JP4120360B2 - Ultrasonic spot weld evaluation method and apparatus - Google Patents

Ultrasonic spot weld evaluation method and apparatus Download PDF

Info

Publication number
JP4120360B2
JP4120360B2 JP2002328160A JP2002328160A JP4120360B2 JP 4120360 B2 JP4120360 B2 JP 4120360B2 JP 2002328160 A JP2002328160 A JP 2002328160A JP 2002328160 A JP2002328160 A JP 2002328160A JP 4120360 B2 JP4120360 B2 JP 4120360B2
Authority
JP
Japan
Prior art keywords
spot
weld
nugget
diameter
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002328160A
Other languages
Japanese (ja)
Other versions
JP2004163210A (en
Inventor
一 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002328160A priority Critical patent/JP4120360B2/en
Publication of JP2004163210A publication Critical patent/JP2004163210A/en
Application granted granted Critical
Publication of JP4120360B2 publication Critical patent/JP4120360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Description

【0001】
【発明の属する技術分野】
本発明は、スポット溶接によって形成される溶融部(ナゲット)の直径を超音波を利用した非破壊手段にて検査する方法及び装置に関する。
【0002】
【従来の技術】
近年、例えば自動車ボディの製造工場などにおいては、スポット溶接部の検査を現場で高能率に行えるようにするため、簡便に実施可能なスポット溶接検査方法が嘱望されている。
【0003】
自動車のボディは、数千点にも達するスポット溶接によって組立てられており、スポット溶接の良否が車体の強度や耐久性に直接影響を及ぼすため、スポット溶接が適切に行われているか否かを検査することはきわめて重要である。従来より、このようなスポット溶接部の検査方法としては、スポット溶接部をタガネで剥離して良否を判定する剥離検査が行われている。しかし、剥離検査は破壊検査であるので検査に膨大な労力と時間とを要しコストが高くつくばかりでなく、スポット溶接の良否を正確に判定することが困難であるという問題がある。そこで、近年に至って、超音波を用いてスポット溶接部の良否を非破壊で検査する装置及び方法が種々提案されている。
【0004】
例えば特許文献1、特許文献2、特許文献3、特許文献4には、2枚の板を重ねて溶接され製作されるスポット溶接部の良否の評価のために、板面に垂直に超音波を入射させて反射波を検出する方法や装置が開示されている。また、特許文献5には、被検体を介してその上下に1組の局部水浸探触子を対向に配置し、被検体を水平方向に移動して送信側局部水浸探触子より送信される超音波ビームで被検体のスポット溶接部を走査し、受信側局部水浸探触子の受信信号からスポット溶接部における傷の有無を判定する超音波探傷装置が開示されている。
【0005】
【特許文献1】
特開2000−146928号公報
【特許文献2】
特開2002−131297号公報
【特許文献3】
特開平11−2627号公報
【特許文献4】
特開平6−265529号公報
【特許文献5】
特開昭62−52456号公報
【0006】
【発明が解決しようとする課題】
しかしながら、これらの先行技術は、平板状の被検体に対して垂直方向に超音波を送受信して検査するものであるので、被検体のスポット溶接部に形成されるくぼみの周囲に形成される傾斜面においては、超音波ビームを効率よく被検体内に入射することができず、スポット溶接部に形成されるナゲットの形状を高精度に検出することが難しいという問題がある。
【0007】
即ち、図7に示すように、上板111a下板111bとを重ねてスポット溶接すると、スポット溶接部102には、上板111aと下板111bとの接合部に「ナゲット」と呼ばれる溶融凝固組織102aが形成される。また、スポット溶接は、図示しない電極チップにて上板111a及び下板111bを強圧することによって行われるので、上板111a及び下板111bの表面には、電極チップの先端部の形状に相当するくぼみ102bが形成され、当該くぼみ102bの底面と上板111a及び下板111bの表面との間には、円錐状の傾斜面102cが形成される。溶接が正常に行われた場合、前記ナゲット102aは、溶接に使用される電極チップの直径よりもやや大きいか同等程度の直径になり、くぼみ102bの内径は、電極チップの先端部の形状が面取りを有する円柱形に形成されていることから電極チップの円柱部の直径よりもやや小さくなり、したがってナゲット102aの径よりもやや小さくなるのが通常である。溶接が正常に行われなかった場合には、ナゲット径が正常に溶接が行われた場合に比べて小さくなり、強度不足等の異常が発生する。なお、図中の符号Sは、ナゲット102aの止端を示している。
【0008】
かように、スポット溶接部102には、くぼみ102bの底面と上板111a及び下板111bの表面との間に円錐状の傾斜面102cが形成されるので、前記先行技術に係る超音波検査装置のように、超音波ビームを被検体である上板111a及び下板111bの表面に対して垂直方向に送受信して検査すると、傾斜面102cにおいて超音波ビームが反射し、被検体の内部にほとんど伝搬されないため、検査部位からの信号がほとんど得られない。前述のように、ナゲット102aの大きさは、電極チップの直径よりもやや大きいか同等程度の直径になるので、ナゲット102aの止端Sと被検体に形成される傾斜面102cとはほとんど重なりあっており、傾斜面102cにおいて超音波ビームが反射すると、ナゲット止端Sの近辺からの正確な信号が得にくくなり、正確なナゲット直径の判定及び欠陥の有無の判定をすることが困難になる。
【0009】
本発明は、かかる従来技術の不備を解決するためになされたものであって、その課題とするところは、スポット溶接部に形成されるくぼみの周囲に形成される傾斜面の影響を受けずにスポット溶接部の評価を行なうことが可能とすることにある。
【0010】
【課題を解決するための手段】
この発明は、複数の金属板を重ね合わせて溶接してなるスポット溶接部の超音波による評価方法において、スポット溶接部の外側の金属板にスポット溶接部の溶接金属に向けて2つの周波数f およびf (f <f )のLamb波を励起し、該Lamb波を溶接金属に透過させ、透過後の2つの周波数f およびf Lamb波を受信し、その透過後の2つの周波数f およびf のLamb波の振幅A およびA 検出し、それらの比(A /A )を求めることにより、スポット溶接部のナゲットの径を測定することにより、前記課題を解決したものである。
【0013】
本発明は又、複数の金属板を重ね合わせて溶接してなるスポット溶接部の超音波による評価装置において、スポット溶接部の外側の金属板にスポット溶接部の溶接金属に向けて2つの周波数f およびf (f <f )のLamb波を励起する手段と、溶接金属を透過後した2つの周波数f およびf Lamb波を受信する手段と、該透過後の2つの周波数f およびf Lamb波の振幅A およびA を検出する手段と、それらの比(A /A )を求めて、スポット溶接部のナゲットの径を測定する手段と、を備えることにより、前記課題を解決したものである。
【0014】
【発明の実施の形態】
以下、図面を参照して、本発明の実施形態を詳細に説明する。
【0015】
以下、2枚の金属板の上側の板を上板、下側の板を下板と称する。本発明では、図1に示すとおり、Lamb波探触子10を用いて上板1aに溶接部2に向うLamb波を励起する。このLamb波には超音波の周波数fと板厚dとの積f・dに応じていくつかのモードが存在するが、A0モード、S0モード、あるいはA0S0混在モードを選ぶのが良い。励起されたLamb波は溶接部に入射するに際し、板厚dの変化により積f・dが変化するため、伝播の条件に変更が生ずるが、前記したモードは積f・dが5MHz・mmを超えると積f・dの変化の影響を受けないため、周波数を適切に選ぶことにより、溶接部においてもそのままのモードで伝播する。前記と同様な理由から、溶接部を透過したLamb波は、そのままのモードで金属板を伝播し、Lamb波探触子11に受信される。
【0016】
溶接部に生成されるナゲット2aは図2に示すとおり、ほぼ板厚方向に平行な方向性を有する溶融凝固組織2bとなっている。この溶融凝固組織2bが本発明にいう溶接金属である。また、この溶融凝固組織2bはデンドライト組織とも呼ばれ、一方向に延びた粗い結晶の集まりであり、図2において特に板表面に平行な方向や板厚に平行な方向において超音波の伝達が悪い(減衰が大きい)性質をもっている。従って板表面に平行な方向に沿って溶接部にLamb波を伝播させると、溶融凝固組織2bの板表面に平行な長さに応じてLamb波が減衰するので、Lamb波の減衰量を測定することにより、溶融凝固組織2bの板表面に平行な長さ、即ち、ナゲット2aの径を測定することができる。
【0017】
図3は、板厚2.6mmの2枚の鋼板を重ねてスポット溶接を行い、溶接電流を変更することによってナゲット径を変化させたサンプルにおけるLamb波の減衰量とナゲット径との関係を調べた結果である。周波数5MHzのA0S0混在モードのLamb波を用いた。Lamb波の減衰量とナゲット系との間には良好な比例関係があることがわかる。
【0018】
図4は、上記のサンプルを用いて、周波数5MHzのA0S0混在モードのLamb波と周波数2MHzのA0S0混在モードのLamb波とを用いて、溶接部を透過したLamb波の振幅を検出し、周波数5MHzでのLamb波透過波の振幅と周波数2MHzでのLamb波透過波の振幅との比とナゲット径との関係を調べた結果である。両者間に良好な相関関係があることがわかる。
【0019】
【実施例】
図5は、板厚2.6mmの2枚の鋼板を重ねてスポット溶接して作製された30個のサンプルにつき、周波数5MHzのA0S0混在モードのLamb波の減衰量から測定されたナゲット径と切断試験により確認されたナゲット径との関係を示している。Lamb波の減衰量からのナゲット径の算出には、図3の関係から得られる検量線を用いた。本発明の方法により0.2mm程度の精度でナゲット径を測定可能なことがわかる。
【0020】
図6は、前記サンプルを用い、周波数5MHzでのA0S0混在モードのLamb波透過波の振幅と周波数2MHzでのA0S0混在モードのLamb波透過波の振幅との比から測定されたナゲット径と切断試験により確認されたナゲット径との関係を示している。振幅比からのナゲット径の算出には、図4の関係から得られる検量線を用いた。本発明の方法によっても0.2mm程度の精度でナゲット径を測定可能なことがわかる。
【0021】
なお、前記説明においては、本発明が鋼板の溶接検査に適用されていたが、本発明の適用対象は、これに限定されない。又、溶接枚数も2枚に限定されず、スポット溶接部の健全性の評価も、図3、図4の関係を用いて、ナゲット径を測定するものに限定されない。
【0022】
【発明の効果】
本発明によれば、スポット溶接部に形成されるくぼみの周囲に形成される傾斜面の影響を受けずに正確に非破壊でスポット溶接部の評価を行なうことが可能になる。
【図面の簡単な説明】
【図1】本発明の実施形態の構成を示す断面図
【図2】本発明の原理を説明するための、スポット溶接部の組織構造を示す断面図
【図3】同じく、Lamb波の減衰とナゲット径との関係を示す線図
【図4】同じく、2つの周波数のLamb波の振幅比とナゲット径との関係を示す線図
【図5】図3の関係を用いた際の本発明の効果(精度)を示す線図
【図6】図4の関係を用いた際の本発明の効果(精度)を示す線図
【図7】スポット溶接部を解説するための断面図
【符号の説明】
1a、111a・・・上板
1b、111b・・・下板
2、102・・・スポット溶接部
2a、102a・・・ナゲット
2b・・・溶融凝固組織(溶接金属)
10、11・・・Lamb波探触子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for inspecting the diameter of a melted portion (nugget) formed by spot welding with nondestructive means using ultrasonic waves.
[0002]
[Prior art]
2. Description of the Related Art In recent years, for example, in an automobile body manufacturing factory, a spot welding inspection method that can be simply implemented is desired in order to enable inspection of a spot welded portion with high efficiency on site.
[0003]
The body of an automobile is assembled by spot welding that reaches several thousand points. Since the quality of spot welding directly affects the strength and durability of the car body, it is inspected whether spot welding is performed properly. It is very important to do. Conventionally, as an inspection method for such a spot welded portion, a peel inspection is performed in which the spot welded portion is peeled off with a chisel to determine whether it is good or bad. However, since the peeling inspection is a destructive inspection, the inspection requires a great deal of labor and time, and the cost is high. In addition, there is a problem that it is difficult to accurately determine the quality of spot welding. Therefore, various devices and methods for non-destructively inspecting the quality of spot welds using ultrasonic waves have been proposed recently.
[0004]
For example, in Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4, an ultrasonic wave is applied perpendicularly to the plate surface in order to evaluate the quality of a spot welded portion that is produced by superimposing and welding two plates. A method and apparatus for detecting a reflected wave by making it incident are disclosed. Further, in Patent Document 5, a pair of local water immersion probes are arranged on the upper and lower sides of a subject so as to face each other, and the subject is moved in the horizontal direction and transmitted from a transmission-side local water immersion probe. An ultrasonic flaw detector is disclosed that scans a spot welded portion of a subject with an ultrasonic beam and determines the presence or absence of a flaw in the spot welded portion from a reception signal of a reception-side local water immersion probe.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-146828 [Patent Document 2]
JP 2002-131297 A [Patent Document 3]
Japanese Patent Laid-Open No. 11-2627 [Patent Document 4]
JP-A-6-265529 [Patent Document 5]
Japanese Patent Laid-Open No. 62-52456 [0006]
[Problems to be solved by the invention]
However, since these prior arts perform inspection by transmitting and receiving ultrasonic waves in a vertical direction with respect to a flat specimen, an inclination formed around a recess formed in a spot welded part of the specimen. On the surface, there is a problem that the ultrasonic beam cannot efficiently enter the subject and it is difficult to detect the shape of the nugget formed in the spot welded portion with high accuracy.
[0007]
That is, as shown in FIG. 7, when the upper plate 111a and the lower plate 111b are overlapped and spot welded, the spot welded portion 102 has a melt-solidified structure called “nugget” at the joint between the upper plate 111a and the lower plate 111b. 102a is formed. Further, spot welding is performed by strongly pressing the upper plate 111a and the lower plate 111b with an electrode tip (not shown), and therefore, the surface of the upper plate 111a and the lower plate 111b corresponds to the shape of the tip portion of the electrode tip. A recess 102b is formed, and a conical inclined surface 102c is formed between the bottom surface of the recess 102b and the surfaces of the upper plate 111a and the lower plate 111b. When welding is performed normally, the nugget 102a has a diameter slightly larger than or equal to the diameter of the electrode tip used for welding, and the inner diameter of the recess 102b is chamfered because the shape of the tip of the electrode tip is chamfered. In general, the diameter is slightly smaller than the diameter of the cylindrical portion of the electrode tip, and therefore is slightly smaller than the diameter of the nugget 102a. When welding is not performed normally, the nugget diameter is smaller than when welding is performed normally, and abnormalities such as insufficient strength occur. In addition, the code | symbol S in a figure has shown the toe of the nugget 102a.
[0008]
Thus, since the conical inclined surface 102c is formed in the spot welded portion 102 between the bottom surface of the recess 102b and the surfaces of the upper plate 111a and the lower plate 111b, the ultrasonic inspection apparatus according to the prior art described above. When the ultrasonic beam is transmitted and received in the direction perpendicular to the surfaces of the upper plate 111a and the lower plate 111b, which are subjects, as described above, the ultrasonic beam is reflected on the inclined surface 102c and almost inside the subject. Since it is not propagated, almost no signal is obtained from the examination site. As described above, since the size of the nugget 102a is slightly larger than or equal to the diameter of the electrode tip, the toe S of the nugget 102a and the inclined surface 102c formed on the subject almost overlap each other. When the ultrasonic beam is reflected on the inclined surface 102c, it is difficult to obtain an accurate signal from the vicinity of the nugget toe S, and it is difficult to accurately determine the nugget diameter and the presence / absence of a defect.
[0009]
The present invention has been made to solve such deficiencies of the prior art, and the problem is that it is not affected by the inclined surface formed around the recess formed in the spot welded portion. This is to enable evaluation of spot welds.
[0010]
[Means for Solving the Problems]
This invention relates to an ultrasonic evaluation method of a spot welded portion formed by superposing and welding a plurality of metal plates, and has two frequencies f 1 toward the weld metal of the spot welded portion on the metal plate outside the spot welded portion. And f 2 (f 1 <f 2 ), exciting the Lamb wave through the weld metal, receiving the Lamb waves of two frequencies f 1 and f 2 after transmission, and 2 after the transmission One of detecting the frequency f 1 and the amplitude a 1 and a 2 of the Lamb wave of f 2, by Rukoto seek their ratio (a 2 / a 1), by measuring the diameter of the nugget of the spot weld, it is obtained by solving the previous Symbol challenges.
[0013]
The present invention is also directed to an ultrasonic evaluation apparatus for a spot welded portion formed by superposing and welding a plurality of metal plates, and having two frequencies f toward the weld metal of the spot welded portion on the metal plate outside the spot welded portion. 1 and f 2 (f 1 <f 2) means for exciting a Lamb wave, and means for receiving the two Lamb waves of a frequency f 1 and f 2 that after passing through the weld metal, the two frequency after the transmission and means for detecting the f 1 and amplitude a 1 and a 2 of the Lamb wave f 2, seeking their ratio (a 2 / a 1), means for measuring the diameter of the nugget of a spot welded portion, a This solves the problem.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0015]
Hereinafter, the upper plate of the two metal plates is referred to as the upper plate, and the lower plate is referred to as the lower plate. In the present invention, as shown in FIG. 1, a Lamb wave probe 10 is used to excite a Lamb wave toward the welded portion 2 on the upper plate 1a. This Lamb wave has several modes depending on the product f · d of the frequency f of ultrasonic waves and the plate thickness d. Select the A 0 mode, S 0 mode, or A 0 S 0 mixed mode. Is good. When the excited Lamb wave enters the weld, the product f ・ d changes due to the change of the plate thickness d, so the propagation condition changes, but in the above mode, the product f ・ d is 5 MHz ・ mm. If it exceeds, it will not be affected by the change in product f · d, so by appropriately selecting the frequency, it will propagate in the mode as it is in the weld. For the same reason as described above, the Lamb wave transmitted through the welded portion propagates through the metal plate in the same mode and is received by the Lamb wave probe 11.
[0016]
As shown in FIG. 2, the nugget 2a generated in the welded portion is a molten and solidified structure 2b having a directionality substantially parallel to the plate thickness direction. This melt-solidified structure 2b is the weld metal referred to in the present invention. The melt-solidified structure 2b is also called a dendrite structure and is a collection of coarse crystals extending in one direction. In FIG. 2, the transmission of ultrasonic waves is poor particularly in the direction parallel to the plate surface and the direction parallel to the plate thickness. It has a property (attenuation is large). Therefore, when the Lamb wave is propagated to the weld along the direction parallel to the plate surface, the Lamb wave is attenuated according to the length parallel to the plate surface of the molten solidified structure 2b, so the amount of Lamb wave attenuation is measured. Thus, the length parallel to the plate surface of the melt-solidified structure 2b, that is, the diameter of the nugget 2a can be measured.
[0017]
Figure 3 shows the relationship between the Lamb wave attenuation and the nugget diameter in a sample where the nugget diameter was changed by spot welding using two steel plates with a thickness of 2.6mm. It is a result. An A 0 S 0 mixed mode Lamb wave with a frequency of 5 MHz was used. It can be seen that there is a good proportional relationship between the Lamb wave attenuation and the nugget system.
[0018]
FIG. 4 shows the amplitude of the Lamb wave transmitted through the weld using the above sample and the Lamb wave in the A 0 S 0 mixed mode having the frequency of 5 MHz and the Lamb wave in the A 0 S 0 mixed mode having the frequency of 2 MHz. This is a result of investigating the relationship between the ratio of the amplitude of the Lamb wave transmitted wave at a frequency of 5 MHz to the amplitude of the Lamb wave transmitted wave at a frequency of 2 MHz and the nugget diameter. It can be seen that there is a good correlation between the two.
[0019]
【Example】
Fig. 5 shows the nugget diameter measured from the attenuation of Lamb waves in the A 0 S 0 mixed mode with a frequency of 5 MHz for 30 samples made by spot welding two steel plates with a thickness of 2.6 mm. And the nugget diameter confirmed by the cutting test. A calibration curve obtained from the relationship shown in FIG. 3 was used to calculate the nugget diameter from the Lamb wave attenuation. It can be seen that the nugget diameter can be measured with an accuracy of about 0.2 mm by the method of the present invention.
[0020]
FIG. 6 is measured from the ratio between the amplitude of the Lamb wave transmitted wave in the A 0 S 0 mixed mode at the frequency of 5 MHz and the amplitude of the Lamb wave transmitted wave in the A 0 S 0 mixed mode at the frequency of 2 MHz using the sample. The relationship between the nugget diameter and the nugget diameter confirmed by the cutting test is shown. For the calculation of the nugget diameter from the amplitude ratio, a calibration curve obtained from the relationship of FIG. 4 was used. It can be seen that the nugget diameter can be measured with an accuracy of about 0.2 mm even by the method of the present invention.
[0021]
In addition, in the said description, although this invention was applied to the welding test | inspection of the steel plate, the application object of this invention is not limited to this. Further, the number of welds is not limited to two, and the evaluation of the soundness of the spot welded portion is not limited to the measurement of the nugget diameter using the relationship shown in FIGS.
[0022]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to evaluate a spot-welded part correctly and non-destructively, without being influenced by the inclined surface formed around the hollow formed in a spot-welded part.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the structure of an embodiment of the present invention. FIG. 2 is a cross-sectional view showing the structure of a spot weld in order to explain the principle of the present invention. FIG. 4 is a diagram showing the relationship between the amplitude ratio of two Lamb waves of two frequencies and the nugget diameter. FIG. 5 is a diagram showing the relationship between the nugget diameter and the nugget diameter. Diagram showing effect (accuracy) [FIG. 6] Diagram showing effect (accuracy) of the present invention when using the relationship of FIG. 4 [FIG. 7] Cross-sectional view for explaining spot welds [Explanation of symbols] ]
1a, 111a ... Upper plate 1b, 111b ... Lower plate 2, 102 ... Spot welds 2a, 102a ... Nugget 2b ... Melt solidified structure (welded metal)
10, 11 ... Lamb wave probe

Claims (2)

複数の金属板を重ね合わせて溶接してなるスポット溶接部の超音波による評価方法において、
スポット溶接部の外側の金属板にスポット溶接部の溶接金属に向けて2つの周波数f およびf (f <f )のLamb波を励起し、
該Lamb波を溶接金属に透過させ、
透過後の2つの周波数f およびf Lamb波を受信し、その透過後の2つの周波数f およびf のLamb波の振幅A およびA 検出し、それらの比(A /A )を求めることにより、スポット溶接部のナゲットの径を測定することを特徴とする超音波によるスポット溶接部の評価方法。
In the evaluation method by ultrasonic of the spot welding part formed by superposing and welding a plurality of metal plates,
Excitation of Lamb waves of two frequencies f 1 and f 2 (f 1 <f 2 ) toward the weld metal of the spot weld on the metal plate outside the spot weld,
Passing the Lamb wave through the weld metal;
The Lamb waves of the two frequencies f 1 and f 2 after transmission are received, and the amplitudes A 1 and A 2 of the Lamb waves of the two frequencies f 1 and f 2 after the transmission are detected , and their ratio (A 2 / a 1) by Rukoto seek evaluation method of the spot welded portion by ultrasonic waves and measuring the diameter of the nugget of the spot weld.
複数の金属板を重ね合わせて溶接してなるスポット溶接部の超音波による評価装置において、
スポット溶接部の外側の金属板にスポット溶接部の溶接金属に向けて2つの周波数f およびf (f <f )のLamb波を励起する手段と、
溶接金属を透過後した2つの周波数f およびf Lamb波を受信する手段と、
該透過後の2つの周波数f およびf Lamb波の振幅A およびA を検出する手段と、
それらの比(A /A )を求めて、スポット溶接部のナゲットの径を測定する手段と、
を備えたことを特徴とする超音波によるスポット溶接部の評価装置。
In an ultrasonic evaluation apparatus for spot welds formed by superimposing and welding a plurality of metal plates,
Means for exciting Lamb waves of two frequencies f 1 and f 2 (f 1 <f 2 ) toward the weld metal of the spot weld on the metal plate outside the spot weld;
Means for receiving the two Lamb waves of a frequency f 1 and f 2 that after passing through the weld metal,
Means for detecting the amplitudes A 1 and A 2 of the Lamb waves of the two frequencies f 1 and f 2 after the transmission;
A means for determining the ratio (A 2 / A 1 ) and measuring the diameter of the nugget of the spot weld,
An apparatus for evaluating spot welds using ultrasonic waves.
JP2002328160A 2002-11-12 2002-11-12 Ultrasonic spot weld evaluation method and apparatus Expired - Fee Related JP4120360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002328160A JP4120360B2 (en) 2002-11-12 2002-11-12 Ultrasonic spot weld evaluation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002328160A JP4120360B2 (en) 2002-11-12 2002-11-12 Ultrasonic spot weld evaluation method and apparatus

Publications (2)

Publication Number Publication Date
JP2004163210A JP2004163210A (en) 2004-06-10
JP4120360B2 true JP4120360B2 (en) 2008-07-16

Family

ID=32806534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002328160A Expired - Fee Related JP4120360B2 (en) 2002-11-12 2002-11-12 Ultrasonic spot weld evaluation method and apparatus

Country Status (1)

Country Link
JP (1) JP4120360B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109725058A (en) * 2018-12-20 2019-05-07 电子科技大学 The twin spans pitch-row tomographic reconstruction imaging method of contactless Lamb wave

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4470655B2 (en) * 2004-09-01 2010-06-02 Jfeスチール株式会社 Ultrasonic spot weld evaluation method and apparatus
JP4731358B2 (en) * 2006-02-28 2011-07-20 Jfeスチール株式会社 Ultrasonic spot weld evaluation method and apparatus
WO2008133216A1 (en) * 2007-04-19 2008-11-06 Jfe Steel Corporation Method and device for evaluating ultrasonic spot welded portion
KR101053422B1 (en) 2008-12-22 2011-08-01 주식회사 포스코 Inner defect detection system and detection method of steel plate using nonlinear ultrasonic generation
CN103336054B (en) * 2013-06-03 2016-03-02 北京工业大学 Based on the butt-weld lossless detection method of ultrasonic Lamb wave
CN104833323B (en) * 2015-05-12 2017-08-25 中国科学院金属研究所 The method that laser lap weld width is measured using S0 mode Lamb waves reflection echo
KR101746976B1 (en) 2015-12-16 2017-06-14 주식회사 포스코 Apparatus and method for detecting weld defects in steel plates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109725058A (en) * 2018-12-20 2019-05-07 电子科技大学 The twin spans pitch-row tomographic reconstruction imaging method of contactless Lamb wave

Also Published As

Publication number Publication date
JP2004163210A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
JP4470655B2 (en) Ultrasonic spot weld evaluation method and apparatus
US7168322B2 (en) Method for ultrasonic control of weld joints
US9074927B2 (en) Methods for non-destructively evaluating a joined component
JP4728838B2 (en) Ultrasonic spot weld evaluation method and apparatus
AU2004288099B2 (en) Method for checking a weld between two metal pipelines
JP4120360B2 (en) Ultrasonic spot weld evaluation method and apparatus
JP2001021542A (en) Measuring of weld line transverse crack defect length
JP2002062281A (en) Flaw depth measuring method and its device
WO2020039850A1 (en) Method and device for evaluating bonding interface
JP4731358B2 (en) Ultrasonic spot weld evaluation method and apparatus
CN113607812A (en) Phased array ultrasonic detection test block structure and detection method for brazing type copper-aluminum transition wire clamp
JP4614219B2 (en) Inspection method and inspection apparatus for laser welded joint
JP2004340807A (en) Ultrasonic flaw detection method and device
JP5421544B2 (en) Ultrasonic spot weld evaluation method and apparatus
KR100927249B1 (en) Measuring the penetration width of laser welding part using ultrasonic wave
JP3754669B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
Lopez Weld inspection with EMAT using guided waves
JP2010032393A (en) Method and device for evaluating spot welded part by ultrasonic wave
JP2011196862A (en) Method and device for inspection spot welding part
JP2006084305A (en) Material defect detecting method and device
JP2012093307A (en) Inspection method and inspection device of spot weld part
JP2001318085A (en) Padding pipe inspecting method
Prilutskii et al. Ultrasound inspection of welded joints in austenitic steels
JPH10246722A (en) Method for inspecting weld-bonded part of plastic tube
JP2005164386A (en) Nondestructive inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees