inspection can be performed for the center of the part 3 and two points every 0.2 mm before and after the part 3 (a total of five places). In that case, the reciprocating drive unit 20 of the drive device 18
Is driven each time to adjust the alignment. As described above, by inspecting a plurality of portions along the axial direction of the thin-walled pipe 2a at 360 °, there is an advantage that the three-dimensional state of the welded portion 3 can be determined.

【0017】[0017]

【発明の効果】以上のように本発明の薄肉配管溶接部の
探傷方法によれば、薄肉配管の溶接部における溶接不良
の有無を正確に且つ高い信頼性で判定することができ
る。また本発明の薄肉配管溶接部の探傷方法において
は、薄肉配管への超音波の入射角(α)を24°〜26
°の範囲とすることができ、このような入射角(α)範
囲でしかも超音波ビームを薄肉配管の溶接部で集束させ
て検査することにより反射波や透過波を高いS/N比で
検出することができる。さらに本発明の薄肉配管溶接部
の探傷方法において、溶接部3を挟んだ両側から超音波
を切り換えて照射することができ、それによって溶接部
を両側から検査できるので、溶接不良の有無の判定をよ
り正確に行うことができる。
As described above, according to the flaw detection method for a thin-walled pipe weld of the present invention, the presence or absence of a welding defect in a thin-walled pipe weld can be determined accurately and with high reliability. Further, in the flaw detection method for a welded portion of a thin-walled pipe according to the present invention, the incident angle (α) of the ultrasonic wave to the thin-walled pipe is set to 24 ° to 26 °.
The reflected wave and the transmitted wave can be detected at a high S / N ratio by focusing and inspecting the ultrasonic beam at the welding portion of the thin-walled pipe in such an incident angle (α) range. can do. Further, in the flaw detection method for a thin-walled pipe welded portion of the present invention, ultrasonic waves can be switched and irradiated from both sides sandwiching the welded portion 3 and thereby the welded portion can be inspected from both sides. It can be done more accurately.

【0018】次に本発明の薄肉配管溶接部の探傷装置を
使用することにより、上記探傷方法を効率良く実施する
ことができる。本発明の薄肉配管溶接部の探傷装置にお
いて、支持体を薄肉配管に装着する装着体をさらに備え
ることができ、そのような装着体を使用することによ
り、探傷装置を安定して薄肉配管に装着することができ
る。
Next, the flaw detection method described above can be carried out efficiently by using the flaw detection apparatus for a welded portion of a thin pipe according to the present invention. In the flaw detector for a welded portion of a thin-walled pipe according to the present invention, a mounting body for mounting a support to the thin-walled pipe can be further provided. By using such a mounted body, the flaw detector can be stably mounted on the thin-walled pipe. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の探傷装置の1例を示す部分断面図。FIG. 1 is a partial sectional view showing an example of a flaw detector according to the present invention.

【図2】図1の右側面図。FIG. 2 is a right side view of FIG.

【図3】三角ミラー14による超音波の反射関係を示す
図。
FIG. 3 is a diagram showing a reflection relationship of an ultrasonic wave by a triangular mirror 14;

【図4】探傷装置10とそれを把持する駆動装置18の
正面図。
FIG. 4 is a front view of the flaw detector 10 and a driving device 18 that grips the flaw detector.

【図5】本発明の探傷方法によって溶接部3を検査した
例を示す図。
FIG. 5 is a diagram showing an example in which a weld 3 is inspected by the flaw detection method of the present invention.

【図6】超音波を使用した溶接部の検査原理を説明する
図。
FIG. 6 is a view for explaining the principle of inspection of a weld using ultrasonic waves.

【符号の説明】[Explanation of symbols]

1 超音波探触子 2 配管 2a 薄肉配管 3 溶接部 5 隙間 6 密着部 10 探傷装置 11 超音波探触子 11a 送受信面 12 超音波探触子 12a 送受信面 13 支持体 14 三角ミラー 15 装着体 16 支持部 17 装着部 18 駆動装置 19 把持部 20 往復駆動部 21 回転駆動部 22 水 a 超音波 b 反射波 c 透過波 DESCRIPTION OF SYMBOLS 1 Ultrasonic probe 2 Pipe 2a Thin-walled pipe 3 Welded part 5 Gap 6 Adhesive part 10 Flaw detector 11 Ultrasonic probe 11a Transmitting and receiving surface 12 Ultrasonic probe 12a Transmitting and receiving surface 13 Support body 14 Triangular mirror 15 Mounting body 16 Support unit 17 Mounting unit 18 Drive unit 19 Holding unit 20 Reciprocating drive unit 21 Rotation drive unit 22 Water a Ultrasonic wave b Reflected wave c Transmitted wave

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安永 元則 福岡県北九州市小倉北区井堀4丁目10番13 号 新日本非破壊検査株式会社内 Fターム(参考) 2G047 AB01 AB07 BA01 BA03 BB02 BC07 EA04 EA09 GA06 GB26 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Motonori Yasunaga 4-10-13 Ibori, Kokurakita-ku, Kitakyushu-shi, Fukuoka F-term (reference) 2N047 AB01 AB07 BA01 BA03 BB02 BC07 EA04 EA09 GA06 GB26

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 薄肉配管2aの溶接部3を超音波により
探傷する方法において、溶接部3に照射した超音波の反
射波および透過波の両者を検出して溶接部3の良否を判
定することを特徴とする薄肉配管溶接部の探傷方法。
1. A method for ultrasonically flaw detecting a welded portion 3 of a thin pipe 2a by detecting both a reflected wave and a transmitted wave of an ultrasonic wave applied to the welded portion 3 to judge the quality of the welded portion 3. A method for detecting flaws in a thin-walled pipe weld.
【請求項2】 薄肉配管2aへの超音波の入射角(α)
を24°〜26°の範囲とする請求項1に記載の薄肉配
管溶接部の探傷方法。
2. An incident angle (α) of an ultrasonic wave to the thin pipe 2a.
The method for detecting flaws in a thin-walled pipe weld according to claim 1, wherein the angle is in the range of 24 to 26 degrees.
【請求項3】 溶接部3を挟んだ両側から超音波を切り
換えて照射する請求項1または請求項2に記載の薄肉配
管溶接部の探傷方法。
3. The method of detecting flaws in a thin-walled pipe weld according to claim 1, wherein the ultrasonic waves are switched and irradiated from both sides of the welded part.
【請求項4】 薄肉配管2aの溶接部3を超音波により
探傷する装置において、支持体13と、送受信面11
a,12aを対向させて前記支持体13に支持された一
対の超音波探触子11,12と、前記支持体13に支持
され、且つ、一方の超音波探触子11からの超音波を反
射して薄肉配管2aの溶接部3へ入射させると共に、該
溶接部3からの透過波を他方の超音波探触子12へ反射
させる三角ミラー14と、を備えていることを特徴とす
る薄肉配管溶接部の探傷装置。
4. An apparatus for ultrasonically flaw-detecting a welded portion 3 of a thin pipe 2a, comprising: a support 13;
a and 12a are opposed to each other and a pair of ultrasonic probes 11 and 12 supported by the support 13 and an ultrasonic wave supported by the support 13 and transmitted from one ultrasonic probe 11 And a triangular mirror (14) for reflecting the incident light into the welded portion (3) of the thin pipe (2a) and reflecting the transmitted wave from the welded portion (3) to the other ultrasonic probe (12). Flaw detector for pipe welds.
【請求項5】 薄肉配管2aの溶接部3を超音波により
探傷する装置において、超音波探触子11,12を集束
探触子とし、三角ミラー14で反射して薄肉配管2aの
溶接部3へ入射する超音波ビームを溶接部3で集束させ
て反射波や透過波を高いS/N比で検出することを特徴
とする請求項4に記載の薄肉配管溶接部の探傷装置。
5. An apparatus for detecting flaws in a welded portion 3 of a thin-walled pipe 2a by ultrasonic waves, wherein the ultrasonic probes 11 and 12 are used as focusing probes and reflected by a triangular mirror 14 to reflect the welded portion 3 of the thin-walled pipe 2a. The flaw detector for a thin-walled pipe welded part according to claim 4, wherein the ultrasonic beam incident on the thin-walled pipe is focused at the welded part 3 to detect a reflected wave or a transmitted wave at a high S / N ratio.
【請求項6】 支持体13を薄肉配管2aに装着する装
着体15をさらに備えた請求項4に記載の薄肉配管溶接
部の探傷装置。
6. The flaw detector for a thin-walled pipe weld according to claim 4, further comprising a mounting body 15 for mounting the support 13 to the thin-walled pipe 2a.
JP2000048261A 2000-02-24 2000-02-24 Crack detection method of thin piping welding part and device Pending JP2001235450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000048261A JP2001235450A (en) 2000-02-24 2000-02-24 Crack detection method of thin piping welding part and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000048261A JP2001235450A (en) 2000-02-24 2000-02-24 Crack detection method of thin piping welding part and device

Publications (1)

Publication Number Publication Date
JP2001235450A true JP2001235450A (en) 2001-08-31

Family

ID=18570380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000048261A Pending JP2001235450A (en) 2000-02-24 2000-02-24 Crack detection method of thin piping welding part and device

Country Status (1)

Country Link
JP (1) JP2001235450A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101521769B1 (en) * 2013-08-19 2015-05-21 중앙대학교 산학협력단 Pipe fusion joint diagnostic apparatus and pipe fusion joint diagnostic method
JP2017142148A (en) * 2016-02-10 2017-08-17 株式会社Ihi Ultrasonic flaw detection device and ultrasonic flaw detection method
CN112014466A (en) * 2019-05-30 2020-12-01 上海汽车变速器有限公司 Ultrasonic flaw detection method for shaft shoulder outer inclined plane of tooth shaft welding part welding seam

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101521769B1 (en) * 2013-08-19 2015-05-21 중앙대학교 산학협력단 Pipe fusion joint diagnostic apparatus and pipe fusion joint diagnostic method
JP2017142148A (en) * 2016-02-10 2017-08-17 株式会社Ihi Ultrasonic flaw detection device and ultrasonic flaw detection method
WO2017138613A1 (en) * 2016-02-10 2017-08-17 株式会社Ihi Ultrasonic flaw detection device and ultrasonic flaw detection method
CN108474769A (en) * 2016-02-10 2018-08-31 株式会社Ihi Ultrasonic flaw detecting device and defect detection on ultrasonic basis
US10877002B2 (en) 2016-02-10 2020-12-29 Ihi Corporation Ultrasonic flaw detection device and ultrasonic flaw detection method
CN112014466A (en) * 2019-05-30 2020-12-01 上海汽车变速器有限公司 Ultrasonic flaw detection method for shaft shoulder outer inclined plane of tooth shaft welding part welding seam

Similar Documents

Publication Publication Date Title
CA2849524C (en) Ultrasonic inspection probe carrier system for performing nondestructive testing
US6578422B2 (en) Ultrasonic detection of flaws in tubular members
US3712119A (en) Material tester
US6945113B2 (en) End-to-end ultrasonic inspection of tubular goods
CN105372331A (en) Ultrasonic self-focusing phased-array detecting device for butt weld of small diameter tubes
JP2001235450A (en) Crack detection method of thin piping welding part and device
JP3564683B2 (en) Weld monitoring method
CN110006998B (en) Detection system and detection method for detecting welding seam of hollow pipe fitting
Thorpe et al. Ultrasonic phased array non-destructive testing and in-service inspection system for high integrity polyethylene pipe welds with automated analysis software
Hagglund et al. Development of phased array ultrasonic inspection techniques for testing welded joints in plastic (PE) pipes
US20030233880A1 (en) Ultrasonic tubular inspection apparatus having fluid interface and system and method incorporating same
JPH0232249A (en) Ultrasonic flaw detection probe
JPH0798303A (en) Ultrasonic automatic flaw detector
KR20180076973A (en) Welding inspection apparatus for pipe
JP2001330594A (en) Inspection method of metal pipe bonded body
JPS61148366A (en) Ultrasonic probe
KR102676870B1 (en) Phase Array Ultrasonic Testing System for Welded Parts of Pressure Containers
KR100441757B1 (en) multi-scanning ultrasonic inspector for weld zone
Wei Study on Ultrasonic Phased Array Detection of Hot Meltbutt Joint of Polyethylene Pipe
Bicz et al. Ultrasonic Tests in the Analysis of the Quality of Tubular Welded Elements
JPH09318605A (en) Method for testing welded part by ultrasonic surface sh wave
KR20230029325A (en) Phased array ultrasonic testing apparatus using absorber
JP2002040005A (en) Probe for local soaking
JP2001165916A (en) Pencil type local water immersion ultrasonic probe and method for detecting flaws in welds using the same
CN117907429A (en) A pipeline phased array ultrasonic flaw detection device