JPH11352111A - Polarized wave flaw detection - Google Patents

Polarized wave flaw detection

Info

Publication number
JPH11352111A
JPH11352111A JP10161774A JP16177498A JPH11352111A JP H11352111 A JPH11352111 A JP H11352111A JP 10161774 A JP10161774 A JP 10161774A JP 16177498 A JP16177498 A JP 16177498A JP H11352111 A JPH11352111 A JP H11352111A
Authority
JP
Japan
Prior art keywords
wave
defect
flaw detection
receiver
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10161774A
Other languages
Japanese (ja)
Inventor
Yoji Yoshida
洋司 吉田
Saburo Yamazaki
三朗 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP10161774A priority Critical patent/JPH11352111A/en
Publication of JPH11352111A publication Critical patent/JPH11352111A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a flaw detection method by which the evaluation of the defects and the judgement of the kind can be easily performed by utilizing the polarization phenomenon in the angle ultrasonic wave flaw detection by 'straddle scanning', and checking the change of the sensitivity in a case when the polarization axes of a transmitter and a receiver are relatively changed. SOLUTION: A SV wave vibrating in the direction vertical to a plane of incidence of the ultrasonic wave is transmitted by a transmitter 6, and the SH wave vibrating in the direction horizontal to the plane of incidence of the ultrasonic wave is received by a receiver 7 to detect the flat defect 4a by the ultrasonic wave angle beam method by 'straddle scanning method' with an angle of refraction of 45 deg. and a straddle angle of 70 deg.. On this occasion, the SV wave reflected by the flat defect 4a is polarized by 90 deg. and converted into the SH wave, so that it can be efficiently received by the receiver 7. In a case when a spherical defect 4b is detected by the same method, the SV wave reflected by the flat defect 4a is not polarized, so that the SH wave can not be detected by the receiver 7. Accordingly the evaluation of the defect properties and the judgement of the kind can be performed by two kinds of flaw detections and checking the relative change of the defect detecting sensitivity in both flaw detections.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超音波探傷法に係
り、特に欠陥性状の評価と種類の判別を行うのに好適な
超音波探傷法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detection method, and more particularly to an ultrasonic flaw detection method suitable for evaluating defect properties and determining the type of the defect.

【0002】[0002]

【従来の技術】従来の超音波探傷法は、材料中に入射さ
れた超音波が材料の不連続部(きず)によって反射,屈
折,減衰,散乱するのを測定して傷の大きさ,位置等を
判別してきたが、超音波が反射するときに偏波現象が生
ずることは考慮されていなかった。
2. Description of the Related Art Conventional ultrasonic flaw detection measures the size and position of a flaw by measuring the reflection, refraction, attenuation, and scattering of ultrasonic waves incident on a material due to discontinuities (flaws) in the material. However, it has not been considered that the polarization phenomenon occurs when the ultrasonic wave is reflected.

【0003】[0003]

【発明が解決しようとする課題】上記の超音波探傷で
は、なおいくつかの残された技術的改善点が存在する
が、その一つとして傷の種類の判別精度の向上という課
題がある。
In the above-described ultrasonic flaw detection, there are still some remaining technical improvements, one of which is a problem of improving the accuracy of flaw type discrimination.

【0004】本発明の目的は、より簡便に欠陥性状の評
価と種類の判別を行うことができる超音波探傷法を提供
することにある。
An object of the present invention is to provide an ultrasonic flaw detection method that can more easily evaluate the defect properties and determine the type.

【0005】[0005]

【課題を解決するための手段】溶接部の横割れなどの溶
接線に直角方向の傷を検出する目的で、図1(a),
(b)に示すように溶接線の両側に1個ずつ斜角探触子
を置き、一方を送波子、他方を受波子とし、これを同時
に走査する「またぎ走査法」により斜角超音波探傷を行
われている。この方法において、面状欠陥に対して以下
に説明する超音波の偏波現象のため、送信用探触子の入
射方向と受信用探触子の受波方向のなす角度(またぎ
角)により、欠陥検出感度が変化する現象が知られてい
る。
In order to detect a flaw in a direction perpendicular to a welding line such as a lateral crack in a welded portion, FIG.
As shown in (b), one bevel probe is placed on each side of the welding line, one is used as a transmitter, and the other is used as a receiver. Has been done. In this method, the angle between the incident direction of the transmitting probe and the receiving direction of the receiving probe (a stride angle) is determined by the ultrasonic wave polarization phenomenon described below with respect to the planar defect. A phenomenon in which the defect detection sensitivity changes is known.

【0006】またぎ走査における偏波現象による欠陥検
出感度変化の説明図を図2に示す。本図において←→は
超音波の振動方向である偏向軸の向きを示すが、偏波現
象が生じないとすると点線で示すように欠陥からの反射
波の偏向軸の向きは入射波の偏向軸と斜め対称となる。
この場合、送波子と同一の偏向軸を有する受波子で受信
するため、偏波損失は発生せず、またぎ角による欠陥検
出感度の変化も発生しない。
FIG. 2 is a diagram for explaining a change in defect detection sensitivity due to a polarization phenomenon in step scanning. In this figure, ← → indicates the direction of the deflection axis which is the vibration direction of the ultrasonic wave, but if the polarization phenomenon does not occur, the direction of the deflection axis of the reflected wave from the defect is the deflection axis of the incident wave as shown by the dotted line. Is obliquely symmetric.
In this case, since the signal is received by the receiver having the same polarization axis as the transmitter, no polarization loss occurs, and no change in the defect detection sensitivity due to the step angle occurs.

【0007】これに対し、偏波現象が生じ実線で示すよ
うに欠陥からの反射波の偏向軸の向きが入射波の偏向軸
と斜め対称とならない場合、送波子と同一の偏向軸を有
する受波子で受信すると、偏波量に応じて欠陥検出感度
が低下する。この偏波量は、またぎ角に依存して変化す
る。このような現象の理論的な考察はLovelaceにより報
告(Materials Evaluation, Vol.38,No.12,(1980))さ
れており、偏波量として次式のA及びBが導出されてい
る。
On the other hand, when the polarization phenomenon occurs and the direction of the deflection axis of the reflected wave from the defect is not obliquely symmetric with respect to the deflection axis of the incident wave as shown by the solid line, the receiver having the same deflection axis as the transmitter is used. When receiving by wave element, the defect detection sensitivity decreases according to the amount of polarization. The amount of polarization changes depending on the step angle. The theoretical consideration of such a phenomenon is reported by Lovelace (Materials Evaluation, Vol. 38, No. 12, (1980)), and A and B of the following equations are derived as the amount of polarization.

【0008】[0008]

【数1】 (Equation 1)

【0009】[0009]

【数2】 (Equation 2)

【0010】また、またぎ走査における欠陥検出感度を
示す反射エコーの送受音圧比は、次式で表される。
The transmission / reception sound pressure ratio of the reflected echo indicating the defect detection sensitivity in step scanning is expressed by the following equation.

【0011】[0011]

【数3】 (Equation 3)

【0012】[0012]

【数4】 2χ=2tan-1(D/C1) …(数4)
2χ = 2 tan −1 (D / C 1 ) (Equation 4)

【0013】[0013]

【数5】 (Equation 5)

【0014】[0014]

【数6】 D=(1−2sinβ)2 …(数
6)
D = (1-2 sin 2 β) 2 (Equation 6)

【0015】[0015]

【数7】 β=cos-1((sinθcos(γ/2)) …(数7) θ:屈折角、γ:またぎ角、2χ:位相ずれ、β:反射
源への入射角 CS:横波音速、CL:縦波音速 屈折角45°の場合のまたぎ角とA,B及び|Pr/Pi
|の関係を図3に示す。特に、またぎ角70°の場合に
はA=B=0.5 となり、反射波の偏波量が90°とな
るため、送受音圧比|Pr/Pi|が最も低下する。この
ことは、次のように説明されている。
Β = cos −1 ((sin θcos (γ / 2)) (Expression 7) θ: refraction angle, γ: step angle, 2 °: phase shift, β: incident angle to the reflection source C S : transverse wave Sound velocity, C L : longitudinal wave velocity, A, B and | P r / P i when the refraction angle is 45 °
The relationship | is shown in FIG. In particular, when the stride angle is 70 °, A = B = 0.5, and the amount of polarization of the reflected wave is 90 °, so that the transmission / reception sound pressure ratio | P r / P i | is the lowest. This is explained as follows.

【0016】一般の斜角探傷法では横波のうち、超音波
の入射面に垂直な方向に振動するSV波と呼ばれる波を
使用して探傷を行っている。またぎ角70°の場合に
は、SV波として面状欠陥に入射された波が欠陥で反射
される際、超音波の入射面に水平な方向に振動するSH
波と呼ばれる一般の斜角探触子では受信できない波に変
換されることを示している。
In the general oblique flaw detection method, flaw detection is performed using a so-called SV wave that vibrates in a direction perpendicular to the ultrasonic wave incident surface, out of the transverse waves. In the case of a steep angle of 70 °, when the wave incident on the planar defect as an SV wave is reflected by the defect, SH vibrates in a direction horizontal to the ultrasonic incident surface.
This shows that the wave is converted into a wave that cannot be received by a general angle beam probe called a wave.

【0017】また、またぎ角が70°以上になると再び
送受音圧比|Pr/Pi|が上昇しているのは超音波の偏
波量が90°以上となり、反射波にSV波成分が生じる
ためである。
When the crossing angle becomes 70 ° or more, the transmission / reception sound pressure ratio | P r / P i | rises again because the amount of polarization of the ultrasonic wave becomes 90 ° or more, and the SV wave component is included in the reflected wave. This is because it occurs.

【0018】以上説明した「またぎ走査」による斜角超
音波探傷における偏波現象を利用し、送波子と受波子の
偏波軸を相対的に変化させた場合の感度変化を調べられ
るようにした。
The sensitivity change when the polarization axes of the transmitter and the receiver are relatively changed using the polarization phenomenon in the oblique ultrasonic flaw detection by the "crossover scanning" described above can be examined. .

【0019】即ち、偏波軸を回転できる送受波子は、超
音波の反射に伴う偏波軸の変化を測定し、これに伴って
傷の種類判別のための情報を提供する。
That is, the transducer capable of rotating the polarization axis measures the change of the polarization axis due to the reflection of the ultrasonic wave, and provides information for discriminating the type of the flaw.

【0020】[0020]

【発明の実施の形態】以下本発明の実施例を図4
(a),(b)〜図9(a),(b)により説明する。図4
(a)は、屈折角45°,またぎ角70°で「またぎ走
査法」により面状欠陥を超音波斜角探傷で検出するため
に、超音波の送信を超音波の入射面に垂直な方向に振動
するSV波送波子で行い、受信を超音波の入射面に水平
な方向に振動するSH波受波子で行う本発明の第1の実
施例の平面図及び断面図を示す。図中○,○及び←→は
超音波の振動方向を示し、○,○は紙面に対して垂直方
向に、←→は紙面方向に振動していることを示す。この
場合、面状欠陥で反射された紙面方向に振動するSV波
は90°偏波され、紙面垂直方向に振動するSH波に変
換されるため、紙面垂直方向に振動するSH波受波子で
効率よく受波することが出来る。
FIG. 4 shows an embodiment of the present invention.
This will be described with reference to FIGS. 9 (a) and 9 (b) to FIGS. 9 (a) and 9 (b). FIG.
(A) shows the transmission of ultrasonic waves in a direction perpendicular to the plane of incidence of ultrasonic waves in order to detect planar defects by ultrasonic oblique flaw detection by the “crossover scanning method” at a refraction angle of 45 ° and a crossover angle of 70 °. 1A and 1B are a plan view and a cross-sectional view of a first embodiment of the present invention in which an SV wave transmitter vibrating in the direction shown in FIG. In the figure, ,, 及 び and ← → indicate the vibration direction of the ultrasonic wave, ○ and ○ indicate that the vibration is in a direction perpendicular to the paper surface, and ← → indicates that the vibration is in the paper surface direction. In this case, the SV wave oscillating in the direction of the paper surface reflected by the planar defect is polarized by 90 ° and converted into an SH wave oscillating in the vertical direction of the paper surface. We can receive waves well.

【0021】これに対し、上記と同様な方法で球状欠陥
を検出する場合を図4(a),(b)に示す。この場合、
面状欠陥で反射されたSV波は偏波されず、紙面方向に
振動するSV波のままであるため、紙面垂直方向に振動
するSH波受波子では検出することが出来ない。一方、
超音波の送受信共SV波で行う従来法では、既に述べた
ように屈折角45°,またぎ角70°の条件では、欠陥
検出感度は面状欠陥に対しては悪く、逆に球状欠陥に対
しては良い。したがって、上記2種類の探傷を行い、両
者の欠陥検出感度の相対的な変化を調べることにより、
欠陥性状の評価と種類の判別を行うことができる。
On the other hand, FIGS. 4A and 4B show a case where a spherical defect is detected by the same method as described above. in this case,
The SV wave reflected by the planar defect is not polarized and remains as an SV wave oscillating in the direction of the paper surface, and thus cannot be detected by the SH wave receiver oscillating in the direction perpendicular to the paper surface. on the other hand,
In the conventional method of transmitting and receiving ultrasonic waves using SV waves, the defect detection sensitivity is poor for planar defects and conversely for spherical defects under the conditions of a refraction angle of 45 ° and a stride angle of 70 ° as described above. Good. Therefore, by performing the above two types of flaw detection and examining the relative change in the defect detection sensitivity of both,
It is possible to evaluate the defect properties and determine the type.

【0022】図5(a),(b)は、第1の実施例に対し
て、超音波送波子の偏波軸を回転できるようにした第2
の実施例で、偏波軸を回転することにより、同一の探触
子からSV波とSH波を切り替えて送信することができ
るため、上記探傷をより効率よく行い、両者の欠陥検出
感度の相対的な変化を調べることにより、欠陥性状の評
価と種類の判別を行うことができる。図6(a),(b)
は、第1の実施例に対して、超音波受波子の偏波軸を回
転できるようにした第3の実施例で、偏波軸を回転する
ことにより同一の探触子でSV波とSH波を切り替えて
受信することができるため、図5(a),(b)と同様な
効果を得ることができる。
FIGS. 5A and 5B show a second embodiment in which the polarization axis of the ultrasonic transmitter can be rotated with respect to the first embodiment.
In the embodiment of the present invention, by rotating the polarization axis, it is possible to switch and transmit the SV wave and the SH wave from the same probe. By examining the actual change, it is possible to evaluate the defect property and determine the type. Fig. 6 (a), (b)
Is a third embodiment in which the polarization axis of the ultrasonic wave receiver can be rotated with respect to the first embodiment. By rotating the polarization axis, the SV probe and the SH Since the waves can be switched and received, the same effects as in FIGS. 5A and 5B can be obtained.

【0023】以上の実施例においては、簡単化ため、超
音波の送受波を単純なSV波とSH波として説明した
が、原理的には、送受波ともにSV波成分とSH波成分
を有する偏波軸を持ち、受波子の偏波軸の向きが送波子
の偏波軸の向きと異なっていれば、面状欠陥での偏波現
象を利用して欠陥性状の評価と種類の判別を行うことが
できる。また、屈折角を45°、またぎ角を70°とし
て説明してきたが、屈折角,またぎ角の異なる組み合わ
せの場合についても以上説明したのと同様に、面状欠陥
での偏波現象を利用して欠陥性状の評価と種類の判別を
行うことができる。
In the above embodiment, for simplicity, the transmission and reception of ultrasonic waves has been described as simple SV waves and SH waves. However, in principle, both transmission and reception waves have an SV wave component and an SH wave component. If it has a wave axis and the direction of the polarization axis of the receiver is different from the direction of the polarization axis of the transmitter, the defect property is evaluated and the type is determined using the polarization phenomenon at the planar defect. be able to. Also, the description has been made on the assumption that the refraction angle is 45 ° and the crossover angle is 70 °. However, in the case of a combination of different refraction angles and crossover angles, as described above, the polarization phenomenon at the planar defect is used. Thus, it is possible to evaluate the defect properties and determine the type.

【0024】以上の実施例では、2個の超音波探触子を
有し、そのうち、第一の振動子を送波子、第二の振動子
を受波子として使用する2探触子式超音波探傷法を前提
として説明したが、2個の超音波探触子を有し、それら
の第一の振動子及び第二の振動子ともに送波子及び受波
子として作用する双探触子式超音波探傷法においても、
同様に欠陥性状の評価と種類の判別を行うことができ
る。図7(a),(b)は、双探触子式超音波探傷法にお
いて、第一の振動子をSV波送受波子とし、第二の振動
子をSH波送受波子とした偏波探傷法を、図8(a),
(b)は、第一の振動子または第二の振動子あるいはそ
の両者の偏波軸を回転できるようにした第5の実施例で
ある。
In the above embodiment, a two-probe ultrasonic transducer having two ultrasonic transducers, of which the first transducer is used as a transmitter and the second transducer is used as a receiver. Although the description has been given on the premise of the flaw detection method, a dual-probe ultrasonic wave having two ultrasonic probes, and both the first transducer and the second transducer act as a transmitter and a receiver. In the flaw detection method,
Similarly, the evaluation of the defect property and the type determination can be performed. FIGS. 7 (a) and 7 (b) show a polarization flaw detection method in which the first transducer is an SV wave transducer and the second transducer is an SH wave transducer in the dual probe ultrasonic flaw detection method. FIG. 8 (a),
(b) is a fifth embodiment in which the polarization axis of the first vibrator and / or the second vibrator can be rotated.

【0025】また、第2,第3及び第5の実施例のよう
に送波子または受波子を回転させる代りに図9(a),
(b)に示すように受波子を複数個にし、その偏波軸を
異なる方向とする第6の実施例においても同様に、欠陥
性状の評価と種類の判別を行うことができる。
Also, instead of rotating the transmitter or the receiver as in the second, third and fifth embodiments, FIG.
As shown in (b), in the sixth embodiment in which a plurality of receivers are provided and the polarization axes thereof are set in different directions, the evaluation of the defect properties and the type determination can be similarly performed.

【0026】[0026]

【発明の効果】以上説明した「またぎ走査」による斜角
超音波探傷における偏波現象を利用し、送波子と受波子
の偏波軸を相対的に変化させた場合の感度変化を調べら
れるようにした。
The sensitivity change when the polarization axes of the transmitter and the receiver are relatively changed by utilizing the polarization phenomenon in the oblique ultrasonic flaw detection by the "crossover scanning" described above. I made it.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)及び(b)は従来のまたぎ走査法により
斜角超音波探傷を説明する平面図及び同図(a)の側面
図。
1 (a) and 1 (b) are a plan view and a side view of FIG. 1 (a) for explaining oblique ultrasonic flaw detection by a conventional step scanning method.

【図2】図1のまたぎ走査における偏波現象による欠陥
検出感度変化の説明図。
FIG. 2 is an explanatory diagram of a change in defect detection sensitivity due to a polarization phenomenon in the step scanning in FIG. 1;

【図3】従来の屈折角45°の場合のまたぎ角とA,B
及び|Pr/Pi|の関係を示す特性図。
FIG. 3 is a cross-sectional angle and A and B when the conventional refraction angle is 45 °.
FIG. 4 is a characteristic diagram showing the relationship between | P r / P i |.

【図4】(a),(a)′及び(b),(b)′は本発明の
実施例である2探触子式超音波探傷法において偏波探傷
法の平面図及び断面図。
4 (a), (a) ′ and (b), (b) ′ are a plan view and a sectional view of a polarization flaw detection method in a two-probe ultrasonic flaw detection method according to an embodiment of the present invention.

【図5】(a)及び(b)は第1の実施例である超音波
の送波子の偏波軸を回転できるようにした第2の実施例
の平面図及び断面図。
FIGS. 5A and 5B are a plan view and a cross-sectional view of a second embodiment according to the first embodiment in which the polarization axis of the ultrasonic wave transmitter can be rotated.

【図6】(a)及び(b)は第1の実施例である超音波
の受波子の偏波軸を回転できるようにした第3の実施例
の平面図及び断面図。
FIGS. 6A and 6B are a plan view and a cross-sectional view of a third embodiment according to the first embodiment in which the polarization axis of the ultrasonic wave receiver can be rotated.

【図7】(a)及び(b)は本発明の第5の実施例であ
る偏波探傷法の平面図及び断面図。
FIGS. 7A and 7B are a plan view and a cross-sectional view of a polarization inspection method according to a fifth embodiment of the present invention.

【図8】(a)及び(b)は第4の実施例である第1の
振動子または第2の振動子あるいはその両者の偏波軸を
回転できるようにした第5の実施例の平面図及び断面
図。
FIGS. 8 (a) and (b) are plan views of a fifth embodiment in which the polarization axes of the first vibrator and / or the second vibrator of the fourth embodiment can be rotated. Figures and sectional views.

【図9】(a)及び(b)は第1の実施例または第4の
実施例である超音波受波子の数を複数個にした第6の実
施例の平面図及び断面図。
FIGS. 9A and 9B are a plan view and a cross-sectional view of a sixth embodiment of the first or fourth embodiment in which the number of ultrasonic wave receivers is plural.

【符号の説明】[Explanation of symbols]

1…送信用超音波探触子、2…受信用超音波探触子、3
…溶接線、4…欠陥、4a…面状欠陥、4b…球状欠
陥、5…超音波ビーム、6…送波子、7…受波子、8…
送受信用超音波探触子、9…送波子兼受波子。
1 ... Transmission ultrasonic probe, 2 ... Reception ultrasonic probe, 3
... welding line, 4 ... defect, 4a ... planar defect, 4b ... spherical defect, 5 ... ultrasonic beam, 6 ... transmitter, 7 ... receiver, 8 ...
Transmitting and receiving ultrasonic probe, 9 ... Transmitter and receiver.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】2個の超音波探触子を有し、そのうち、第
一の振動子を送波子、第二の振動子を受波子として使用
する2探触子式超音波探傷法において、受波子の偏波軸
の向きが送波子の偏波軸の向きと異なることを特徴とす
る超音波探傷法。
1. A two-probe ultrasonic flaw detection method having two ultrasonic probes, of which a first transducer is used as a transmitter and a second transducer is used as a receiver, An ultrasonic flaw detection method, wherein the direction of the polarization axis of the receiver is different from the direction of the polarization axis of the transmitter.
【請求項2】請求項1において、送波子の偏波軸を回転
できるようにしたことを特徴とする超音波探傷法。
2. The ultrasonic flaw detection method according to claim 1, wherein the polarization axis of the transmitter can be rotated.
【請求項3】請求項1において、受波子の偏波軸を回転
できるようにしたことを特徴とする超音波探傷法。
3. The ultrasonic flaw detection method according to claim 1, wherein the polarization axis of the receiver can be rotated.
【請求項4】2個の超音波探触子を有し、それらの第一
の振動子及び第二の振動子ともに送波子及び受波子とし
て作用する双探触子式超音波探傷法において、第一の振
動子と第二の振動子の偏波軸の向きが異なることを特徴
とする超音波探傷法。
4. A dual-probe ultrasonic flaw detection method comprising two ultrasonic probes, wherein the first transducer and the second transducer both act as a transmitter and a receiver. An ultrasonic flaw detection method wherein the directions of the polarization axes of the first vibrator and the second vibrator are different.
【請求項5】請求項4において、第一の振動子または第
二の振動子、あるいはその両者の偏波軸を回転できるよ
うにしたことを特徴とする超音波探傷法。
5. The ultrasonic flaw detection method according to claim 4, wherein the polarization axis of the first vibrator and / or the second vibrator can be rotated.
【請求項6】請求項1又は4において、受波子の数を複
数にしたことを特徴とする超音波探傷法。
6. The ultrasonic flaw detection method according to claim 1, wherein the number of the transducers is plural.
JP10161774A 1998-06-10 1998-06-10 Polarized wave flaw detection Pending JPH11352111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10161774A JPH11352111A (en) 1998-06-10 1998-06-10 Polarized wave flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10161774A JPH11352111A (en) 1998-06-10 1998-06-10 Polarized wave flaw detection

Publications (1)

Publication Number Publication Date
JPH11352111A true JPH11352111A (en) 1999-12-24

Family

ID=15741659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10161774A Pending JPH11352111A (en) 1998-06-10 1998-06-10 Polarized wave flaw detection

Country Status (1)

Country Link
JP (1) JPH11352111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114465A (en) * 2014-12-15 2016-06-23 東京瓦斯株式会社 Transversal crack detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114465A (en) * 2014-12-15 2016-06-23 東京瓦斯株式会社 Transversal crack detection device

Similar Documents

Publication Publication Date Title
US11428671B2 (en) Arrangement for non-destructive testing and a testing method thereof
CN106596725A (en) Method for ultrasonic distinguishing of R-region defect of composite material structure
EP0212899B1 (en) Ultrasonic testing of materials
JP2002062281A (en) Flaw depth measuring method and its device
JP2001208729A (en) Defect detector
CN110554088A (en) Air coupling ultrasonic detection method for defects
JPH11352111A (en) Polarized wave flaw detection
JPH08136512A (en) Ultrasonic flaw detection method at seam welded part of steel pipe
JP2001305111A (en) Ultrasonic rail flaw detector
JP5421544B2 (en) Ultrasonic spot weld evaluation method and apparatus
JPH04157360A (en) Supersonic probe
WO2018135242A1 (en) Inspection method
JPH06281630A (en) Ultrasonic flaw detection device
KR100441757B1 (en) multi-scanning ultrasonic inspector for weld zone
JP3493941B2 (en) Ultrasonic probe
JPH09297125A (en) Ultrasonic critical angle crack detecting device
JPS63186143A (en) Ultrasonic wave probe
JPH0521011Y2 (en)
JPH0550706B2 (en)
JPS59122944A (en) Probe and ultrasonic wave flaw detecting method
JPH07325070A (en) Ultrasonic method for measuring depth of defect
JPH0336921Y2 (en)
JPH11316216A (en) Ultrasonic probe
JPH0375557A (en) Ultrasonic probe
JP3379166B2 (en) Ultrasound spectrum microscope