WO2008133216A1 - Method and device for evaluating ultrasonic spot welded portion - Google Patents

Method and device for evaluating ultrasonic spot welded portion Download PDF

Info

Publication number
WO2008133216A1
WO2008133216A1 PCT/JP2008/057643 JP2008057643W WO2008133216A1 WO 2008133216 A1 WO2008133216 A1 WO 2008133216A1 JP 2008057643 W JP2008057643 W JP 2008057643W WO 2008133216 A1 WO2008133216 A1 WO 2008133216A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
spot
subject
weld
wave
Prior art date
Application number
PCT/JP2008/057643
Other languages
French (fr)
Japanese (ja)
Inventor
Hajime Takada
Hiroshi Adachi
Kousuke Tsuji
Original Assignee
Jfe Steel Corporation
Toyota Shatai Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation, Toyota Shatai Kabushiki Kaisha filed Critical Jfe Steel Corporation
Publication of WO2008133216A1 publication Critical patent/WO2008133216A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4436Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a reference signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/50Processing the detected response signal, e.g. electronic circuits specially adapted therefor using auto-correlation techniques or cross-correlation techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds
    • G01N2291/2672Spot welding

Definitions

  • the present invention relates to a method and an apparatus for inspecting a joining state of a spot welded portion formed by superposing and welding a plurality of plate members by a nondestructive means using ultrasonic waves.
  • a spot welding inspection method that can be carried out simply has been awaited so that spot welds can be inspected with high efficiency on site.
  • a spot welded part hereinafter referred to as a fusion welded part
  • a spot welding inspection method that can easily determine spot welds (hereinafter referred to as “interfacial welds”) that have not been generated.
  • the fusion weld is a good spot weld and the interface weld is a poor spot weld.
  • the body of an automobile is assembled by thousands of spot welds, and the quality of spot welds directly affects the strength and durability of the car body. It is very important to check whether spot welding is properly performed.
  • Patent Documents 1 to 3 an ultrasonic probe is contacted perpendicularly to the plate surface in order to detect interface welding at a spot welded portion that is produced by superimposing and welding two plates.
  • a method and apparatus for detecting a reflected wave by making the light incident is disclosed.
  • the ultrasonic wave (longitudinal wave) perpendicularly incident on the spot welded portion is observed on the bottom multiple reflection echo returning to the ultrasonic probe after multiple reflection between the front and back surfaces of the welded portion.
  • This method makes use of the fact that the echo height of the bottom multiple reflection echo attenuates as it propagates between the fusion weld and the interface weld.
  • the melt-solidified structure of the melt-solidified part (nugget) is also called a dendrite structure, and is a collection of coarse crystals extending in one direction. Therefore, the transmission of ultrasonic waves is poor and the attenuation is large compared to the metal structure of a steel sheet.
  • the metallographic structure of the interfacial welds has a fine crystal grain due to a temperature history close to normalization, so that the transmission of ultrasonic waves is good and the attenuation is small. Therefore, because of the large attenuation at the weld weld, the amplitude of the bottom echo drops sharply as the number of reflections at the bottom increases, whereas at the interface weld weld, the number of reflections at the bottom increases. The drop in the amplitude of the bottom echo accompanying this is gradual. This difference can be used to discriminate between the fusion weld and the interface weld weld.
  • Patent Document 1 Japanese Patent Laid-Open No. 2-8700
  • Patent Document 2 Japanese Patent Laid-Open No. 4 2 6 5 8 5 4
  • Patent Document 3 Japanese Patent Laid-Open No. 2 0 0 0— 1 4 6 9 2 8
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2 0 06-7 1 4 2 2
  • the upper plate 1 0 1 a and the lower plate 1 0 1 b are strongly pressed by an electrode tip (not shown).
  • a depression 1 0 2 b is formed on the surface of the plate 1 0 1 b.
  • the depression 1 2 b is roughly composed of an inclined surface 10 2 c and a flat part, but the flat part also has subtle irregularities. Therefore, the amplitude of the bottom multi-reflected echo that the ultrasonic wave perpendicularly incident on the spot welded part 102 reflects back and forth between the front and back of the welded part and returns to the ultrasonic probe is also affected by the subtle unevenness. Dependent.
  • the inventor of the present application has already proposed the following spot weld evaluation method in Patent Document 4.
  • the ultrasonic evaluation method for spot welds formed by superimposing and welding a plurality of metal plates it propagates in the cross section formed by the direction along the surface of the metal plate or spot weld and the thickness direction.
  • the ultrasonic wave is referred to as an ultrasonic wave propagating along the surface of the subject, it propagates along the surface of the subject from a plurality of transmission positions of the metal plate outside the spot welded portion in a plurality of directions.
  • Ultrasound is transmitted, and at multiple receiving positions on the metal plate outside the spot weld, the ultrasonic wave propagated along the surface of the subject not including the spot weld in the propagation path, and the propagation path spot
  • An ultrasonic wave characterized by receiving ultrasonic waves propagating along the surface of the object including the welded portion and evaluating the soundness of the spot welded portion from the ultrasonic waves received at the plurality of positions.
  • This is a method for evaluating spot welds using According to the present invention, the spot welded portion can be evaluated accurately in a non-destructive manner without being affected by the inclined surface formed around the recess formed in the spot welded portion, and limited to a short time.
  • the spot welded part is highly reliable without being affected by the displacement of the position of the ultrasonic probe and the spot welded part or the contact state between the ultrasonic probe and the metal plate. Succeeded in evaluating the health. Also, in Patent Document 4, the amplitude profile of the ultrasonic wave transmitted using a transducer array and received using another transducer array is obtained, and the width of the amplitude profile below a predetermined threshold is calculated. Disclosed display as nugget diameter.
  • the present invention has been made in order to solve the drawbacks of Patent Document 4, and the problem is that it is not affected by the shape of the spot welded portion and is highly reliable with the fusion welded portion. It is to identify and display the interface weld weld. In other words, the present invention is an improvement over Patent Document 4 that enables instant determination of the quality of spot welds.
  • the present invention relates to an ultrasonic evaluation method of a spot welded portion formed by superposing and welding a plurality of plate materials, and propagating in a cross section formed by a direction along the surface of the plate material or spot welded portion and a thickness direction.
  • the ultrasonic wave that propagates along the surface of the subject is propagated along the surface of the subject in multiple directions from multiple wave transmission positions on the plate material outside the spot weld. Ultrasound is transmitted, and spot welds are not included in the propagation path at the multiple receiving positions of the plate material outside the spot welds. Receiving the ultrasonic wave propagating along the surface of the subject and the ultrasonic wave propagating along the surface of the subject including the spot weld in the propagation path.
  • the present invention also relates to an ultrasonic evaluation apparatus for a spot welded portion formed by superposing and welding a plurality of plate materials, according to the direction along the surface and the thickness direction of the plate material or spot welded portion.
  • the ultrasonic wave propagating in the cross section to be formed is referred to as the ultrasonic wave propagating along the surface of the subject, the subject is directed toward the plural directions from the plurality of transmission positions of the plate material outside the spot welded portion.
  • the ultrasonic wave that propagates along the surface of the subject that does not include spot welding in the propagation path at the multiple receiving positions of the plate material outside the spot welded part , And means for receiving ultrasonic waves propagating along the surface of the subject including spot welds in the propagation path, and a propagation path connecting the plurality of transmission positions and the plurality of reception positions Supersonic waves received in each of And cross-correlation between the signal of the reference ultrasonic signal and the reference ultrasonic signal, and frequency analysis of the ultrasonic signal received in each of the propagation paths connecting the plurality of transmission positions and the plurality of reception positions
  • a means for discriminating a welding state based on at least one of the cross-correlation calculation result and the frequency analysis result, and an ultrasonic spot welded portion characterized by comprising:
  • an ultrasonic signal that has propagated along the surface of the subject that does not include a spot weld in the propagation path can be used.
  • the means for transmitting ultrasonic waves propagating along the surface of the subject from the plurality of transmission positions in a plurality of directions can be an ultrasonic probe including a transducer array.
  • the means for receiving ultrasonic waves at the plurality of receiving positions may be an ultrasonic probe equipped with a transducer array.
  • FIG. 1 is a perspective view showing a basic configuration of an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing an ultrasonic propagation path for explaining the principle of the present invention.
  • Figure 3 is also a plan view.
  • Figure 4 is a cross-sectional view of the spot weld.
  • FIG. 5 is a perspective view including a partial block diagram showing an example of an apparatus for carrying out the embodiment of the present invention.
  • FIG. 6 is an explanatory diagram showing a cross-correlation calculation value profile.
  • FIG. 7 is a diagram showing the accuracy of measurement results obtained by the method of the present invention.
  • FIG. 8 is an explanatory diagram showing the magnitude profile of the specific frequency component of the received ultrasonic wave.
  • FIG. 9 is a diagram showing the accuracy of measurement results obtained by the method of the present invention.
  • FIG. 10 is an explanatory diagram showing a determination method using the feature amount space.
  • Figure 11 shows a display example of the identification result between the fusion weld and the interface weld.
  • Fig. 12 is a cross-sectional view illustrating the spot weld.
  • an ultrasonic probe 10 having a transducer array 11 and an ultrasonic probe 20 having a transducer array 21 are connected to an upper plate 1.
  • An appropriate contact medium is interposed between the ultrasonic probe 10 and the ultrasonic probe 20 and the upper plate 1a.
  • the ultrasonic probe 10 Using an ultrasonic probe 10 having the transducer array 11, ultrasonic waves are transmitted from a plurality of positions to the upper plate 1 a.
  • the ultrasonic probe 10 has a structure in which the transducer array 1'1 is attached to the resin wedge 1 2, and the ultrasonic wave transmitted from the transducer array 1 1 is obliquely formed on the upper plate 1 Incident on a.
  • the ultrasonic waves traveling obliquely with respect to the surface of the upper plate la are transmitted into the upper plate la by the obliquely incident ultrasonic waves.
  • the ultrasonic wave traveling diagonally includes longitudinal waves and transverse waves, and propagates through the upper plate: la while repeating reflection and mode conversion on the bottom surface and surface of the upper plate 1a (hereinafter, along the surface of the subject). Also referred to as ultrasonic waves propagating to the surface).
  • the solid line is the transverse wave and the broken line is the longitudinal wave.
  • the propagating ultrasonic waves are received by the ultrasonic probe 20 having the transducer array 21.
  • the ultrasonic probe 20 has a structure in which a transducer array 21 is attached to a resin wedge 22.
  • the plane path shown in Fig. 3 (viewed from the top surface of the metal plate) is obtained by the ultrasonic probe 1 0 equipped with the transducer, ray 1 1 and the ultrasonic probe 2 0 equipped with the transducer array 2 1. (Path) can be received.
  • Ultrasound probe 1 0 transducer array 1 1 represents individual transducers 1 1 i to l 1 N
  • ultrasound probe 2 0 transducer array 2 1 individual transducers 2 1 We denote it as ⁇ 2 1 1 ⁇ .
  • N for example, the number of 4, 8, 16 or 32 can be used.
  • Figure 3 shows the case where N is 16. Since the ultrasonic waves transmitted from the transducers 11 1 to 11 N of the vibrator array have a spatial spread, the plane path shown in Fig. 3 is passed from the transducers 1 li to l 1 N. It can transmit ultrasonic waves.
  • the ultrasonic wave transmitted from the transducer 1 1 i of the ultrasonic probe 10 is received by the transducers 2 1 i to 2 1 N of the ultrasonic probe 2 0.
  • the ultrasonic wave transmitted from the transducer 1 1 2 of the ultrasonic probe 10 is received by the transducers 2 1 i to 2 1 N of the ultrasonic probe 20.
  • This process is repeated until the ultrasonic waves transmitted from the transducer 1 1 N of the ultrasonic probe 10 are received by the transducers 2 1 i to 2 1 N of the ultrasonic probe 2 0.
  • This is done by sequentially changing the oscillator ll n (N l, 2,.
  • ultrasonic waves transmitted from a plurality of positions and propagating in a plurality of directions can be received by the transducer 2 1!-. 2 1 N of the ultrasonic probe 20.
  • the nugget 2 a generated in the spot weld 2 is a molten and solidified structure 2 b having a direction substantially parallel to the plate thickness direction.
  • This molten and solidified structure 2b force is a weld metal as referred to in the present invention.
  • This melt-solidified structure 2b also called a dendrite structure, is a collection of coarse crystals extending in one direction. Compared to other metal structures, the transmission of ultrasonic waves is poor (attenuation is large). Therefore, the ultrasonic wave propagating in the path shown in Fig. 3 is attenuated according to the length of the melt-solidified structure 2b existing in the propagation path when the path contains the melt-solidified structure 2b.
  • the melt-solidified structure 2b has a property that the speed of propagation of the ultrasonic wave is considerably different from that of the metal structure of the metal plate.
  • the specific orientation of the metal crystal shown using the dashed arrows in Fig. 4 is almost aligned in the thickness (z) direction. Therefore, the structure has inertial anisotropy. Therefore, the propagation speed of ultrasonic waves changes depending on the propagation direction (azimuth dependence of propagation speed).
  • the propagation speed of the ultrasonic wave does not depend on the propagation direction and is a constant value.
  • the propagation speed of the ultrasonic wave propagating along the surface of the object is determined when the propagation path includes the molten solidified structure 2 b and when the propagation path does not include the molten solidified structure 2 b (metal Generally, it is different from (propagating only the metal structure of the plate).
  • the ultrasonic wave propagating in the subject while repeating reflection and mode conversion on the bottom and surface of the subject has ultrasonic components propagating in various angular directions, so it melts in the propagation path.
  • the propagation velocity changes for each component due to the azimuth dependence of the propagation velocity, resulting in a significant change in the waveform of the received ultrasonic signal (phase mixing). . .
  • Width of ultrasonic probe 10 used for transmission (total width of transducers 1 li to l 1 N ) and width of ultrasonic probe 20 used for reception (transducers 2 1 i to 2 1
  • the path located at the end of the planar path shown in Fig. 3 (eg 1 1 1 2 1 1 N ⁇ It is possible to prevent the melted and solidified structure 2b from being contained in 1 2 N ).
  • this path that does not include the melt-solidified structure there is only a metal structure of the metal plate (steel plate) and a fine crystal structure that has undergone a temperature history close to normalization.
  • the molten solidified structure 2 contains more high-frequency components.
  • the received ultrasonic wave of the path including the interface weld is compared with the received ultrasonic wave of the path including the molten solidified structure 2b, the received ultrasonic wave of the path including the interface weld is higher in frequency. Contains a lot of ingredients. '
  • the received ultrasonic wave of the path including the melt-solidified structure 2 b also changes its low frequency component as a result of the mixing of the ⁇ : phase. Therefore, comparing the received ultrasonic wave of the path including the melt-solidified structure 2b and the received sound wave of the path not including the molten-solidified structure 2b in the planar path shown in Fig. 3, A difference appears. Similarly, when the received ultrasonic wave of the path including the interface weld and the received ultrasonic wave of the path including the melted solidified structure 2.b are compared, there is a difference in the low frequency component.
  • the cross-correlation calculation is performed with the signal waveform of the received ultrasonic wave on the other path, using the signal waveform of the received ultrasonic wave on the path located at the end as a reference waveform. If the propagation path contains a melt-solidified structure, the cross-correlation calculation value becomes a relatively small value due to a change in the waveform of the received ultrasonic wave.
  • frequency analysis is performed on the ultrasonic signals received in each of the propagation paths connecting a plurality of transmission positions and a plurality of reception positions.
  • solidification structure is included in the propagation path, phenomena such as large attenuation of high frequency components and changes in low frequency components are observed.
  • spotting is performed in ultrasonic transmission and reception. The effect of the dent in the weld does not appear.
  • the ultrasonic wave propagating along the surface of the subject does not lose the property of propagating along the surface even if the incident angle and reflection angle with respect to the subject front and back surfaces are slightly changed due to a few depressions and irregularities. For this reason, in this embodiment, it is possible to identify whether the propagation path includes a force including a melt-solidified structure or whether an interface weld weld is included without being affected by the shape of the spot weld. Can be done.
  • the ultrasonic probe 10 and the ultrasonic probe were applied to the sample on which two metal plates (steel plates) having a thickness of 0.6 mm were overlapped and spot-welded.
  • the ultrasonic probe 10 is driven sequentially from the ultrasonic transmitter / receiver 30 through the switch circuit 25 to the transducer 1 1 to 1 1
  • the ultrasonic wave transmitted from N is received by the ultrasonic probe 2 Q transducers 2 1 i to 2 1 N, and is amplified by the ultrasonic transmitter / receiver 30 through the switch circuit 26.
  • the AZD converter 31 converts the received signal to AZD, and then uses the arithmetic unit 3 2 to transmit the received ultrasonic wave transmitted from the vibrator 1 1 i and received by the vibrator 2 1] as a reference signal.
  • N is 1 6, and the maximum value of the signal waveform after calculation is detected as the cross-correlation calculation result.
  • the frequency analysis (Fast Fourier Transform: FFT) of the received ultrasonic signal received by the transducers 2 1 i to 2 1 N of the ultrasonic probe 20 is performed using the arithmetic device 3 2. It was.
  • Figure 6 compares the cross-correlation calculation profile measured using a spot weld sample containing a melt-solidified structure and an interfacial weld sample.
  • the result of cross-correlation with the reference signal is displayed in the order of the path number n.
  • FIG. 6 there is a clear difference in the cross-correlation calculation value profile between the spot weld sample containing the melt-solidified structure and the interfacial weld sample.
  • Figure 7 shows the average value of the specific frequency components of the received ultrasonic waves measured using the spot weld sample including the melt-solidified structure and the interface weld weld sample (for example, in this experiment, the ultrasonic probe 1 0
  • the center frequency of ultrasonic waves transmitted and received by 20 and 20 is in the range of 10%, and if the center frequency is 10 MHz, the range is 9 to 11 MHz, spot welds including melt-solidified structures and interface weld spots. Any frequency component that can be observed to be different from the welded part is shown in comparison with the magnitude profile of the received ultrasonic wave.
  • Is the magnitude of the specific-frequency component of the received ultrasonic signal transmitted from the vibrator 1 1 ⁇ and received by the vibrator 2 1 ⁇ ( ⁇ 1, 2, 3,..., 1 6).
  • the path numbers are arranged in the order of ⁇ , as shown in Fig. 7.
  • the wedge members 1 2 and 22 of the ultrasonic probes 10 and 20 are made of polystyrene, and the transducer arrays 1 1 1 16 and 2 1 to 2 1 16 are arranged in an array.
  • the spot weld 2 was measured so that the width of the vibrator in the direction was 0.8 mm and the incident angle of the ultrasonic wave on the top plate surface was 25.4 °.
  • 30 samples prepared by spot welding two steel sheets with a thickness of 0.6 mm were used.
  • 20 are spot weld sample containing melt-solidified structure
  • 10 are interface weld spot weld sample.
  • FIG. 8 shows the correlation calculation evaluation index for each sample. Spot welded sun containing molten solidified structure It can be seen that there is a clear difference in the correlation calculation evaluation index between the pull and the interface weld spot weld sample. By setting an appropriate threshold value for the correlation calculation evaluation index, it is possible to determine a spot weld including a melt-solidified structure and an interface weld spot weld.
  • the frequency of the specific frequency component of the received ultrasonic wave was determined by fast Fourier transform (FFT).
  • FFT fast Fourier transform
  • the average value of the specific frequency components of multiple paths was calculated and used as a frequency evaluation index.
  • vibrator 1 l n ⁇ vibrator 2 1 n , n 6, 7,-, 11, and there is a difference between spot welds containing molten solidified structures and interface weld spot welds Any route can be selected as long as it is observed, and any number can be selected.
  • Figure 9 shows the frequency evaluation index for each sample. It can be seen that there is a clear difference in the frequency evaluation index between the spot weld sample containing the molten and solidified structure and the interface weld spot weld sample.
  • the frequency evaluation index By setting an appropriate threshold value for the frequency evaluation index, it is possible to determine a spot weld including a melt-solidified structure and an interfacial weld spot weld.
  • a frequency evaluation index in addition to the average value of the specific frequency component in the predetermined route, the maximum value of the specific frequency component in the predetermined route, the center of gravity frequency, the center frequency, and the change in the low-frequency ultrasonic component Indices such as condition can be used.
  • the frequency evaluation index may be configured using two or more indices.
  • the determination may be made using either the correlation calculation evaluation index or the frequency evaluation index. Note that, when both evaluation indexes are combined, the reliability of the determination result is improved.
  • two or more evaluation indexes are selected from the correlation calculation evaluation index and the frequency evaluation index to be feature quantity A, feature quantity B, and so on.
  • the center of gravity of the spot welded part group (healthy group) and interfacial weld spot welded part group (defective group) is obtained in advance, and when measuring a new spot welded part, the feature value space of the spot welded part measured value Position (measurement value position) and sound collection
  • the distance between the group (healthy distance) and the distance between the measured value position and the defective group (defect distance) are obtained and compared, and it is determined that the spot weld is included in the smaller group. Moyore.
  • Figure 11 shows a display example of the identification result between the fusion weld and the interface weld.
  • the case of a fusion weld is shown in (a) in Fig. 11.
  • the case of an interfacial weld is shown in (b) in Fig. 11.
  • the ultrasonic probe provided with the transducer array is used on both the transmission side and the reception side, the configuration is simple. It is also possible to use a plurality of probes in juxtaposition to either one or both, or to scan and use a single probe. .
  • the present invention is applied to welding inspection of a metal plate (steel plate), but the application target of the present invention is not limited to this. It can also be applied to welding inspection of aluminum plates and other inorganic and organic materials. Also, the number of welds is not limited to two, and the evaluation of the soundness of spot welds is not limited only to the identification of spot welds containing a melt-solidified structure and spot welds containing an interface weld. Les.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

A fusion welded portion is reliably discriminated from an interface deposit welded portion without being adversely influenced by the shape of the spot welded portion. Ultrasonic waves propagating along the surface of a subject are sent toward a plurality of directions from wave sending positions on outside plates (1a, 1b) of a spot welded portion(2). At wave receiving positions on the outside plate of the spot welded portion (2), ultrasonic waves propagating along the surface of the subject the propagation path of which does not include the spot welded portion (2) and the ultrasonic waves propagating along the surface of the subject the propagation path of which includes the spot welded portion (2) are received. The crosscorrelation between the signal of the received ultrasonic wave propagating through each of the propagation paths connecting the wave sending positions and the wave receiving positions and the signal of a reference ultrasonic wave is computed, and/or the frequency of the signal of the received ultrasonic wave propagating through each of the propagation paths is analyzed. The welded state is judged from the result of the crosscorrelation computation and/or the result of the frequency analysis.

Description

明細書 超音波によるスポット溶接部の評価方法及び装置 技術分野  Method and apparatus for evaluating spot welded portion by ultrasonic wave
本発明は、 複数の板材を重ね合わせて溶接してなるスポット溶接部の接合状態 を、 超音波を利用した非破壊手段にて検査する方法及び装置に関する。 背景技術  The present invention relates to a method and an apparatus for inspecting a joining state of a spot welded portion formed by superposing and welding a plurality of plate members by a nondestructive means using ultrasonic waves. Background art
近年、 例えば自動車ボディの製造工場等においては、 スポット溶接部の検査を 現場で高能率に行なえるようにするため、 簡便に実施可能なスポット溶接検査方 法が待望されている。 特に、 溶融凝固部 (ナゲット) が生成されているスポッ ト 溶接部 (以下、 融着溶接部) と、 金属板の界面が局部的に溶着しているだけであ つて、 溶融凝固部 (ナゲット) が生成されていないスポッ ト溶接部 (以下、 .界面 溶着溶接部) とを簡便に判定できるスポット溶接検査方法が必要とされている。 融着溶接部は良好なスポット溶接部であり界面溶着溶接部は不良なスポット溶接' 部である。  In recent years, for example, in automobile body manufacturing factories, a spot welding inspection method that can be carried out simply has been awaited so that spot welds can be inspected with high efficiency on site. In particular, a spot welded part (hereinafter referred to as a fusion welded part) in which a melted and solidified part (nugget) is generated and the interface of the metal plate are only locally welded. There is a need for a spot welding inspection method that can easily determine spot welds (hereinafter referred to as “interfacial welds”) that have not been generated. The fusion weld is a good spot weld and the interface weld is a poor spot weld.
自動車のボディは、 数千点にも及ぶスポット溶接によって組立てられており、 スポット溶接の良否が車体の強度や耐久性に直接影響を及ぼす。 スポット溶接が 適切に行なわれているか否かを検查することは極めて重要である。  The body of an automobile is assembled by thousands of spot welds, and the quality of spot welds directly affects the strength and durability of the car body. It is very important to check whether spot welding is properly performed.
従来、 このようなスポッ ト溶接部の検查方法として、 スポッ ト溶接された金属 板の間へタガネを差込み、 スポット溶接部が剥離するか否かを確認することによ り良否を判定していた。 これをタガネ検査と呼ぶ。 しかし、 タガネ検査を なう ことによってスポット溶接部が割れる場合があるので、 タガネ検査によってはス ポット溶接の良否を正確に判定することは困難である。 又、 タガネ検査によって スポット溶接部を破壊すると製品にならないため、 コストが高くつく問題がある。 そこで、. 近年、 超音波を用いてスポット溶接部の良否を非破壊で検査する装置 及ぴ方法が種々提案されている。 Conventionally, as a method for inspecting such spot welds, pass / fail was determined by inserting a chisel between the spot-welded metal plates and checking whether the spot welds peeled off. This is called a chisel inspection. However, since spot welds may break due to the chisel inspection, it is difficult to accurately determine whether or not spot welding is good by chisel inspection. In addition, if the spot welded part is destroyed by a chisel inspection, it will not be a product, resulting in a high cost. Therefore, in recent years, various apparatuses and methods for nondestructively inspecting the quality of spot welds using ultrasonic waves have been proposed.
例えば特許文献 1〜 3には、 2枚の板を重ねて溶接され製作されるスポット溶 接部の界面溶着検出のために、 板面に垂直に超音波探触子を当接させ、 超音波を 入射させて反射波を検出する方法や装置が開示されている。  For example, in Patent Documents 1 to 3, an ultrasonic probe is contacted perpendicularly to the plate surface in order to detect interface welding at a spot welded portion that is produced by superimposing and welding two plates. A method and apparatus for detecting a reflected wave by making the light incident is disclosed.
特許文献 1〜2では、 スポッ ト溶接部に垂直に入射させた超音波 (縦波) 、 溶接部表裏面間で多重反射して超音波探触子へ戻る底面多重反射エコーを観察す る。 この方法は、 底面多重反射エコーのエコー高さが伝搬に伴い減衰していく現 象が、 融着溶接部と界面溶着溶接部との間で相違することを利用している。 溶融 凝固部 (ナゲット) の溶融凝固組織はデンドライ ト組織とも呼ばれ、 一方向へ延 びた粗い結晶の集まりであるため、 鋼板の金属組織に比べ超音波の伝達が悪く減 衰が大きい。 これに対し、 界面溶着溶接部の金属組織は、'焼きならしに近い温度 履歴を受けることにより結晶粒が微細であるため、 超音波の伝達が良く減衰が小 さい。 従って、 融着溶接部では大きな減衰のために、 底面での反射回数の増大に 伴う底面エコーの振幅の落ち込みが急であるのに対し、 界面溶着溶接部では、 底 面での反射回数の増大に伴う底面エコーの振幅の落ち込みが緩やかである。 この 違いを利用して融着 接部と界面溶着溶接部とを識別することができる。  In Patent Documents 1 and 2, the ultrasonic wave (longitudinal wave) perpendicularly incident on the spot welded portion is observed on the bottom multiple reflection echo returning to the ultrasonic probe after multiple reflection between the front and back surfaces of the welded portion. This method makes use of the fact that the echo height of the bottom multiple reflection echo attenuates as it propagates between the fusion weld and the interface weld. The melt-solidified structure of the melt-solidified part (nugget) is also called a dendrite structure, and is a collection of coarse crystals extending in one direction. Therefore, the transmission of ultrasonic waves is poor and the attenuation is large compared to the metal structure of a steel sheet. In contrast, the metallographic structure of the interfacial welds has a fine crystal grain due to a temperature history close to normalization, so that the transmission of ultrasonic waves is good and the attenuation is small. Therefore, because of the large attenuation at the weld weld, the amplitude of the bottom echo drops sharply as the number of reflections at the bottom increases, whereas at the interface weld weld, the number of reflections at the bottom increases. The drop in the amplitude of the bottom echo accompanying this is gradual. This difference can be used to discriminate between the fusion weld and the interface weld weld.
又、 特許文献 3では、 開口角が大きい集束型超音波探触子を用いて、 スポッ ト 溶接部の垂直方向へ超音波 (縦波) を入射させ、 底面での反射におけるモード変 換によって生成された横波の振幅を観測することにより、 固相接合面を横波が通 過し難い現象を利用して、 融着溶接部と界面溶着溶接部との識別を行なう。  Also, in Patent Document 3, using a focused ultrasonic probe with a large aperture angle, ultrasonic waves (longitudinal waves) are incident in the vertical direction of the spot weld and are generated by mode conversion in reflection at the bottom. By observing the amplitude of the generated transverse wave, it is possible to distinguish between the fusion welded part and the interfacial welded part by utilizing the phenomenon that the transverse wave does not easily pass through the solid-phase joint surface.
特許文献 1 : 特開平 2— 8 7 0 6 0号公報  Patent Document 1: Japanese Patent Laid-Open No. 2-8700
特許文献 2 : 特開平 4一 2 6 5 8 5 4号公報  Patent Document 2: Japanese Patent Laid-Open No. 4 2 6 5 8 5 4
特許文献 3 : 特開 2 0 0 0— 1 4 6 9 2 8号公報  Patent Document 3: Japanese Patent Laid-Open No. 2 0 0 0— 1 4 6 9 2 8
特許文献 4 : 特開 2 0 0 6— 7 1 4 2 2号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 2 0 06-7 1 4 2 2
発明の開示 し力 し、 図 1 2に示すように、 スポット溶接では、 図示しない電極チップによ つて上板 1 0 1 a及び下板 1 0 1 bが強圧されるので、 上板 1 0 1 a及び下板 1 0 1 bの表面には、 窪み 1 0 2 bが形成される。 該窪み 1ひ 2 bは、 概略、 傾斜 面 1 0 2 cと平坦部からなるものの、 平坦部にも微妙な凹凸がある。 よって、 ス ポット溶接部 1 0 2に垂直に入射させた超音波が、 溶接部表裏面間で多重反射し て超音波探触子へ戻る底面多反射エコーの振幅は、 前記微妙な凹凸にも依存する。 該凹凸の程度が大きければ、 底面での反射回数の増大に伴う底面エコーの振幅の 落ち込みが、 やはり急になる。 又、 超音波探触子を用いてスポッ ト溶接部 1 0 2 へ超音波を送波する際にも、 上記凹凸によって超音波が散乱され、 底面多重反射 エコーそのものの観察が難しい問題がある。 このようなことから、 特許文献:!〜Disclosure of the invention As shown in FIG. 12, in spot welding, the upper plate 1 0 1 a and the lower plate 1 0 1 b are strongly pressed by an electrode tip (not shown). A depression 1 0 2 b is formed on the surface of the plate 1 0 1 b. The depression 1 2 b is roughly composed of an inclined surface 10 2 c and a flat part, but the flat part also has subtle irregularities. Therefore, the amplitude of the bottom multi-reflected echo that the ultrasonic wave perpendicularly incident on the spot welded part 102 reflects back and forth between the front and back of the welded part and returns to the ultrasonic probe is also affected by the subtle unevenness. Dependent. If the degree of the unevenness is large, the drop in the amplitude of the bottom echo accompanying the increase in the number of reflections on the bottom surface will also be abrupt. In addition, when ultrasonic waves are transmitted to the spot welded portion 102 using an ultrasonic probe, the ultrasonic waves are scattered by the unevenness, which makes it difficult to observe the bottom surface multiple reflection echo itself. Because of this, Patent Literature: ~
2に開示された方法は、 融着溶接部と界面溶着溶接部との識別を正確に行なうこ とが難しいとされている。 In the method disclosed in No. 2, it is difficult to accurately identify the fusion welded portion and the interfacial weld weld.
一方、 特許文献 3の技術では、 モード変換によって生成させた横波の振幅が、 底面への超音波の入射角に依存するため、 前記した溶接部の形状に依存して横波 の振幅が変化する問題があった。 まだ、 メツキ材等の界面溶着溶接部では、 メッ キに用いられた金属が完全に溶着して接合されている場合が多いため、 融着溶接 部と同様に横波が通過する結果、 特許文献 3の技術では、 融着溶接 と界面溶着 溶接部との識別が難しい場合があった。  On the other hand, in the technique of Patent Document 3, since the amplitude of the transverse wave generated by the mode conversion depends on the incident angle of the ultrasonic wave to the bottom surface, the amplitude of the transverse wave changes depending on the shape of the weld described above. was there. However, in many cases, interfacial welds such as plating materials are often completely welded and joined to the metal used in the mesh. As a result, the transverse wave passes as in the case of fusion welds. With this technology, it was sometimes difficult to distinguish between fusion welds and interfacial welds.
本願発明者は既に特許文献 4において下記のスポット溶接部の評価方法を提案 した。 即ち、 複数の金属板を重ね合わせて溶接してなるスポット溶接部の超音波 による評価方法において、 金属板またはスポット溶接部の表面沿いの方向と厚さ 方向とによって形成される断面内を伝搬する超音波を被検体の表面沿いに伝搬す る超音波と称することとしたとき、 スポット溶接部の外側の金属板の複数の送波 位置から複数方向へ向けて、 被検体の表面沿いに伝搬する超音波を送波し、 スポ ット溶接部の外側の金属板の複数の受波位置において、 伝搬経路にスポット溶接 部を含まない被検体の表面沿いに伝搬してきた超音波、 及び伝搬経路にスポット 溶接部を含む被検体の表面沿いに伝搬してきた超音波を受波し、 前記複数位置に おいて受波された超音波からスポット溶接部の健全性を評価することを特徴とす る超音波によるスポッ ト溶接部の評価方法である。 この発明によって、 スポット 溶接部に形成されるくぼみの周囲に形成される傾斜面の影響を受けずに、 正確に 非破壊でスポット溶接部の評価を行なうことに成功すると共に、 短時間に限られ る測定であっても、 超音波探触子の位置とスポッ ト溶接部の位置のずれや、 超音 波探触子と金属板との接触状態に影響されずに、 信頼性高くスポット溶接部の健 全性を評価することに成功した。 また, 特許文献 4では, 振動子アレイを用いて 送波し, 別の振動子アレイを用いて受波した超音波の振幅プロフィルを求め, こ の振幅プロフィルが所定のしきい値を下回る幅をナゲット径として表示すること を開示した。 The inventor of the present application has already proposed the following spot weld evaluation method in Patent Document 4. In other words, in the ultrasonic evaluation method for spot welds formed by superimposing and welding a plurality of metal plates, it propagates in the cross section formed by the direction along the surface of the metal plate or spot weld and the thickness direction. When the ultrasonic wave is referred to as an ultrasonic wave propagating along the surface of the subject, it propagates along the surface of the subject from a plurality of transmission positions of the metal plate outside the spot welded portion in a plurality of directions. Ultrasound is transmitted, and at multiple receiving positions on the metal plate outside the spot weld, the ultrasonic wave propagated along the surface of the subject not including the spot weld in the propagation path, and the propagation path spot An ultrasonic wave characterized by receiving ultrasonic waves propagating along the surface of the object including the welded portion and evaluating the soundness of the spot welded portion from the ultrasonic waves received at the plurality of positions. This is a method for evaluating spot welds using According to the present invention, the spot welded portion can be evaluated accurately in a non-destructive manner without being affected by the inclined surface formed around the recess formed in the spot welded portion, and limited to a short time. Even if measurement is performed, the spot welded part is highly reliable without being affected by the displacement of the position of the ultrasonic probe and the spot welded part or the contact state between the ultrasonic probe and the metal plate. Succeeded in evaluating the health. Also, in Patent Document 4, the amplitude profile of the ultrasonic wave transmitted using a transducer array and received using another transducer array is obtained, and the width of the amplitude profile below a predetermined threshold is calculated. Disclosed display as nugget diameter.
しかし, 短時間での判断が要求される忙しい製造現場での検査において, スポッ ト溶接がなされた部位によっては, 単に良部と不良部を識別して表示できればよ い場合がある。 このような場合, ナゲット径ではなく, 融着溶接部と界面溶着溶 接部との区別を表示することが好ましい。 However, in a busy manufacturing site inspection that requires judgment in a short time, depending on the spot welded area, it may be necessary to simply identify and display good and defective parts. In such cases, it is preferable to display the distinction between fusion welds and interfacial welds rather than nugget diameters.
本発明は、 特許文献 4の欠点を解決するためになされたものであって、 その課 題とするところは、 スポット溶接部の形状の影響を受けずに、 信頼性高く融着溶 接部と界面溶着溶接部とを識別し表示することにある。 即ち本発明は特許文献 4 ぼ発明を改良してスポット溶接部の良否を瞬時に判別できるようにしたものであ る。  The present invention has been made in order to solve the drawbacks of Patent Document 4, and the problem is that it is not affected by the shape of the spot welded portion and is highly reliable with the fusion welded portion. It is to identify and display the interface weld weld. In other words, the present invention is an improvement over Patent Document 4 that enables instant determination of the quality of spot welds.
本発明は、 複数の板材を重ね合わせて溶接してなるスポット溶接部の超音波に よる評価方法において、 板材又はスポット溶接部の表面沿いの方向と厚さ方向と によって形成される断面内を伝搬する超音波を被検体の表面沿いに伝搬する超音 波と称することとしたとき、 スポット溶接部の外側の板材の複数の送波位置から 複数方向へ向けて、 被検体の表面沿いに伝搬する超音波を送波し、 スポッ ト溶接 部の外側の板材の複数の受波位置において、 伝搬経路にスポット溶接部を含まな い被検体の表面沿いに伝搬してきた超音波、 及び、 伝搬経路にスポッ ト溶接部を 含む被検体の表面沿いに伝搬してきた超音波を受波し、 前記複数の送波位置と前 記複数の受波位置とを結ぶ伝搬経路の各々において受波された超音波の信号と基 準の超音波の信号との相互相関演算、 および、 前記複数の送波位置と前記複数の 受波位置とを結ぶ伝搬経路の各々において受波された超音波の信号の周波数解析 の少なくともいずれか一方を行い、 相互相関演算結果および周波数解析結果の少 なくともいずれか一方に基づいて溶接状態を判別することにより、 前記課題を解 決したものである。 The present invention relates to an ultrasonic evaluation method of a spot welded portion formed by superposing and welding a plurality of plate materials, and propagating in a cross section formed by a direction along the surface of the plate material or spot welded portion and a thickness direction. The ultrasonic wave that propagates along the surface of the subject is propagated along the surface of the subject in multiple directions from multiple wave transmission positions on the plate material outside the spot weld. Ultrasound is transmitted, and spot welds are not included in the propagation path at the multiple receiving positions of the plate material outside the spot welds. Receiving the ultrasonic wave propagating along the surface of the subject and the ultrasonic wave propagating along the surface of the subject including the spot weld in the propagation path. A cross-correlation operation between an ultrasonic signal received in each of the propagation paths connecting the received wave positions and a reference ultrasonic signal, and the plurality of transmitting positions and the plurality of receiving positions. At least one of the frequency analysis of the ultrasonic signals received in each of the propagation paths connecting the two, and determining the welding state based on at least one of the cross-correlation calculation results and the frequency analysis results The above-mentioned problem is solved.
本発明は、 又、 複数の板材を重ね合わせて溶接してなるスポッ ト溶接部の超音 波による評価装置において、 板材又はスポット溶接部の表面沿いの方向と厚さ方 向と.によつて形成される断面内を伝搬する超音波を被検体の表面沿いに伝搬する 超音波と称することとしたとき、 スポット溶接部の外側の板材の複数の送波位置 から複数方向へ向けて、 被検体の表面沿いに伝搬する超音波を送波する手段と、 スポット溶接部の外側の板材の複数の受波位置において、 伝搬経路にスポット溶 接 を含まない被検体の表面沿いに伝搬してきた超音波、 及び、 伝搬経路にスポ ット溶接部を含む被検体の表面沿いに伝搬してきた超音波を受波する手段と、 前 記複数の送波位置と前記複数の受波位置とを結ぶ伝搬経路の各々において受波さ れた超音波の信号と基準の超音波の信号との相互相関演算、 および、 前記複数の 送波位置と前記複数の受波位置とを結ぶ伝搬経路の各々において受波された超音 波の信号の周波数解析の少なくともいずれか一方を行い、 該相互相関演算結果お よび周波数解析結果の少なくともいずれか一方に基づいて溶接状態を判別する手 段と、 を備えだことを特徴とする超音波によるスポット溶接部の評価装置を提供 するものである。  The present invention also relates to an ultrasonic evaluation apparatus for a spot welded portion formed by superposing and welding a plurality of plate materials, according to the direction along the surface and the thickness direction of the plate material or spot welded portion. When the ultrasonic wave propagating in the cross section to be formed is referred to as the ultrasonic wave propagating along the surface of the subject, the subject is directed toward the plural directions from the plurality of transmission positions of the plate material outside the spot welded portion. The ultrasonic wave that propagates along the surface of the subject that does not include spot welding in the propagation path at the multiple receiving positions of the plate material outside the spot welded part , And means for receiving ultrasonic waves propagating along the surface of the subject including spot welds in the propagation path, and a propagation path connecting the plurality of transmission positions and the plurality of reception positions Supersonic waves received in each of And cross-correlation between the signal of the reference ultrasonic signal and the reference ultrasonic signal, and frequency analysis of the ultrasonic signal received in each of the propagation paths connecting the plurality of transmission positions and the plurality of reception positions A means for discriminating a welding state based on at least one of the cross-correlation calculation result and the frequency analysis result, and an ultrasonic spot welded portion characterized by comprising: An evaluation device is provided.
前記基準の超音波の信号として、 伝搬経路にスポット溶接部を含まない被検体 の表面沿レ、に伝搬してきた超音波の信号を用いることができる。 又、 前記複数の送波位置から複数方向へ向けて、 被検体の表面沿いに伝搬する 超音波を送波する手段を、 振動子アレイを備えた超音波探触子とすることができ る。 As the reference ultrasonic signal, an ultrasonic signal that has propagated along the surface of the subject that does not include a spot weld in the propagation path can be used. The means for transmitting ultrasonic waves propagating along the surface of the subject from the plurality of transmission positions in a plurality of directions can be an ultrasonic probe including a transducer array.
又、 前記複数の受波位置において超音波を受波する手段を、 振動子アレイを備 えた超音波探触子とすることができる。  The means for receiving ultrasonic waves at the plurality of receiving positions may be an ultrasonic probe equipped with a transducer array.
本発明によれば、 スポッ ト溶接部の形状の影響を受けずに、 信頼性高く融着溶 接部と界面溶着溶接部とを識別することが可能となる。 図面の簡単な説明  According to the present invention, it is possible to reliably distinguish between a fusion welded portion and an interface weld welded portion without being affected by the shape of the spot welded portion. Brief Description of Drawings
図 1は、 本発明の実施形態の基本構成を示す斜視図である。 FIG. 1 is a perspective view showing a basic configuration of an embodiment of the present invention.
図 2は、 本発明の原理を説明するための、 超音波の伝搬経路を示す断面図である。 図 3は、 同じく平面図である。 FIG. 2 is a cross-sectional view showing an ultrasonic propagation path for explaining the principle of the present invention. Figure 3 is also a plan view.
図 4は、 同じくスポット溶接部の断面図である。 Figure 4 is a cross-sectional view of the spot weld.
図 5は、 本発明の実施形態を実施するための装置の例を示す、 一部ブロック図を 含む斜視図である。 FIG. 5 is a perspective view including a partial block diagram showing an example of an apparatus for carrying out the embodiment of the present invention.
図 6は、 相互相関演算値プロフィルを示す説明図である。 FIG. 6 is an explanatory diagram showing a cross-correlation calculation value profile.
図 7は、 本発明法による測定結果の精度を示す線図である。 FIG. 7 is a diagram showing the accuracy of measurement results obtained by the method of the present invention.
図 8は、 受波超音波の特定周波数成分の大きさプロフィルを示す説明図である。 図 9は、 本発明法による測定結果の精度を示す線図である。 FIG. 8 is an explanatory diagram showing the magnitude profile of the specific frequency component of the received ultrasonic wave. FIG. 9 is a diagram showing the accuracy of measurement results obtained by the method of the present invention.
図 1 0は、 特徴量空間を用いた判定方法を示す説明図である。 FIG. 10 is an explanatory diagram showing a determination method using the feature amount space.
図 1 1は, 融着溶接部と界面溶着溶接部との識別結果の表示例である。 Figure 11 shows a display example of the identification result between the fusion weld and the interface weld.
図 1 2は、 スポット溶接部を解説するための断面図である。 Fig. 12 is a cross-sectional view illustrating the spot weld.
図中の符号の説明は以下の通りである。 The description of the reference numerals in the figure is as follows.
1 a、 1 0 1 a…上板  1 a, 1 0 1 a… Upper plate
1 b、 1 0 1 b…下板  1 b, 1 0 1 b ... Lower plate
2、 1 0 2…スポット溶接部 2 a、 1 0 2 a…ナゲット 2, 1 0 2 ... Spot weld 2 a, 1 0 2 a… nuggets
2 b…溶融凝固組織 > (溶接金属)  2 b… Melt solidified structure> (welded metal)
1 0、 2 0 · · ·超音波探触子  1 0, 2 0 ... Ultrasonic probe
1 1 , 2 1…振動子アレイ  1 1, 2 1 ... vibrator array
2 5、 2 6…スィツチ回路  2 5, 2 6 ... switch circuit
3 0…超音波送受信器  3 0… Ultrasonic transceiver
3 1 " ' A, D変換器  3 1 "'A, D converter
3 2…演算装置 発明を実施するための最良の形態  3 2... Arithmetic unit BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して、 本発明の実施形態を詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
ここでは、 2枚の金属板が接合されてなるスポット溶接部の評価を例にとり説 明する。 2枚の金属板の上側の板を上板、 下側の板を下板と称する。 本発明では、 図 1に示すとおり、 振動子アレイ 1 1を備えた超音波探触子 1 0と、 振動子ァレ ィ 2 1を備えた超音波探触子 2 0とを、 上板 1 a上のスポット溶接部 2を挟んだ 位置に向かい合わせて当接させる。 超音波探触子 1 0及び超音波探触子 2 0と、 上板 1 aとの間には、 適当な接触媒質を介在させる。  Here, an example of the evaluation of a spot weld where two metal plates are joined will be described. The upper plate of the two metal plates is called the upper plate, and the lower plate is called the lower plate. In the present invention, as shown in FIG. 1, an ultrasonic probe 10 having a transducer array 11 and an ultrasonic probe 20 having a transducer array 21 are connected to an upper plate 1. a Make contact with the spot welding part 2 on the opposite side. An appropriate contact medium is interposed between the ultrasonic probe 10 and the ultrasonic probe 20 and the upper plate 1a.
振動子アレイ 1 1を備えた超音波探触子 1 0を用いて、 複数の位置から上板 1 aに超音波を送波する。 超音波探触子 1 0は、 樹脂くさび 1 2に振動子アレイ 1 ' 1が貼り付けられた構造を有しており、 振動子アレイ 1 1から送波された超音波 が斜めに上板 1 aへ入射する。  Using an ultrasonic probe 10 having the transducer array 11, ultrasonic waves are transmitted from a plurality of positions to the upper plate 1 a. The ultrasonic probe 10 has a structure in which the transducer array 1'1 is attached to the resin wedge 1 2, and the ultrasonic wave transmitted from the transducer array 1 1 is obliquely formed on the upper plate 1 Incident on a.
該斜めに入射した超音波によって、 図 2に示す如く、 上板 l aの中に上板 l a 表面に対して斜めに進行する超音波が送波される。 該斜めに進行する超音波は、 縦波及び横波を含み、 上板 1 aの底面及び表面において反射やモード変換を繰り 返しながら、 上板: l a中を伝搬する (以下、 被検体の表面沿いに伝搬する超音波 とも称する) 。 図 2において、 実線は横波であり、 破線は縦波である。 超音波の 上板 1 aへの入射角が適当な値の場合には、 上記反射を繰り返して伝搬する超音 波は、 L a m b波と呼ばれる波動になる。 As shown in FIG. 2, the ultrasonic waves traveling obliquely with respect to the surface of the upper plate la are transmitted into the upper plate la by the obliquely incident ultrasonic waves. The ultrasonic wave traveling diagonally includes longitudinal waves and transverse waves, and propagates through the upper plate: la while repeating reflection and mode conversion on the bottom surface and surface of the upper plate 1a (hereinafter, along the surface of the subject). Also referred to as ultrasonic waves propagating to the surface). In Fig. 2, the solid line is the transverse wave and the broken line is the longitudinal wave. Ultrasonic When the incident angle to the upper plate 1a is an appropriate value, the ultrasonic wave that propagates by repeating the reflection is a wave called a Lamb wave.
伝搬してきた超音波は、 振動子アレイ 2 1を備えた超音波探触子 2 0によって, 受波される。 超音波探触子 2 0は、 樹脂くさび 2 2に振動子アレイ 2 1が貼り付 けられた構造を有している。  The propagating ultrasonic waves are received by the ultrasonic probe 20 having the transducer array 21. The ultrasonic probe 20 has a structure in which a transducer array 21 is attached to a resin wedge 22.
振動子ァ、レイ 1 1を備えた超音波探触子 1 0と振動子アレイ 2 1を備えた超音 波探触子 2 0とによって、 図 3に示す平面経路 (金属板の上面からみた経路) を 伝搬した超音波を受波することができる。.超音波探触子 1 0の振動子アレイ 1 1 の個々の振動子を 1 1 i〜l 1 N 表わし、 超音波探触子 2 0の振動子アレイ 2 1 の個々の振動子を 2 1 〜2 1 1^と表わすことにする。 Nとしては、 例えば 4、 8、 1 6、 3 2等の個数を用いることができる。 図 3は、 Nが 1 6の場合である。 振 動子アレイの振動子 1 1ェ〜1 1 Nから送波される超音波には空間的に広がりがあ るので、 振動子 1 l i〜l 1 Nから、 図 3に示した平面経路をとる超音波を送波す ることができる。 The plane path shown in Fig. 3 (viewed from the top surface of the metal plate) is obtained by the ultrasonic probe 1 0 equipped with the transducer, ray 1 1 and the ultrasonic probe 2 0 equipped with the transducer array 2 1. (Path) can be received. Ultrasound probe 1 0 transducer array 1 1 represents individual transducers 1 1 i to l 1 N , ultrasound probe 2 0 transducer array 2 1 individual transducers 2 1 We denote it as ~ 2 1 1 ^. As N, for example, the number of 4, 8, 16 or 32 can be used. Figure 3 shows the case where N is 16. Since the ultrasonic waves transmitted from the transducers 11 1 to 11 N of the vibrator array have a spatial spread, the plane path shown in Fig. 3 is passed from the transducers 1 li to l 1 N. It can transmit ultrasonic waves.
超音波探触子 1 0の振動子 1 1 iから送波された超音波を、 超音波探触子 2 0の 振動子 2 1 i〜2 1 Nによって受波する。 次に、 超音波探触子 1 0の振動子 1 1 2 から送波された超音波を、 超音波探触子 2 0の振動子 2 1 i〜2 1 Nによって受波 する。 この過程を、 超音波探触子 1 0の振動子 1 1 Nから送波された超音波を、 超 音波探触子 2 0の振動子 2 1 i〜2 1 Nによって受波するまで、 送波を行なう振動 子 l l n (N = l、 2、 ···、 N) を順次変更して行なう。 この結果、 複数位置から 送波される複数の方向へ伝搬する超音波を、 超音波探触子 2 0の振動子 2 1 ! -.2 1 Nによって受波することができる。 The ultrasonic wave transmitted from the transducer 1 1 i of the ultrasonic probe 10 is received by the transducers 2 1 i to 2 1 N of the ultrasonic probe 2 0. Next, the ultrasonic wave transmitted from the transducer 1 1 2 of the ultrasonic probe 10 is received by the transducers 2 1 i to 2 1 N of the ultrasonic probe 20. This process is repeated until the ultrasonic waves transmitted from the transducer 1 1 N of the ultrasonic probe 10 are received by the transducers 2 1 i to 2 1 N of the ultrasonic probe 2 0. This is done by sequentially changing the oscillator ll n (N = l, 2,. As a result, ultrasonic waves transmitted from a plurality of positions and propagating in a plurality of directions can be received by the transducer 2 1!-. 2 1 N of the ultrasonic probe 20.
スポット溶接部 2に生成されるナゲット 2 aは、 図 4に示すとおり、 ほぼ板厚 方向に平行な方向性を有する溶融凝固組織 2 bとなっている。 この溶融凝固組織 2 b力 本発明にいう溶接金属である。 この溶融凝固組織 2 bは、 デンドライ ト 組織とも呼ばれ、 一方向へ延びた粗い結晶の集まりであるため、 金属板 (鋼板) の金属組織に比べ、 超音波の伝達が悪い (減衰が大きい) 性質を持っている。 よ つて、 図 3に示した経路を伝搬する超音波は、 その経路に溶融凝固組織 2 bが含 まれる場合、 伝搬経路に存在する溶融凝固組織 2 bの長さに応じた減衰を受ける 結果、 その振幅が低下して超音波探触子 2 0に受波される。 又、 溶融凝固組織 2 bは、 この中を超音波が伝搬する速度が、 金属板の金属組織とはかなり異なる性 質を持っている。 溶融凝固組織 2 bでは、 図 4に示すミクロ金属組織の模式図の ように、 金属結晶の特定の方位 (図 4に破線の矢印を用いて示す) が板厚 (z ) 方向にほぼ揃っているため、 該組織は弹性的な異方性を持っている。 従って、 超 音波は、 その伝搬する方向に依存して伝搬速度が変化する (伝搬速度の方位依存 性) 。 これに対して、 金属板 (鋼板) の金属組織では、 金属結晶がランダムな方 向に向いているため、 超音波の伝搬速度は、 その伝搬方向に依存せず、 一定の値 となる。 以上、 説明したことによって、 被検体の表面沿いに伝搬する超音波の伝 搬速度は、 伝搬経路に溶融凝固組織 2 bを含む場合と、 伝搬経路に溶融凝固組織 2 bを含まない場合 (金属板の金属組織のみを伝搬) との間で異なるのが一般的 である。 更に、 被検体の底面及び表面において反射やモード変換を繰り返しなが ら、 被検体中を伝搬する超音波は、 様々な角度方向へ伝搬する超音波成分を有す るため、 その伝搬経路に溶融凝固組織 2 bが含まれると、 前記伝搬速度の方位依 存性のために成分毎に伝搬速度が変化する結果、 受波される超音波信号の波形が 著しぐ変化する (位相の混合) 。 . As shown in FIG. 4, the nugget 2 a generated in the spot weld 2 is a molten and solidified structure 2 b having a direction substantially parallel to the plate thickness direction. This molten and solidified structure 2b force is a weld metal as referred to in the present invention. This melt-solidified structure 2b, also called a dendrite structure, is a collection of coarse crystals extending in one direction. Compared to other metal structures, the transmission of ultrasonic waves is poor (attenuation is large). Therefore, the ultrasonic wave propagating in the path shown in Fig. 3 is attenuated according to the length of the melt-solidified structure 2b existing in the propagation path when the path contains the melt-solidified structure 2b. The amplitude is reduced and received by the ultrasonic probe 20. In addition, the melt-solidified structure 2b has a property that the speed of propagation of the ultrasonic wave is considerably different from that of the metal structure of the metal plate. In the melt-solidified structure 2b, as shown in the schematic diagram of the micro metal structure shown in Fig. 4, the specific orientation of the metal crystal (shown using the dashed arrows in Fig. 4) is almost aligned in the thickness (z) direction. Therefore, the structure has inertial anisotropy. Therefore, the propagation speed of ultrasonic waves changes depending on the propagation direction (azimuth dependence of propagation speed). On the other hand, in the metal structure of a metal plate (steel plate), since the metal crystal is oriented in a random direction, the propagation speed of the ultrasonic wave does not depend on the propagation direction and is a constant value. As described above, the propagation speed of the ultrasonic wave propagating along the surface of the object is determined when the propagation path includes the molten solidified structure 2 b and when the propagation path does not include the molten solidified structure 2 b (metal Generally, it is different from (propagating only the metal structure of the plate). Furthermore, the ultrasonic wave propagating in the subject while repeating reflection and mode conversion on the bottom and surface of the subject has ultrasonic components propagating in various angular directions, so it melts in the propagation path. When solidified tissue 2b is included, the propagation velocity changes for each component due to the azimuth dependence of the propagation velocity, resulting in a significant change in the waveform of the received ultrasonic signal (phase mixing). . .
送波に用いる超音波探触子 1 0の幅 (振動子 1 l i〜l 1 Nの全体の幅) 及び受 波に用いる超音波探触子 2 0の幅 (振動子 2 1 i〜2 1 Nの全体の幅) を溶融凝固 組織 2 bの平面的な大きさよりも大きくすることにより、 図 3に示した平面経路 のうち、 端に位置する経路 (例えば 1 1 1 2い 1 1 N→1 2 N) に溶融凝固組 織 2 bが含まれないようにすることができる。 この溶融凝固組織を含まない経路 には、 金属板 (鋼板) の金属組織や焼きならしに近い温度履歴を受けた微細な結 晶組織しか存在しないため、 受波超音波には溶融凝固組織 2 bによる減衰や位相 の混合は現われない。 同様に、 界面溶着溶接部の金属組織は焼きならしに近い温 度履歴を受けることにより結晶粒が微細であるから、 受波超音波には溶融凝固組 織 2 bによる減衰や位相の混合は現われない。 ' 又、 溶融凝固組織 2 bは、 粗い結晶粒からなるため、 .超音波の周波数が高いほ ど該超音波を大きく減衰させる性質を有している。 よって、 図 3に示した平面経 路のうち、 溶融凝固組織 2 bを含む経路の受波超音波と溶融凝固組織 2 bを含ま ない経路の受波超音波とを比較すると、 溶融凝固組織 2 bを含まない経路の受波 超音波の方が、 高周波数成分を多く含んでいる。 同様に、 界面溶着部を含む経路 の受波超音波と溶融凝固組織 2 bを含む経路の受波超音波とを比較すると、 界面 溶着部を含む経路の受波超音波の方が、 高周波数成分を多く含んでいる。' Width of ultrasonic probe 10 used for transmission (total width of transducers 1 li to l 1 N ) and width of ultrasonic probe 20 used for reception (transducers 2 1 i to 2 1 By making the overall width of N ) larger than the planar size of the melt-solidified structure 2b, the path located at the end of the planar path shown in Fig. 3 (eg 1 1 1 2 1 1 N → It is possible to prevent the melted and solidified structure 2b from being contained in 1 2 N ). In this path that does not include the melt-solidified structure, there is only a metal structure of the metal plate (steel plate) and a fine crystal structure that has undergone a temperature history close to normalization. b attenuation and phase Mixing of does not appear. Similarly, because the microstructure of the interface weld weld is subject to a temperature history close to normalization, the crystal grains are fine, so the attenuation and phase mixing due to the melt-solidified structure 2b are not applied to the received ultrasonic waves. Does not appear. In addition, since the melt-solidified structure 2b is composed of coarse crystal grains, the higher the frequency of the ultrasonic wave, the more the ultrasonic wave is attenuated. Therefore, in the plane path shown in FIG. 3, when the received ultrasonic wave of the path including the molten solidified structure 2 b and the received ultrasonic wave of the path not including the molten solidified structure 2 b are compared, the molten solidified structure 2 The received wave of the path that does not include b contains more high-frequency components. Similarly, when the received ultrasonic wave of the path including the interface weld is compared with the received ultrasonic wave of the path including the molten solidified structure 2b, the received ultrasonic wave of the path including the interface weld is higher in frequency. Contains a lot of ingredients. '
更に、 溶融凝固組織 2 bを含む経路の受波超音波は、 前記^:相の混合の結果、 その低周波成分も変化する。 よって、 図 3に示した平面経路のうち、 溶融凝固組 織 2 bを含む経路の受波超音波と溶融凝固組織 2 bを含まない経路の受波 音波 とを比較すると、 低周波数成分にも違いがあらわれる。 同様に、 界面溶着部を含 む経路の受波超音波と溶融凝固組織 2. bを含む経路の受波超音波とを比較すると、 低周波数成分に違いがある。  Further, the received ultrasonic wave of the path including the melt-solidified structure 2 b also changes its low frequency component as a result of the mixing of the ^: phase. Therefore, comparing the received ultrasonic wave of the path including the melt-solidified structure 2b and the received sound wave of the path not including the molten-solidified structure 2b in the planar path shown in Fig. 3, A difference appears. Similarly, when the received ultrasonic wave of the path including the interface weld and the received ultrasonic wave of the path including the melted solidified structure 2.b are compared, there is a difference in the low frequency component.
従って、 受波超音波の波形変化 (減衰及び位相の混合) や周波数成分を観測す ることによって、 伝搬経路に溶融凝固組織が含まれるか、 あるいは、 界面溶着溶 接部が含まれるかの識別を行なうことができる。 具体的には、 前記端に位置する 経路での受波超音波の信号波形を基準波形として、 他の経路での受波超音波の信 号波形との相互相関演算を行う。 伝搬経路に溶融凝固組織が含まれる場合には、 受波超音波の'波形変化のために相互相関演算値が相対的に小さな値となる。 また、 複数の送波位置と複数の受波位置とを結ぶ伝搬経路の各々において受波された超 音波の信号の周波数解析を行う。 伝搬経路に溶融凝固組織が含まれる場合には、 高周波数成分の減衰が大きい、 低周波数成分が変化する等の現象が観測される。 本実 ¾形態においては、'超音波探触子 1 0及び超音波探触子 2 0をスポット溶 接部 2の窪みに当接させることがないので、 超音波の送波及び受波にスポット溶 接部の窪みの影響は現れない。 更に、 被検体の表面沿いに伝搬する超音波は、 多 少の窪みや凹凸によつて被検体表裏面に対する入射角や反射角が多少変化しても、 表面沿いに伝搬する性質を失わない。 このようなことから、 本実施形態では、 ス ポット溶接部の形状の影響を受けることなく、 伝搬経路に溶融凝固組織が含まれ. る力、 あるいは、 界面溶着溶接部が含まれるかの識別を行なうことができる。 Therefore, by observing the waveform change (attenuation and phase mixing) and frequency components of the received ultrasonic wave, it is possible to identify whether the propagation path contains a molten solidified structure or an interface welded part. Can be performed. Specifically, the cross-correlation calculation is performed with the signal waveform of the received ultrasonic wave on the other path, using the signal waveform of the received ultrasonic wave on the path located at the end as a reference waveform. If the propagation path contains a melt-solidified structure, the cross-correlation calculation value becomes a relatively small value due to a change in the waveform of the received ultrasonic wave. In addition, frequency analysis is performed on the ultrasonic signals received in each of the propagation paths connecting a plurality of transmission positions and a plurality of reception positions. When the solidification structure is included in the propagation path, phenomena such as large attenuation of high frequency components and changes in low frequency components are observed. In this embodiment, since the ultrasonic probe 10 and the ultrasonic probe 20 are not brought into contact with the recesses of the spot welded portion 2, spotting is performed in ultrasonic transmission and reception. The effect of the dent in the weld does not appear. Furthermore, the ultrasonic wave propagating along the surface of the subject does not lose the property of propagating along the surface even if the incident angle and reflection angle with respect to the subject front and back surfaces are slightly changed due to a few depressions and irregularities. For this reason, in this embodiment, it is possible to identify whether the propagation path includes a force including a melt-solidified structure or whether an interface weld weld is included without being affected by the shape of the spot weld. Can be done.
図 5に示すように、 板厚 0 . 6 mmの 2枚の金属板 (鋼板) を重ねてスポット 溶接を行なったサンプルに、 前記したように超音波探触子 1 0及び超音波探触子 2 0を、 スポット溶接部 2を挟んで向かい合わせて当接させ、 超音波送受信器 3 0からスィツチ回路 2 5を経て順次駆動される超音波探触子 1 0の振動子 1 1 〜 1 1 Nから送波された超音波を、 超音波探触子 2 Qの振動子 2 1 i〜2 1 Nによつ て受波し、 スィッチ回路 2 6を経て超音波送受信器 3 0によって増幅された信号 を、 AZD変換器 3 1によって AZD変換した後、 演算装置 3 2を用いて、 振動 子 1 1 iから送波され、 振動子 2 1】によって受波された受波超音波を基準信号と して、 他の経路の受波超音波信号と相互相関演算を行なった。 ここで、 Nは 1 6 とし、 相互相関演算結果として、 演算後の信号波形の最大値を検出した。 また、 演算装置 3 2を用いて、 超音波探触子 2 0の振動子 2 1 i〜2 1 Nによって受波さ れた受波超音波信号の周波数解析 (高速フーリエ変換: F F T) を行った。 As shown in FIG. 5, as described above, the ultrasonic probe 10 and the ultrasonic probe were applied to the sample on which two metal plates (steel plates) having a thickness of 0.6 mm were overlapped and spot-welded. The ultrasonic probe 10 is driven sequentially from the ultrasonic transmitter / receiver 30 through the switch circuit 25 to the transducer 1 1 to 1 1 The ultrasonic wave transmitted from N is received by the ultrasonic probe 2 Q transducers 2 1 i to 2 1 N, and is amplified by the ultrasonic transmitter / receiver 30 through the switch circuit 26. The AZD converter 31 converts the received signal to AZD, and then uses the arithmetic unit 3 2 to transmit the received ultrasonic wave transmitted from the vibrator 1 1 i and received by the vibrator 2 1] as a reference signal. As a result, cross-correlation calculation was performed with the received ultrasonic signals of other paths. Here, N is 1 6, and the maximum value of the signal waveform after calculation is detected as the cross-correlation calculation result. In addition, the frequency analysis (Fast Fourier Transform: FFT) of the received ultrasonic signal received by the transducers 2 1 i to 2 1 N of the ultrasonic probe 20 is performed using the arithmetic device 3 2. It was.
図 6に、 溶融凝固組織を含むスポット溶接部サンプルと界面溶着溶接部サンプ ルとを用いて測定した相互相関演算値のプロフィルを対比して示す。 相互相関演 算値のプロフィルとは、 振動子 1 1 nから送波され、 振動子 2 1 n ( n = 1 , 2, 3, -, 1 6 ) によって受波された受波超音波信号と基準信号との相互相関演算 結果を経路番号 nの順に並べ'て表示したものである。 図 6のとおり、 溶融凝固組 織を含むスポッ ト溶接部サンプルと界面溶着溶接部サンプルとの間には相互相関 演算値プロフィルに明瞭な差異がある。 図 7に、 溶融凝固組織を含むスポット溶接部サンプルと界面溶着溶接部サンプ ルとを用いて測定した受波超音波の特定周波数成分平均値 (例えば、 この実験で は超音波探触子 1 0および 20が送受波する超音波の中心周波数土 1 0%の範囲。 中心周波数が 1 0 MH zならば、 9〜 1 1 MH zの範囲、 溶融凝固組織を含むス ポット溶接部と界面溶着スポット溶接部との間で差異が観察される周波数成分な らば、 どのようなものでもよレ、。 ό の大きさプロフィルを対比して示す。 受波超 音波の特定周波数成分の大きさプロフィルとは、 振動子 1 1 ηから送波され、 振動 子 2 1 η (η= 1, 2, 3, …, 1 6) によって受波された受波超音波信号の特定- 周波数成分の大きさを経路番号 ηの順に並べて表示したものである。 図 7のとお り、 溶融凝固組織を含むスポット溶接部サンプルと界面溶着瑢接部サンプノレとの 間には、 受波超音波の特定周波数成分の大きさプロフィルに明瞭な差異がある。 なお、 図 6、 図 7の縦軸の (a.u.)は arbitrary unitの略で相対値であることを示す。 実施例 Figure 6 compares the cross-correlation calculation profile measured using a spot weld sample containing a melt-solidified structure and an interfacial weld sample. The profile of the cross-correlation calculation value is the received ultrasonic signal transmitted from the transducer 1 1 n and received by the transducer 2 1 n (n = 1, 2, 3,-, 1 6). The result of cross-correlation with the reference signal is displayed in the order of the path number n. As shown in Fig. 6, there is a clear difference in the cross-correlation calculation value profile between the spot weld sample containing the melt-solidified structure and the interfacial weld sample. Figure 7 shows the average value of the specific frequency components of the received ultrasonic waves measured using the spot weld sample including the melt-solidified structure and the interface weld weld sample (for example, in this experiment, the ultrasonic probe 1 0 The center frequency of ultrasonic waves transmitted and received by 20 and 20 is in the range of 10%, and if the center frequency is 10 MHz, the range is 9 to 11 MHz, spot welds including melt-solidified structures and interface weld spots. Any frequency component that can be observed to be different from the welded part is shown in comparison with the magnitude profile of the received ultrasonic wave. Is the magnitude of the specific-frequency component of the received ultrasonic signal transmitted from the vibrator 1 1 η and received by the vibrator 2 1 η (η = 1, 2, 3,…, 1 6). The path numbers are arranged in the order of η, as shown in Fig. 7. There is a clear difference in the magnitude profile of the specific frequency component of the received ultrasonic wave between the weld weld sample and the interface weld welded sump nore. Is an abbreviation for arbitrary unit and indicates a relative value.
、 図 5に示した実施形態の装置において、 超音波探触子 1 0及び 20のくさび材 1 2、 22をポリスチロールとし、 振動子アレイ 1 1 116及び 2 1 〜2 1 16のアレイ配列方向における振動子の幅を 0. 8mm、 超音波の上板表面への入 射角が 25. 4° となるようにしてスポット溶接部 2の測定を実施した。 '測定の 対象として、 板厚 0. 6 mmの 2枚の鋼板を重ねてスポット溶接して作製された 3 0個のサンプルを用いた。 20個は溶融凝固組織を含むスポット溶接部サンプ ルであり、 1 0個は界面溶着スポット溶接部サンプルである。 In the apparatus of the embodiment shown in FIG. 5, the wedge members 1 2 and 22 of the ultrasonic probes 10 and 20 are made of polystyrene, and the transducer arrays 1 1 1 16 and 2 1 to 2 1 16 are arranged in an array. The spot weld 2 was measured so that the width of the vibrator in the direction was 0.8 mm and the incident angle of the ultrasonic wave on the top plate surface was 25.4 °. 'As a measurement target, 30 samples prepared by spot welding two steel sheets with a thickness of 0.6 mm were used. 20 are spot weld sample containing melt-solidified structure, and 10 are interface weld spot weld sample.
各サンプルについて、 相互相関演算値の最大値 (基準信号と経路 1 l i→l 2 , の信号との相互相関演算値が通常最大になる) が 1 28となるように規格化し、 他の経路 (振動子 1 1 n→振動子 2 1 n、 n = 2, 3, ···, 1 6) での相互相関演 算値と 1 28との差の絶対値を合計して相関演算評価指標とした。 各サンプルに おける相関演算評価指標を図 8に示す。 溶融凝固組織を含むスポット溶接部サン プルと界面溶着スポット溶接部サンプルとの間には相関演算評価指標に明瞭な差 異があることが分かる。 相関演算評価指標に適当な閾値を設定することにより.、 溶融凝固組織を含むスポット溶接部と界面溶着スポット溶接部とを判定すること が可能である。 For each sample, normalize so that the maximum value of the cross-correlation calculation value (the cross-correlation calculation value of the reference signal and the signal of path 1 li → l 2, is usually the maximum) is 1 28, and other paths ( Oscillator 1 1 n → Oscillator 2 1 n , n = 2, 3, ..., 1 6) The cross-correlation calculated value and the absolute value of the difference between 1 did. Figure 8 shows the correlation calculation evaluation index for each sample. Spot welded sun containing molten solidified structure It can be seen that there is a clear difference in the correlation calculation evaluation index between the pull and the interface weld spot weld sample. By setting an appropriate threshold value for the correlation calculation evaluation index, it is possible to determine a spot weld including a melt-solidified structure and an interface weld spot weld.
また、 各サンプルについて、 受波超音波の特定周波数成分の:^きさを高速フー リエ変換 (F F T) .により求めた。 複数の経路の特定周波数成分の大きさの平均 値を求めて、 周波数評価指標とした。 複数の経路とは、 例えば振動子 1 l n→振動 子 2 1 n、 n = 6 , 7 , -, 1 1、 溶融凝固組織を含むスポット溶接部と界面溶着 スポット溶接部との間で差異が観察される経路であれば、 どこを選択してもよく、 数もいくつでもよい。 各サンプルにおける周波数評価指標を図 9に示す。 溶融凝 固組織を含むスポット溶接部サンプルと界面溶着スポット溶接部サンプルとの間 には周波数評価指標に明瞭な差異があることが分かる。 周波数評価指標に適当な 閾値を設定することにより、 溶融凝固組織を含むスポット溶接部と界面溶着スポ ット溶接部とを判定することが可能である。 周波数評価指標として、 所定経路に おける特定周波数成分の大きさの平均値の他に、 所定経路における特定周波数成 . 分の大きさの最大値、 重心周波数、 中心周波数、 低周波超音波成分の変化具合等 の指標を用いることができる。 また、 周波数評価指標は 2個以上の指標を用いて 構成してもよい。 For each sample, the frequency of the specific frequency component of the received ultrasonic wave was determined by fast Fourier transform (FFT). The average value of the specific frequency components of multiple paths was calculated and used as a frequency evaluation index. For example, vibrator 1 l n → vibrator 2 1 n , n = 6, 7,-, 11, and there is a difference between spot welds containing molten solidified structures and interface weld spot welds Any route can be selected as long as it is observed, and any number can be selected. Figure 9 shows the frequency evaluation index for each sample. It can be seen that there is a clear difference in the frequency evaluation index between the spot weld sample containing the molten and solidified structure and the interface weld spot weld sample. By setting an appropriate threshold value for the frequency evaluation index, it is possible to determine a spot weld including a melt-solidified structure and an interfacial weld spot weld. As a frequency evaluation index, in addition to the average value of the specific frequency component in the predetermined route, the maximum value of the specific frequency component in the predetermined route, the center of gravity frequency, the center frequency, and the change in the low-frequency ultrasonic component Indices such as condition can be used. The frequency evaluation index may be configured using two or more indices.
実際の判定においては、 相関演算評価指標、 または、 周波数評価指標のいずれ か一方を用いて判定を行ってよい。 なお、 両方の評価指標を組み合わせて判定す ると、 判定結果の信頼度が'向上する効果がある。  In the actual determination, the determination may be made using either the correlation calculation evaluation index or the frequency evaluation index. Note that, when both evaluation indexes are combined, the reliability of the determination result is improved.
さらに、 図 1 Qに示すように、 相関演算評価指標、 周波数評価指標の中から 2 個以上の評価指標を選んで特徴量 A、 特徴量 B、 …とし、 特徴量空間における溶 融凝固組織を含むスポット溶接部集団 (健全集団) および界面溶着スポット溶接 · 部集団 (不良集団) の重心を予め求めておき、 新たなスポット溶接部の測定時に は、 該スポッ ト溶接部測定値の特徴量空間における位置 (測定値位置) と健全集 団との距離 (健全距離) および前記測定値位置と不良集団との距離 (不良距離) を求めて比較し、 該スポット溶接部が距離の小さいほうの集団に含まれると判定 ' するようにしてもよレ、。 Furthermore, as shown in Fig. 1Q, two or more evaluation indexes are selected from the correlation calculation evaluation index and the frequency evaluation index to be feature quantity A, feature quantity B, and so on. The center of gravity of the spot welded part group (healthy group) and interfacial weld spot welded part group (defective group) is obtained in advance, and when measuring a new spot welded part, the feature value space of the spot welded part measured value Position (measurement value position) and sound collection The distance between the group (healthy distance) and the distance between the measured value position and the defective group (defect distance) are obtained and compared, and it is determined that the spot weld is included in the smaller group. Moyore.
図 1 1は, 融着溶接部と界面溶着溶接部との識別結果の表示例を示している。 融着溶接部の場合を図 1 1における (a ) に示し, 界面溶着溶接部の場合を図 1 1における (b ) に示す。 このように単純に融着溶接部と界面溶着溶接部との区 別を示すことができるので, 検査結果の判断に紛れがなく, 忙しい製造現場での 検査に適している。  Figure 11 shows a display example of the identification result between the fusion weld and the interface weld. The case of a fusion weld is shown in (a) in Fig. 11. The case of an interfacial weld is shown in (b) in Fig. 11. In this way, it is possible to simply show the distinction between fusion welds and interfacial welds, so there is no doubt in the inspection results and it is suitable for inspections in busy manufacturing sites.
本実施形態においては、 送波側、 受波側、 共に振動子アレイを備えた超音波探 触子を用いているので、 構成が簡略である。 なお、 いずれか一方、 又は、 両方に、 複数の探触子を並置して用いたり、 又、 単一の探触子を走査して用いることも可 能である。 .  In this embodiment, since the ultrasonic probe provided with the transducer array is used on both the transmission side and the reception side, the configuration is simple. It is also possible to use a plurality of probes in juxtaposition to either one or both, or to scan and use a single probe. .
更に、 以上の説明においては、 本発明が金属板 (鋼板) の溶接検査に適用され. ていたが、 本発明の適用対象は、 これに限定されない。 アルミ板の溶接検査や他 の無機および有機材質の板の溶接検査にも適用可能である。 又、 溶接枚数も 2枚 に限定されず、 スポッ ト溶接部の健全性の評価も、 溶融凝固組織を含むスポッ ト 溶接部と界面溶接部を含むスポッ ト溶接部との識別のみに限定されなレ、。  Furthermore, in the above description, the present invention is applied to welding inspection of a metal plate (steel plate), but the application target of the present invention is not limited to this. It can also be applied to welding inspection of aluminum plates and other inorganic and organic materials. Also, the number of welds is not limited to two, and the evaluation of the soundness of spot welds is not limited only to the identification of spot welds containing a melt-solidified structure and spot welds containing an interface weld. Les.

Claims

請求の範囲 The scope of the claims
1 . 複数の板材を重ね合わせて溶接してなるスポット溶接部の超音波による評 価方法において、 板材又はスポット溶接部の表面沿いの方向と厚さ方向とによつ て形成される断面内を伝搬する超音波を被検体の表面沿いに伝搬する超音波と称 することとしたとき、 , . 1. In the ultrasonic evaluation method for spot welds formed by superposing and welding a plurality of plate materials, the cross section formed by the direction along the surface of the plate material or spot weld and the thickness direction When the propagating ultrasonic wave is referred to as the ultrasonic wave propagating along the surface of the subject,,.
スポット溶接部の外側の板材の複数の送波位置から複数方向へ向けて、 被検体 の表面沿いに伝搬する超音波を送波し、  The ultrasonic wave propagating along the surface of the subject is transmitted from multiple wave transmission positions of the plate material outside the spot weld in multiple directions,
スポット溶接部の外側の板材の複数の受波位置において、 伝搬経路にスポット 溶接部を含まない被検体の表面沿いに伝搬してきた超音波、 及び、 伝搬経路にス ポット溶接部を含む被検体の表面沿いに伝搬してきた超音波を受波し、  The ultrasonic wave propagating along the surface of the subject not including the spot weld in the propagation path at a plurality of receiving positions of the plate material outside the spot weld, and the subject including the spot weld in the propagation path Receives ultrasonic waves propagating along the surface,
前記複数の送波位置と前記複数の受波位置とを結ぶ伝搬経路の各々において受. 波された超音波の信号と基準の超音波の信号との相互相関演算、 および、 前記複 数の送波位置と前記複数の受波位置とを結ぶ伝搬経路の各々において受波された 超音波の信号の周波数解析の少なくともいずれか一方を行い、 相互相関演算結果 および周波数解析結果の少なくともいずれか一方に基づいて溶接状態を判別する ことを特徴とする超音波によるスポット溶接部の評価方法。  A cross-correlation operation between a signal of an ultrasonic wave received in each of propagation paths connecting the plurality of transmission positions and the plurality of reception positions and a reference ultrasonic signal; and At least one of the frequency analysis of the ultrasonic signal received in each of the propagation paths connecting the wave position and the plurality of reception positions is performed, and at least one of the cross-correlation calculation result and the frequency analysis result A method for evaluating a spot weld by ultrasonic waves, characterized in that a welding state is discriminated based on the ultrasonic wave.
2 . 請求項 1において、 前記基準の超音波の信号として、 伝搬経路にスポット 溶接部を含まなレ、被検体の表面沿いに伝搬してきた超音波の信号を用レ、ることを 特徴とする超音波によるスポット溶接部の評価方法。 2. The ultrasonic wave signal according to claim 1, wherein the reference ultrasonic signal is a signal including a spot weld in a propagation path and an ultrasonic signal propagating along the surface of the subject. Evaluation method of spot welds by ultrasonic waves.
3 . 複数の板材を重ね合わせて溶接してなるスポット溶接部の超音波による評 価装置において、 板材又はスポット溶接部の表面沿いの方向と厚さ方向とによつ て形成される断面内を伝搬する超音波を被検体の表面沿いに伝搬する超音波と称 することとしたとき、 スポッ ト溶接部の外側の板材の複数の送波位置から複数方向へ向けて、 被検体 の表面沿レ、に伝搬する超音波を送波する手段と、 3. In an ultrasonic evaluation apparatus for spot welds formed by superposing and welding a plurality of plates, the cross section formed by the direction along the surface of the plate or spot weld and the thickness direction When the ultrasonic wave that propagates is called ultrasonic wave that propagates along the surface of the subject, Means for transmitting ultrasonic waves propagating to the surface along the surface of the subject from a plurality of transmission positions of the plate material outside the spot welded portion in a plurality of directions;
スポット溶接部の外側の板材の複数の受波位置において、 伝搬経路にスポット 溶接部を含まない被検体の表面沿いに伝搬してぎた超音波、 及び、 伝搬経路にス ポット溶接部を含む被検体の表面沿レ、に伝搬してきた超音波を受波する手段と、. 前記複数の送波位置と前記複数の受波位置とを結ぶ伝搬経路の各々において受 波された超音波の信号と基準の超音波の信号との相互相関演算、 および、 前記複 数の送波位置と前記複数の受波位置とを結ぶ伝搬経路の各々において受波された 超音波の信号の周波数解析の少なくともいずれか一方を行い、 該相互相関演算結 果および周波数解析結果の少なぐともいずれか一方に基づいて溶接状態を判別す る手段と、  Ultrasonic waves that have propagated along the surface of the subject that does not include the spot weld in the propagation path, and the subject that includes the spot weld in the propagation path at a plurality of receiving positions on the plate material outside the spot weld. Means for receiving ultrasonic waves propagating along the surface of the surface, and ultrasonic signals received in each of the propagation paths connecting the plurality of transmission positions and the plurality of reception positions and a reference At least one of a cross-correlation calculation with the ultrasonic signal and a frequency analysis of the ultrasonic signal received in each of the propagation paths connecting the plurality of transmission positions and the plurality of reception positions Means for determining the welding state based on at least one of the cross-correlation calculation result and the frequency analysis result;
を備えたことを特徴とする超音波によるスポッ ト溶接部の評価装置。  An apparatus for evaluating spot welds using ultrasonic waves.
4 . 請求項 3において、 前記基準の超音波の信号として、 伝搬経路にスポット 溶接部を含まなレ、被検体の表面沿いに伝搬してきた超音波の信号を用レ、ることを 特徴とする超音波によるスポット溶接部の評価装置。 4. The ultrasonic wave signal according to claim 3, wherein the reference ultrasonic signal is a signal including a spot weld in a propagation path and an ultrasonic signal propagated along the surface of the subject. Evaluation equipment for spot welds using ultrasonic waves.
5 . 請求項 3又は 4において、 前記複数の送波位置から複数方向へ向けて、 被 検体の表面沿いに伝搬する超音波を送波する手段が、 振動子ァレイを備えた超音 波探触子であることを特徴とする超音波によるスポット溶接部の評価装置。 5. The ultrasonic probe according to claim 3 or 4, wherein the means for transmitting ultrasonic waves propagating along the surface of the subject from the plurality of transmission positions in a plurality of directions includes a transducer array. An apparatus for evaluating spot welds by ultrasonic waves, characterized by being a child.
6 . 請求項 3乃至 5のいずれかにおいて、 前記複数の受波位置において超音波 を受波する手段が、 振動子アレイを備えた超音波探触子であることを特徴とする 超音波によるスポット溶接部の評価装置。 6. The ultrasonic spot according to any one of claims 3 to 5, wherein the means for receiving ultrasonic waves at the plurality of receiving positions is an ultrasonic probe including a transducer array. Evaluation equipment for welds.
PCT/JP2008/057643 2007-04-19 2008-04-14 Method and device for evaluating ultrasonic spot welded portion WO2008133216A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-109999 2007-04-19
JP2007109999 2007-04-19

Publications (1)

Publication Number Publication Date
WO2008133216A1 true WO2008133216A1 (en) 2008-11-06

Family

ID=39925670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/057643 WO2008133216A1 (en) 2007-04-19 2008-04-14 Method and device for evaluating ultrasonic spot welded portion

Country Status (2)

Country Link
JP (1) JP5421544B2 (en)
WO (1) WO2008133216A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948285A (en) * 2019-05-14 2020-11-17 株式会社东芝 Estimation device, inspection system, estimation method, and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093307A (en) * 2010-10-28 2012-05-17 Jfe Steel Corp Inspection method and inspection device of spot weld part

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201356A (en) * 1995-01-24 1996-08-09 Hitachi Ltd Sonic velocity measuring method for solid material and ultrasonic probe
JP2596090B2 (en) * 1988-09-22 1997-04-02 トヨタ自動車株式会社 Inspection method for spot welds
JP2000146928A (en) * 1998-11-11 2000-05-26 Nissan Motor Co Ltd Method for inspecting spot welding
JP2004163210A (en) * 2002-11-12 2004-06-10 Jfe Steel Kk Method and apparatus for evaluating spot welded part by ultrasonic wave
JP2006071422A (en) * 2004-09-01 2006-03-16 Jfe Steel Kk Method and apparatus for evaluating spot-welded section by ultrasonic wave
JP2006226716A (en) * 2005-02-15 2006-08-31 Jfe R & D Corp Damage detection method and system of structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2596090B2 (en) * 1988-09-22 1997-04-02 トヨタ自動車株式会社 Inspection method for spot welds
JPH08201356A (en) * 1995-01-24 1996-08-09 Hitachi Ltd Sonic velocity measuring method for solid material and ultrasonic probe
JP2000146928A (en) * 1998-11-11 2000-05-26 Nissan Motor Co Ltd Method for inspecting spot welding
JP2004163210A (en) * 2002-11-12 2004-06-10 Jfe Steel Kk Method and apparatus for evaluating spot welded part by ultrasonic wave
JP2006071422A (en) * 2004-09-01 2006-03-16 Jfe Steel Kk Method and apparatus for evaluating spot-welded section by ultrasonic wave
JP2006226716A (en) * 2005-02-15 2006-08-31 Jfe R & D Corp Damage detection method and system of structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948285A (en) * 2019-05-14 2020-11-17 株式会社东芝 Estimation device, inspection system, estimation method, and storage medium
CN111948285B (en) * 2019-05-14 2023-10-20 株式会社东芝 Estimation device, inspection system, estimation method, and storage medium

Also Published As

Publication number Publication date
JP2008286792A (en) 2008-11-27
JP5421544B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
KR101928946B1 (en) Three-dimensional matrix phased array spot weld inspection system
JP4470655B2 (en) Ultrasonic spot weld evaluation method and apparatus
US4658649A (en) Ultrasonic method and device for detecting and measuring defects in metal media
UA79004C2 (en) Method for measurement of binding to substrate
JP4728838B2 (en) Ultrasonic spot weld evaluation method and apparatus
CN105021142A (en) Measuring method of laser lap joint welding seam width and device used by method
JP2006234701A (en) Ultrasonic test device and ultrasonic test method
Kupperman et al. Ultrasonic NDE of cast stainless steel
CA2544844A1 (en) Method for checking a weld between two metal pipelines
CN113607812A (en) Phased array ultrasonic detection test block structure and detection method for brazing type copper-aluminum transition wire clamp
JP7353545B2 (en) Bonded interface evaluation method and bonded interface evaluation device
JP5421544B2 (en) Ultrasonic spot weld evaluation method and apparatus
JP4067203B2 (en) Spot welding inspection method
JP4120360B2 (en) Ultrasonic spot weld evaluation method and apparatus
JP4731358B2 (en) Ultrasonic spot weld evaluation method and apparatus
JP3754669B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
Loveday et al. Influence of resonant transducer variations on long range guided wave monitoring of rail track
JP2010032393A (en) Method and device for evaluating spot welded part by ultrasonic wave
Cho et al. A study on the guided wave mode conversion using self-calibrating technique
EP4300096A1 (en) Ultrasonic probe for non-destructive testing of materials by means of ultrasonic pulses
Jagasivamani et al. A novel ultrasonic probe for the evaluation of corrosion in aluminum aircraft panels
JP2011196862A (en) Method and device for inspection spot welding part
JPH10246722A (en) Method for inspecting weld-bonded part of plastic tube
Abrego Ultrasonic characterization of nuclear reactor pipe materials and welds
JPH11352111A (en) Polarized wave flaw detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08740689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08740689

Country of ref document: EP

Kind code of ref document: A1