JP3564683B2 - Weld monitoring method - Google Patents

Weld monitoring method Download PDF

Info

Publication number
JP3564683B2
JP3564683B2 JP2000263062A JP2000263062A JP3564683B2 JP 3564683 B2 JP3564683 B2 JP 3564683B2 JP 2000263062 A JP2000263062 A JP 2000263062A JP 2000263062 A JP2000263062 A JP 2000263062A JP 3564683 B2 JP3564683 B2 JP 3564683B2
Authority
JP
Japan
Prior art keywords
welding
defect
ultrasonic
flaw detection
monitoring method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000263062A
Other languages
Japanese (ja)
Other versions
JP2002071649A (en
Inventor
英幸 平澤
光浩 神岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2000263062A priority Critical patent/JP3564683B2/en
Publication of JP2002071649A publication Critical patent/JP2002071649A/en
Application granted granted Critical
Publication of JP3564683B2 publication Critical patent/JP3564683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の属する技術分野】
【0001】
この発明は、溶接作業中においても溶接パス毎に欠陥や不具合の発生を超音波探傷によって検出して、次の溶接パスに移る前に速やかに溶接条件の修正や溶接補修を行えるようにした溶接監視方法に関するものである。
【0002】
【従来の技術】
周知のように、超音波探傷試験は、試験体である溶接部の表面から超音波パルスをその内部に送信し、試験体中の欠陥によって反射してくる超音波エコーを検出して、エコーの大きさから欠陥の大きさを推定し、超音波を送信してから戻ってくるまでの時間を測定して欠陥位置までの距離を知る方法として知られ、広く実用化されている。
【0003】
ここで、従来より用いられている溶接部に対する超音波探傷方法について説明する。一般に溶接部に対する超音波探傷方法としては、溶接作業中の途中段階である溶接パス毎に行う方法と、溶接作業がすべて完了した後の段階で行う方法とが考えられる。まず初めに、従来の超音波探傷方法により溶接パス毎に超音波探傷を行った場合について図6を参照しながら説明する。たとえば平板の突合せ継手溶接(開先形状Vで、溶接パス数が10)の場合を考えると、溶接途中(たとえば数パスの溶接が終了した段階)では、図6(a)で示すように、溶接継手の開先面の一部が溶接金属で接合されているにすぎず、開先の一部は溶接されずに空洞のままである。このような状況において、従来の超音波探傷法、すなわち一つの探触子で超音波ビームの送受を行う一探触子タイプであって、通常タイプのもので超音波探傷を実施すると、開先面や開先と溶接金属の境界部からたとえ欠陥が存在しない場合であっても常に反射エコーが検出される。図6(b)は図6(a)で得られた探傷結果についての探傷画像であるが、この探傷画像から明らかなように表示されるエコーは開先やビードからの反射エコーである。なお、図6及び図7において、符号9、10は母材、Rは溶接部、15は探触子、cは超音波のビーム経路である。
【0004】
一方、溶接部内部に欠陥が存在する場合には、図7(a)で示すように、開先やビード形状からの反射エコーと欠陥からのエコーを同時に検出してしまう。これを探傷画像化すると、図7(b)で示すように、両者の反射エコーが重なり合って、欠陥エコーと他の反射エコーとの区別が明確に行えない。
【0005】
【発明が解決しようとする課題】
このような理由から従来の超音波探傷においては、溶接作業中ではなく、基本的に溶接がすべて終了した後に超音波探傷を実施し、その結果、たとえば板厚中央部付近に欠陥が認められた場合にはガウジング等で欠陥が認められた位置まで溶接部を掘り返したのちに再度溶接を行わなければならず、そのため、ガウジングや補修作業に多大な時間とコストを要しているというのが現状である。
【0006】
この発明は上記従来の超音波探傷方法が有する不具合を解決するためになされたものであって、その目的は、溶接が全て完了していなくとも溶接途中の溶接パス毎に超音波探傷を実施しても不具合や欠陥の検出が可能であって、そのため上記不具合や欠陥を検出した場合、直ちに是正処理を講じることを可能にすることで、その後の溶接作業をスムーズに行うことができる溶接監視方法を提供することにある。
【0007】
そこで請求項1の溶接監視方法は、溶接作業中に溶接部の溶接状態を監視する溶接監視方法であって、溶接すべき開先部分を挟んで母材表面上に送信用の探触子と受信用の探触子とを対向配置し、溶接パス毎に、溶接部のビード上下端からの超音波と区別される欠陥からの回波にて、上記溶接部の超音波探傷を行うべく構成し、さらに溶接部の初層部から上層部に至るに従って上記送受信一対の探触子の間隔を小さく狭めていくことで溶接積層毎に検査対象とする溶接パスに対して超音波ビームが集中して伝播するようにしたことを特徴としている。
【0008】
溶接作業中に溶接部の溶接状態を一探触子(一つの探触子で超音波ビームの送受を行うタイプ)法で探傷する場合、たとえ欠陥エコーを検出してもこの欠陥エコーと開先やビード形状からの反射エコーとの識別判定が容易ではない。したがって、やむを得ず、すべての溶接パスが完了した段階で溶接部の探傷を行っていたが、その際、たとえば板厚中央部付近に欠陥を認めたような場合にはガウジング等でかなり溶接部を掘り返し、再度溶接を行っていた。そのため、ガウジングや補修作業に多大な時間とコストを要していた。これは溶接対象が極厚板同士である場合にはきわめて大きなロスとなっていた。また、再度の溶接を行っても探傷の結果が欠陥ありとなれば、再々度のガウジングや溶接を行わなければならず、その損失は計り知れなかった。これに対して、この発明では、送信用の探触子と受信用の探触子とを対向配置し、溶接パス毎に、溶接部のビード上下端からの超音波と区別される欠陥からの回波にて、上記溶接部の超音波探傷を行うので、すべての溶接パスが完了するのを待つことなく、溶接パス毎に直ちに溶接部の超音波探傷を行うようにして、各溶接パスでの不具合や欠陥の発生の有無を検出することができる。そして、不具合が発生した場合には直ちに溶接条件を修正し、溶接部に欠陥の発生を検出した場合には直ちに補修溶接できるようにフィードバック制御することができるので、各溶接パス毎に補修溶接等を行え、最終的にすべての溶接パスが完了した時点ではきわめて信頼性の高い溶接が期待できる。また、従来のように、溶接作業中に溶接部の溶接状態を一探触子(一つの探触子で超音波ビームの送受を行うタイプ)法で探傷する場合、探傷対象が溶接部の初層部から上層部に至るにしたがって開先部側へ上記探触子を近づけていったとしても欠陥エコーとビード上下端の形状からの反射エコーとの区別が容易に行えない。結局は溶接がすべて完了してからでないと、探傷できず、きわめて非効率的である。そこで、この発明では、溶接部の初層部から上層部に至るに従って上記送受信一対の探触子の間隔を小さく狭めていくことで溶接積層毎に検査対象とする溶接パスに対して常に超音波ビームが集中して伝播するようにしたので、溶接部が初層部であると、上層部であるとを問わず、常に欠陥からのエコーを検出することができ、欠陥の検出が容易に行える。
【0009】
また請求項2の溶接監視方法は、溶接作業中に溶接部の溶接状態を監視する溶接監視方法であって、溶接すべき開先部分を挟んで母材表面上に送信用の探触子と受信用の探触子とを対向配置し、溶接作業に対して一定のタイムラグをもって上記対向配置した一対の探触子を追従して移動させて、溶接部のビード上下端からの超音波と区別される欠陥からの回波にて、上記溶接部の超音波探傷を行うべく構成し、さらに溶接部の初層部から上層部に至るに従って上記送受信一対の探触子の間隔を小さく狭めていくことで溶接積層毎に検査対象とする溶接パスに対して超音波ビームが集中して伝播するようにしたことを特徴としている。
【0010】
前述したように、従来の超音波探傷方法では溶接作業中での探傷は結果的に難しい面があり、溶接作業がすべて完了してからでなければ実質的に探傷できなかった。また、溶接作業が完了してからの探傷結果で、欠陥が認められた場合には欠陥存在部位までガウジング等によって掘り返し、再度の溶接を行うが、この再溶接についても溶接欠陥が存在する可能性は否定できず、再溶接後の探傷は不可欠であり、最終的に溶接開始から探傷終了までに多大な時間と手間を要するおそれがあった。これに対して、この発明では、送信用の探触子と受信用の探触子とを対向配置し、溶接作業に対して一定のタイムラグをもって上記対向配置した一対の探触子を追従して移動させて、溶接部のビード上下端からの超音波と区別される欠陥からの回波にて、上記溶接部の超音波探傷を行うので、途中、不具合の発生や欠陥の検出があった場合には、直ちに補修溶接し、必要に応じて溶接条件を修正する。また、溶接条件の修正や補修溶接を行った後、再び開始した溶接作業に対して超音波探傷が追従するので、溶接作業の完了から上記一定のタイムラグをもって探傷作業も終了する。したがって、溶接作業に超音波探傷を自動追従させるシステムを付加することで、きわめて効率的な溶接ならびに自動探傷システムを得ることが可能となる。また、従来のように、溶接作業中に溶接部の溶接状態を一探触子(一つの探触子で超音波ビームの送受を行うタイプ)法で探傷する場合、探傷対象が溶接部の初層部から上層部に至るにしたがって開先部側へ上記探触子を近づけていったとしても欠陥エコーとビード上下端の形状からの反射エコーとの区別が容易に行えない。結局は溶接がすべて完了してからでないと、探傷できず、きわめて非効率的である。そこで、この発明では、溶接部の初層部から上層部に至るに従って上記送受信一対の探触子の間隔を小さく狭めていくことで溶接積層毎に検査対象とする溶接パスに対して常に超音波ビームが集中して伝播するようにしたので、溶接部が初層部であると、上層部であるとを問わず、常に欠陥からのエコーを検出することができ、欠陥の検出が容易に行える。
【0013】
【発明の実施の形態】
次にこの発明の溶接監視方法の具体的な実施の形態について、図面を参照しつつ詳細に説明する。図1は、この発明の一実施の形態である溶接監視方法の手順を説明するためのブロック図であり、図2は同じく欠陥を検出しない場合の溶接監視方法を説明するための説明図であり、図3は同じく欠陥を検出した場合の溶接監視方法を説明するための説明図であり、図4は溶接監視方法における監視範囲の絞り込みを説明するための説明図、図5は溶接監視方法に用いる装置の概略図である。
【0014】まず、図1によりこの発明の一実施の形態である溶接監視方法につき、平板の突合せ継手溶接の場合を一例として説明する。まず、溶接すべき開先部分を挟んで母材表面上に送受信一対の探触子を対向配置し、一方の探触子から溶接作業中(図1で符号1で示す)の溶接部(溶接パス毎)に超音波ビームを発射し、他方の探触子でその反射波を受信することで探傷する(図1で符号で示す)。次に、上記で得た探傷データを画像データに変換し、探傷画像を得る(図1で符号で示す)。上記探傷画像のデータ解析の結果(図1で符号4で示す)、溶接部に不具合の発生を認めた場合にはこの不具合を是正するための溶接条件を直ちに演算処理し、溶接条件の修正を溶接作業中の溶接装置などにフィードバックして制御する(図1で符号5で示す)。一方、欠陥の発生を認めた場合には溶接と探傷を暫くの間中断し、補修溶接を行う(図1で符号6で示す)。
【0015】
また、溶接パス毎に探傷をする方法以外に、たとえば、溶接作業に対して一定のタイムラグをもって超音波探傷を追従させるようにしてもよく、この場合、途中、不具合の発生や欠陥の検出があったとしても溶接条件の修正や補修溶接を行った後、再び開始した溶接作業に超音波探傷が追従するので、溶接作業の完了から上記一定のタイムラグをもって探傷作業も終了する。したがって、溶接作業に超音波探傷を自動追従させるシステムを付加することできわめて効率的な溶接及び探傷作業が行える。
【0016】
ところで、上記溶接監視方法に用いる探傷装置としては、たとえば図5で示すような装置が考えられる。すなわち、突合せ平板溶接への適用を想定すると、基本的に母材9、10表面上に送受信一対の探触子7、8を開先11部を挟んで対向配置させてあり、これらの探触子7、8は二本のレール上をスライド可能になっている。12はこの探触子7、8からの探傷データや探傷データを処理し画像データ化して表示できる表示器であり、13は溶接機である。なお、この発明の溶接監視方法に用いられる探傷装置は上記のものに限定されないことはいうまでもないが、望ましくは探触子7、8が溶接機13に対して一定のタイムタグをもって自動追従できるようにタイプとする。なお、一定のタイムラグとは、たとえば、溶接部から300mm遅れて探触子7、8が追従して探傷検査を実施することを意味する。
【0017】
次に、溶接監視方法に用いる超音波探傷の手法を図2及び図3により説明する。図2は溶接部に欠陥が存在しない場合における探傷を示しており、同図(a)で示すように、溶接作業中に、溶接すべき開先11部分を挟んで母材9、10表面上に対向配置した送受信一対の探触子7、8によって溶接パス毎に自動超音波探傷を行う。この場合、一方の探触子7から発射された超音波ビームa、bは溶接部Rのビードの上下端にて回り込みまたは反射し、他方の探触子8にてその反射波が受信されるようになっている。このときの探傷結果は表示装置によってすべて表示され、欠陥が存在しない場合には、ビード上下端からの超音波が検出されるにすぎない。つまり、同図(b)で示すように、送信用の探触子7からの超音波ビームaが溶接部の上端で回り込み、また、超音波ビームbが溶接部の下端にて反射されて受信用の探触子8にて受信され、この探傷結果が表示装置で表示されている。
【0018】
一方、図3は溶接部に欠陥が存在する場合における探傷を示しており、つまり、同図(a)において、送信用の探触子7からの超音波ビームaが溶接部の上端に、また、超音波ビームbが溶接部の下端にてそれぞれ、かつ欠陥に当たって反射した超音波ビームも反射されて同時に受信用の探触子8にて受信される。この探傷結果は同図(b)で示すとおりであって、ビード上下端からの超音波の他に、溶接部相当部位に欠陥上下端部からの回折波が表示される。このように、欠陥による回折波は、ビード上下端の超音波と明確に区別され、欠陥の存在の識別確認がきわめて容易かつ簡単に行える。
【0019】
さらに、図4により監視方法の絞り込み方法について説明する。すなわち、同図(a)で示すように、初層部R1について探傷する。次いで、2層目を探傷する際には同図(b)で示すように、探触子間の距離を幾分短くして検査対象とする溶接パスに対して超音波ビームが集中して伝播するようにする。そして、3層目の探傷にあたっては同図(c)で示すように、上記探触子間の距離をさらに小さく狭めていくことで上記超音波ビームが集中して伝播するようにする。このように対象とする積層部に絞り込んで監視を行えるようにすることですることで欠陥の検出性能が向上し、探傷結果の解析処理時間の短縮化が可能となる。
【0020】
以上にこの発明の一実施形態について説明したが、この発明は上記実施形態に限られることなく、この発明の主旨を損なわない限り、種々変更して実施可能であり、実際の適用としてはたとえば、少主桁橋梁など溶接継手や圧力容器などの厚板溶接部に適用することによって、補修工事の工程を短縮することができる。
【0021】
【発明の効果】
以上のように請求項1の溶接監視方法によれば、送信用の探触子と受信用の探触子を用いて、すべての溶接パスが完了するのを待つことなく、溶接パス毎に直ちに溶接部の超音波探傷を行うようにしたので、各溶接パスでの不具合や欠陥の発生の有無を検出することができる。そして、溶接部に欠陥の発生を検出した場合には直ちに補修溶接を行い、必要に応じて溶接条件を修正するようにフィードバック制御することができるので、各溶接パス毎に補修溶接等を行え、最終的にすべての溶接パスが完了した時点では信頼性のある溶接の確認ができる。しかも、溶接部の初層部から上層部に至るに従って上記送受信一対の探触子の間隔を小さく狭めていくことで溶接積層毎に検査対象とする溶接パスに対して常に超音波ビームが集中して伝播するようにしたので、初層部であると、上層部であるとを問わず、常に欠陥とビード上下端の超音波の区別が容易に行える。
【0022】
また請求項2の溶接監視方法によれば、送信用の探触子と受信用の探触子を用いて、溶接作業に対して一定のタイムラグをもって超音波探傷を追従させるようにしているので、途中、不具合の発生や欠陥の検出があった場合には、直ちに補修溶接を行い、必要に応じて溶接条件を修正する。また、溶接条件の修正や補修溶接を行った後、再び開始した溶接作業に超音波探傷が追従するので、溶接作業の完了から上記一定のタイムラグをもって探傷作業も終了する。したがって、溶接作業に超音波探傷を自動追従させるシステムを付加することで、きわめて効率的な溶接ならびに自動探傷システムを得ることが可能となる。しかも、溶接部の初層部から上層部に至るに従って上記送受信一対の探触子の間隔を小さく狭めていくことで溶接積層毎に検査対象とする溶接パスに対して常に超音波ビームが集中して伝播するようにしたので、初層部であると、上層部であるとを問わず、常に欠陥とビード上下端の超音波の区別が容易に行える。
【図面の簡単な説明】
【図1】この発明の一実施の形態である溶接監視方法の手順を説明するためのブロック図であり
【図2】この発明の一実施の形態である溶接監視方法を説明するための説明図であって、欠陥を検出しない場合を示す。
【図3】この発明の一実施の形態である溶接監視方法を説明するための説明図であって、欠陥を検出した場合を示す。
【図4】この発明の一実施の形態である溶接監視方法における監視範囲の絞り込みを説明するための説明図である。欠陥を検出しない場合を示す。
【図5】この発明の一実施の形態である溶接監視方法に用いる装置の概略図である。
【図6】従来の溶接監視方法を説明するための説明図であって、欠陥を検出しない場合を示す。
【図7】従来の溶接監視方法を説明するための説明図であって、欠陥を検出した場合を示す。
【符号の説明】
1 溶接
2 探傷
3 探傷画像
4 データ解析
5 溶接条件の修正
6 補修溶接
7 送信用の探触子
8 受信用の探触子
9、10 母材
11 開先
12 表示器
13 溶接機
R 溶接部
R1 初層部
R2 2層部
R3 3層部
TECHNICAL FIELD OF THE INVENTION
[0001]
According to the present invention, even during welding work, the occurrence of defects and defects is detected by ultrasonic flaw detection for each welding pass, so that welding conditions can be corrected and welding repairs can be quickly performed before moving to the next welding pass. It concerns monitoring methods.
[0002]
[Prior art]
As is well known, the ultrasonic flaw detection test transmits an ultrasonic pulse from the surface of a welded portion, which is a test sample, to the inside, detects an ultrasonic echo reflected by a defect in the test sample, and detects the echo. This method is known as a method of estimating the size of a defect from its size, measuring the time from returning the ultrasonic wave to returning, and knowing the distance to the defect position, and widely used.
[0003]
Here, a conventional ultrasonic inspection method for a welded portion will be described. Generally, as the ultrasonic flaw detection method for the welded portion, a method that is performed for each welding pass, which is an intermediate stage during the welding operation, and a method that is performed after all the welding operations are completed, are considered. First, a case where ultrasonic flaw detection is performed for each welding pass by a conventional ultrasonic flaw detection method will be described with reference to FIG. For example, in the case of flat plate butt joint welding (bevel groove shape V, the number of welding passes is 10), during welding (for example, when several passes of welding are completed), as shown in FIG. Only a part of the groove surface of the weld joint is joined with the weld metal, and a part of the groove remains unwelded and hollow. In such a situation, the conventional ultrasonic flaw detection method, that is, one probe type that transmits and receives an ultrasonic beam with one probe, and performs ultrasonic flaw detection with a normal type, A reflected echo is always detected from the boundary between the surface or the groove and the weld metal, even if no defect exists. FIG. 6B is a flaw detection image of the flaw detection result obtained in FIG. 6A, and the echo displayed as is apparent from this flaw detection image is a reflection echo from a groove or a bead. 6 and 7, reference numerals 9 and 10 denote base materials, R denotes a welded portion, 15 denotes a probe, and c denotes an ultrasonic beam path.
[0004]
On the other hand, if there is a defect inside the welded portion, as shown in FIG. 7A, a reflected echo from a groove or bead shape and an echo from the defect are detected at the same time. When this is formed into a flaw detection image, as shown in FIG. 7B, the reflected echoes of the two overlap, and it is not possible to clearly distinguish the defective echo from other reflected echoes.
[0005]
[Problems to be solved by the invention]
For this reason, in conventional ultrasonic testing, ultrasonic testing was performed after welding was completed, not during welding work, and as a result, for example, a defect was found near the center of the sheet thickness. In such a case, welding must be performed again after excavating the welded part to the position where defects were recognized by gouging etc., and therefore, it takes a lot of time and cost for gouging and repair work. It is.
[0006]
The present invention has been made to solve the disadvantages of the conventional ultrasonic testing method described above, and its purpose is to perform ultrasonic testing for each welding pass during welding even if all welding has not been completed. A welding monitoring method that makes it possible to detect defects and defects even when the above-mentioned defects and defects are detected, so that corrective processing can be performed immediately and subsequent welding work can be performed smoothly. Is to provide.
[0007]
Therefore, a welding monitoring method according to claim 1 is a welding monitoring method for monitoring a welding state of a welded portion during a welding operation, wherein a transmitting probe is provided on a surface of a base material with a groove to be welded interposed therebetween. a probe for receiving and opposed, each weld pass, times at folding waves from the defect that is distinct from the ultrasonic wave from the bead upper and lower ends of the weld, in order to perform the ultrasonic testing of the weld The ultrasonic beam is concentrated on the welding path to be inspected for each welding lamination by narrowing the distance between the pair of transmitting and receiving transducers from the first layer to the upper layer of the welded portion. It is characterized by having been propagated .
[0008]
During the welding operation, when the welding condition of the welded part is detected by a single probe (one type that transmits and receives an ultrasonic beam) method, even if a defect echo is detected, this defect echo and groove And it is not easy to determine the discrimination from the reflected echo from the bead shape. Therefore, it was unavoidable that flaw detection of the weld was performed at the stage when all welding passes were completed.In this case, if a defect was found near the center of the sheet thickness, for example, the weld was dug considerably by gouging or the like. , Welding was done again. Therefore, gouging and repair work required a lot of time and cost. This was an extremely large loss when the objects to be welded were very thick plates. Further, if the flaw detection results in a defect even after performing the welding again, the gouging and welding must be performed again, and the loss was immeasurable. On the other hand, in the present invention, the transmitting probe and the receiving probe are arranged to face each other, and for each welding pass, a defect from a defect that is distinguished from ultrasonic waves from the upper and lower ends of the bead of the welded portion. at diffraction waves, since the ultrasonic flaw detection of the welded portion, without waiting for all of the weld pass is complete, so as to perform the ultrasonic flaw detection immediately welds for each weld pass, the welding path It is possible to detect the presence / absence of a defect or a defect in the above. When a defect occurs, the welding conditions are immediately corrected, and when a defect is detected in the welded portion, feedback control can be performed so that repair welding can be performed immediately. It is expected that extremely reliable welding will be achieved when all welding passes are finally completed. Further, as in the conventional case, when the welding state of the welded portion is detected by a single probe (a type in which one probe transmits and receives an ultrasonic beam) during a welding operation, the flaw detection target is the first of the welded portion. Even if the probe is moved closer to the groove portion from the layer portion to the upper layer portion, it is not easy to distinguish between a defective echo and a reflected echo from the shape of the upper and lower ends of the bead. After all, it is impossible to detect flaws until all welding is completed, and it is extremely inefficient. Therefore, according to the present invention, the distance between the pair of transmitting and receiving probes is made smaller and narrower from the first layer to the upper layer of the welded portion, so that the ultrasonic wave is always applied to the welding path to be inspected for each welding lamination. Since the beam is concentrated and propagated, if the weld is the first layer, regardless of whether it is the upper layer, the echo from the defect can always be detected, and the defect can be detected easily. .
[0009]
A welding monitoring method according to claim 2 is a welding monitoring method for monitoring a welding state of a welded portion during a welding operation, wherein the transmitting probe and a transmitting probe are provided on a base material surface with a groove to be welded interposed therebetween. A probe for reception is arranged oppositely, and with a certain time lag for welding work, the pair of probes arranged above are moved to follow and distinguished from ultrasonic waves from the upper and lower ends of the bead of the welded portion. times in folding wave from defects, and configured to perform ultrasonic inspection of the weld, further from the first layer portion of the welded portion by narrowing reduce the distance of the transmitting and receiving pair of probes according to reach the upper portion This is characterized in that the ultrasonic beam is intensively propagated to the welding path to be inspected for each welding lamination .
[0010]
As described above, in the conventional ultrasonic inspection method, the inspection during the welding operation is difficult as a result, and the inspection cannot be substantially performed until all the welding operations are completed. In addition, if a defect is found as a result of the flaw detection after the welding operation is completed, the part where the defect is present is excavated by gouging, etc., and re-welding is performed. Cannot be denied, and flaw detection after re-welding is indispensable, and there is a possibility that a great deal of time and effort is required from the start of welding to the end of flaw detection. On the other hand, according to the present invention, the transmitting probe and the receiving probe are disposed to face each other, and the pair of the probes disposed opposite each other follows the welding operation with a certain time lag. so moved, rotating in folding wave from the defect that is distinct from the ultrasonic wave from the bead upper and lower ends of the weld, since the ultrasonic flaw detection of the welded portion, the middle, there is detection of the occurrence of problems or defects In such cases, repair welding is performed immediately, and welding conditions are modified as necessary. Further, after the welding conditions are corrected or repair welding is performed, the ultrasonic inspection follows the welding operation restarted, so that the inspection operation is completed with the above-mentioned fixed time lag from the completion of the welding operation. Therefore, it is possible to obtain a very efficient welding and automatic flaw detection system by adding a system for automatically following the ultrasonic flaw detection in the welding operation. Further, as in the conventional case, when the welding state of the welded portion is detected by a single probe (a type in which one probe transmits and receives an ultrasonic beam) during a welding operation, the flaw detection target is the first of the welded portion. Even if the probe is moved closer to the groove portion from the layer portion to the upper layer portion, it is not easy to distinguish between a defective echo and a reflected echo from the shape of the upper and lower ends of the bead. After all, it is impossible to detect flaws until all welding is completed, and it is extremely inefficient. Therefore, according to the present invention, the distance between the pair of transmitting and receiving probes is made smaller and narrower from the first layer to the upper layer of the welded portion, so that the ultrasonic wave is always applied to the welding path to be inspected for each welding lamination. Since the beam is concentrated and propagated, if the weld is the first layer, regardless of whether it is the upper layer, the echo from the defect can always be detected, and the defect can be detected easily. .
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, specific embodiments of the welding monitoring method of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram for explaining a procedure of a welding monitoring method according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram for explaining a welding monitoring method when no defect is detected. FIG. 3 is an explanatory diagram for explaining a welding monitoring method when a defect is detected, FIG. 4 is an explanatory diagram for explaining narrowing of a monitoring range in the welding monitoring method, and FIG. It is a schematic diagram of the apparatus used.
First, referring to FIG. 1, a welding monitoring method according to an embodiment of the present invention will be described with reference to a case of flat plate butt joint welding as an example. First, a pair of transmitting and receiving probes are arranged opposite to each other on the surface of a base material with a groove to be welded interposed therebetween, and a welding portion (indicated by reference numeral 1 in FIG. 1) from one of the probes is being welded. An ultrasonic beam is emitted for each pass), and the other probe receives the reflected wave to detect a flaw (indicated by reference numeral 2 in FIG. 1). Next, the flaw detection data obtained above is converted into image data to obtain a flaw detection image (indicated by reference numeral 3 in FIG. 1). As a result of the data analysis of the flaw detection image (indicated by reference numeral 4 in FIG. 1), if a defect is found in the welded portion, the welding conditions for correcting the defect are immediately processed, and the welding conditions are corrected. Feedback control is performed to a welding device or the like during the welding operation (indicated by reference numeral 5 in FIG. 1). On the other hand, when occurrence of a defect is recognized, welding and flaw detection are interrupted for a while, and repair welding is performed (indicated by reference numeral 6 in FIG. 1).
[0015]
In addition to the method of detecting a flaw for each welding pass, for example, the ultrasonic flaw detection may be followed with a certain time lag with respect to the welding work. Even if the welding conditions are corrected or repair welding is performed, the ultrasonic inspection follows the restarted welding operation, so that the flaw detection operation is terminated with the above-mentioned fixed time lag from the completion of the welding operation. Therefore, extremely efficient welding and flaw detection work can be performed by adding a system for automatically following ultrasonic flaw detection to welding work.
[0016]
By the way, as the flaw detector used in the above welding monitoring method, for example, an apparatus as shown in FIG. 5 can be considered. That is, assuming application to butt flat welding, a pair of transmitting and receiving probes 7 and 8 are basically arranged on the surfaces of the base materials 9 and 10 so as to face each other with the groove 11 therebetween. The children 7, 8 are slidable on two rails. Reference numeral 12 denotes a display which can process flaw detection data from the probes 7 and 8 and display the flaw detection data in the form of image data. Reference numeral 13 denotes a welding machine. It is needless to say that the flaw detector used in the welding monitoring method of the present invention is not limited to the above one, but it is preferable that the probes 7, 8 automatically follow the welding machine 13 with a certain time tag. Type as you can. The constant time lag means that the probes 7 and 8 follow the inspection for a flaw detection, for example, with a delay of 300 mm from the welded portion.
[0017]
Next, an ultrasonic flaw detection method used in the welding monitoring method will be described with reference to FIGS. FIG. 2 shows flaw detection in the case where there is no defect in the welded portion. As shown in FIG. 2A, during the welding operation, the surface of the base material 9, 10 is sandwiched by the groove 11 to be welded. The automatic ultrasonic flaw detection is performed for each welding pass by a pair of transmitting and receiving probes 7 and 8 disposed opposite to each other. In this case, the ultrasonic beams a and b emitted from one probe 7 wrap around or reflect at the upper and lower ends of the bead of the welded portion R, and the other probe 8 receives the reflected waves. It has become. The results of the flaw detection at this time are all displayed by the display device, and if no defect exists, only ultrasonic waves from the upper and lower ends of the bead are detected. That is, as shown in FIG. 2B, the ultrasonic beam a from the transmission probe 7 wraps around the upper end of the welded portion, and the ultrasonic beam b is reflected at the lower end of the welded portion and received. And the flaw detection result is displayed on the display device.
[0018]
On the other hand, FIG. 3 shows a flaw detection in the case where a defect is present in the welded portion, that is, in FIG. 3A, the ultrasonic beam a from the transmitting probe 7 is at the upper end of the welded portion, and The ultrasonic beam b is reflected at the lower end of the welded portion, and the ultrasonic beam reflected on the defect is also reflected and simultaneously received by the receiving probe 8. The results of this flaw detection are as shown in FIG. 4B, and in addition to the ultrasonic waves from the upper and lower ends of the bead, diffracted waves from the upper and lower ends of the defect are displayed at a portion corresponding to the welded portion. As described above, the diffracted wave due to the defect is clearly distinguished from the ultrasonic waves at the upper and lower ends of the bead, and it is extremely easy and easy to confirm the existence of the defect.
[0019]
Further, a method of narrowing down the monitoring method will be described with reference to FIG. That is, as shown in FIG. 7A, flaw detection is performed on the first layer portion R1. Next, when flaw detection is performed on the second layer, as shown in FIG. 4B, the distance between the probes is shortened somewhat, and the ultrasonic beam concentrates and propagates on the welding path to be inspected. To do. Then, in the third layer flaw detection, as shown in FIG. 3C, the distance between the probes is further reduced to make the ultrasonic beam converge and propagate. By performing monitoring by focusing on the target laminated portion in this way, the defect detection performance is improved, and the analysis processing time of the flaw detection result can be shortened.
[0020]
Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and can be implemented with various modifications without impairing the gist of the present invention. By applying it to thick joints such as welded joints such as small girder bridges and pressure vessels, the repair work process can be shortened.
[0021]
【The invention's effect】
As described above, according to the welding monitoring method of the first aspect, the transmission probe and the reception probe are used to immediately wait for each welding pass without waiting for completion of all welding passes. Since the ultrasonic inspection of the welded portion is performed, it is possible to detect the occurrence of a defect or a defect in each welding pass. Then, when the occurrence of a defect in the weld is detected, repair welding is immediately performed, and feedback control can be performed so as to correct the welding conditions as necessary, so that repair welding can be performed for each welding pass, and so on. Finally, when all welding passes are completed, reliable welding can be confirmed. In addition, by narrowing the interval between the pair of transmitting and receiving probes as the distance from the first layer to the upper layer of the weld decreases, the ultrasonic beam always concentrates on the welding path to be inspected for each welding lamination. Therefore, the defect and the ultrasonic wave at the upper and lower ends of the bead can be easily distinguished from each other regardless of whether it is the first layer portion or the upper layer portion.
[0022]
According to the welding monitoring method of the second aspect, the ultrasonic probe is used to follow the welding operation with a certain time lag with respect to the welding operation by using the transmitting probe and the receiving probe. If a defect is detected or a defect is detected on the way, repair welding is immediately performed, and welding conditions are corrected as necessary. Further, after the welding conditions are corrected and repair welding is performed, the ultrasonic inspection follows the welding operation restarted, so that the inspection operation is completed with the above-mentioned fixed time lag from the completion of the welding operation. Therefore, it is possible to obtain a very efficient welding and automatic flaw detection system by adding a system for automatically following the ultrasonic flaw detection in the welding operation. In addition, by narrowing the distance between the pair of transmitting and receiving probes from the initial layer to the upper layer of the welded portion, the ultrasonic beam is always concentrated on the welding path to be inspected for each welding lamination. Therefore, the defect and the ultrasonic wave at the upper and lower ends of the bead can be easily distinguished from each other regardless of whether it is the first layer portion or the upper layer portion.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a procedure of a welding monitoring method according to an embodiment of the present invention; FIG. 2 is an explanatory diagram illustrating a welding monitoring method according to an embodiment of the present invention; Shows a case where no defect is detected.
FIG. 3 is an explanatory diagram for explaining a welding monitoring method according to an embodiment of the present invention, showing a case where a defect is detected.
FIG. 4 is an explanatory diagram for explaining narrowing of a monitoring range in the welding monitoring method according to the embodiment of the present invention; This shows the case where no defect is detected.
FIG. 5 is a schematic view of an apparatus used for a welding monitoring method according to an embodiment of the present invention.
FIG. 6 is an explanatory diagram for explaining a conventional welding monitoring method, and shows a case where no defect is detected.
FIG. 7 is an explanatory diagram for explaining a conventional welding monitoring method, and shows a case where a defect is detected.
[Explanation of symbols]
Reference Signs List 1 welding 2 flaw detection 3 flaw detection image 4 data analysis 5 correction of welding conditions 6 repair welding 7 transmitting probe 8 receiving probe 9, 10 base material 11 groove 12 display 13 welding machine R welding part R1 First layer part R2 Two layer part R3 Three layer part

Claims (2)

溶接作業中に溶接部の溶接状態を監視する溶接監視方法であって、溶接すべき開先部分を挟んで母材表面上に送信用の探触子と受信用の探触子とを対向配置し、溶接パス毎に、溶接部のビード上下端からの超音波と区別される欠陥からの回波にて、上記溶接部の超音波探傷を行うべく構成し、さらに溶接部の初層部から上層部に至るに従って上記送受信一対の探触子の間隔を小さく狭めていくことで溶接積層毎に検査対象とする溶接パスに対して超音波ビームが集中して伝播するようにしたことを特徴とする溶接監視方法。A welding monitoring method for monitoring a welding state of a welding portion during a welding operation, in which a transmitting probe and a receiving probe are arranged opposite to each other on a surface of a base material with a groove to be welded interposed therebetween. and, for each weld pass, times at folding waves from the defect that is distinct from the ultrasonic wave from the bead upper and lower ends of the welded portion, and configured to perform ultrasonic inspection of the weld, the first layer portion of the further weld The ultrasonic beam is concentrated and propagates to the welding path to be inspected for each welding lamination by narrowing the interval between the pair of transmitting and receiving probes to the upper layer from the point of view. And welding monitoring method. 溶接作業中に溶接部の溶接状態を監視する溶接監視方法であって、溶接すべき開先部分を挟んで母材表面上に送信用の探触子と受信用の探触子とを対向配置し、溶接作業に対して一定のタイムラグをもって上記対向配置した一対の探触子を追従して移動させて、溶接部のビード上下端からの超音波と区別される欠陥からの回波にて、上記溶接部の超音波探傷を行うべく構成し、さらに溶接部の初層部から上層部に至るに従って上記送受信一対の探触子の間隔を小さく狭めていくことで溶接積層毎に検査対象とする溶接パスに対して超音波ビームが集中して伝播するようにしたことを特徴とする溶接監視方法。A welding monitoring method for monitoring a welding state of a welding portion during a welding operation, in which a transmitting probe and a receiving probe are arranged opposite to each other on a surface of a base material with a groove to be welded interposed therebetween. and, with a certain time lag relative to the welding operation is moved to follow the pair of probes described above opposed at diffraction waves from the defect that is distinct from the ultrasonic wave from the bead upper and lower ends of the weld , Configured to perform ultrasonic flaw detection of the welded portion, and further narrowing the interval between the pair of transmitting and receiving probes to reach the upper layer portion from the first layer portion of the welded portion, thereby making the inspection target for each welding lamination. A welding monitoring method, wherein an ultrasonic beam is intensively propagated to a welding path to be welded.
JP2000263062A 2000-08-31 2000-08-31 Weld monitoring method Expired - Fee Related JP3564683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000263062A JP3564683B2 (en) 2000-08-31 2000-08-31 Weld monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000263062A JP3564683B2 (en) 2000-08-31 2000-08-31 Weld monitoring method

Publications (2)

Publication Number Publication Date
JP2002071649A JP2002071649A (en) 2002-03-12
JP3564683B2 true JP3564683B2 (en) 2004-09-15

Family

ID=18750654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000263062A Expired - Fee Related JP3564683B2 (en) 2000-08-31 2000-08-31 Weld monitoring method

Country Status (1)

Country Link
JP (1) JP3564683B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180602A (en) * 2008-01-30 2009-08-13 Hino Motors Ltd Welding inspection method and welding inspection device
CN104634874A (en) * 2015-02-06 2015-05-20 宝钢轧辊科技有限责任公司 Large forged back-up roll body working layer defect detecting method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100463767C (en) * 2006-09-22 2009-02-25 四川东风电机厂有限公司 Hydraulic turbine rotary wheel palm axle head defect handling method
CN100578213C (en) * 2007-12-18 2010-01-06 宝钢集团常州轧辊制造公司 Fault detection method of roller body chamfering
JP2010271196A (en) * 2009-05-21 2010-12-02 Kinki Sharyo Co Ltd Laser-welding nondestructive inspection method and device
US20110284508A1 (en) * 2010-05-21 2011-11-24 Kabushiki Kaisha Toshiba Welding system and welding method
US9217731B2 (en) 2010-05-21 2015-12-22 Kabushiki Kaisha Toshiba Welding inspection method and apparatus thereof
KR102187764B1 (en) * 2019-05-30 2020-12-08 한국생산기술연구원 Weld penetration control method and its melting-pool behavior measuring device
WO2020262260A1 (en) * 2019-06-28 2020-12-30 パナソニックIpマネジメント株式会社 Repair welding system, repair welding method, inspection device, and robot control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180602A (en) * 2008-01-30 2009-08-13 Hino Motors Ltd Welding inspection method and welding inspection device
US8627722B2 (en) 2008-01-30 2014-01-14 Hino Motors, Ltd. Welding inspection method and welding inspection apparatus
CN104634874A (en) * 2015-02-06 2015-05-20 宝钢轧辊科技有限责任公司 Large forged back-up roll body working layer defect detecting method
CN104634874B (en) * 2015-02-06 2018-08-24 宝钢轧辊科技有限责任公司 Large forged back -up roll body of roll working lining defect inspection method

Also Published As

Publication number Publication date
JP2002071649A (en) 2002-03-12

Similar Documents

Publication Publication Date Title
JP3564683B2 (en) Weld monitoring method
Yang et al. Measurement of weld penetration depths in thin structures using transmission coefficients of laser-generated Lamb waves and neural network
WO2005045418A1 (en) Method for checking a weld between two metal pipelines
JP4067203B2 (en) Spot welding inspection method
JP4120360B2 (en) Ultrasonic spot weld evaluation method and apparatus
JP4175175B2 (en) Ultrasonic flaw detection method
JP2000180421A (en) Method and apparatus for inspecting thin plate lap seam welded part
JP2018136252A (en) Ultrasonic inspection device, ultrasonic inspection system including the same, and ultrasonic inspection method and program
JP2003322643A (en) Quality inspection method in welded steel pipe welded section
JP3557553B2 (en) Ultrasonic testing method for welded joints
JP3765417B2 (en) Ultrasonic flaw detection method and apparatus
JP2003057214A (en) Ultrasonic flaw detection method and apparatus in fillet welding section
JP4614219B2 (en) Inspection method and inspection apparatus for laser welded joint
JPH05322857A (en) Welding part diagnosis method of thin plate in continuous treatment line
JP2001183352A (en) Inspection method for jointed quality of metal pipe
JPH0862194A (en) Method and apparatus for inspection of bonded part
JP2004085478A (en) Ultrasonic flaw detection method and device
JPH09239539A (en) Back bead monitoring method of wet type underwater one-side welding
JP7485942B2 (en) How to inspect laminated hooks for cracks
JPH0687081A (en) Method and device for controlling seam welding quality
JP4576988B2 (en) Inspection processing method and inspection processing apparatus
JPH06167479A (en) Butt welding joint to be nondestructively inspected
JPS6044618B2 (en) Ultrasonic flaw detection method and device for dissimilar metal welds
JPH07244026A (en) Ultrasonic flaw detecting method for honeycmb panel
JP4552126B2 (en) Ultrasonic flaw detection method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees