JPS6044618B2 - Ultrasonic flaw detection method and device for dissimilar metal welds - Google Patents

Ultrasonic flaw detection method and device for dissimilar metal welds

Info

Publication number
JPS6044618B2
JPS6044618B2 JP51117168A JP11716876A JPS6044618B2 JP S6044618 B2 JPS6044618 B2 JP S6044618B2 JP 51117168 A JP51117168 A JP 51117168A JP 11716876 A JP11716876 A JP 11716876A JP S6044618 B2 JPS6044618 B2 JP S6044618B2
Authority
JP
Japan
Prior art keywords
ultrasonic
probe
boundary
defect
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51117168A
Other languages
Japanese (ja)
Other versions
JPS5343586A (en
Inventor
栄 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP51117168A priority Critical patent/JPS6044618B2/en
Publication of JPS5343586A publication Critical patent/JPS5343586A/en
Publication of JPS6044618B2 publication Critical patent/JPS6044618B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は超音波探傷装置に係り、特に異種金属溶接部の
欠陥検出が可能な異種金属溶接部の超音波探傷方法およ
びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic flaw detection device, and more particularly to an ultrasonic flaw detection method for dissimilar metal welds that can detect defects in dissimilar metal welds, and an apparatus therefor.

金属材料の超音波探傷検査における非常にむずかしい問
題の一つに異種金属溶接部分の検査がある。
One of the extremely difficult problems in ultrasonic testing of metal materials is the inspection of welded parts of dissimilar metals.

従来の超音波探傷法は、被検査体に超音波パルスを発信
し、被検査体の音響的不連続部からの反射エコーの時間
と高さから不連続部の場所と大きさを推定していた。と
ころが、音響的不連続部、つまり材質の粗密には、いわ
ゆる欠陥のみならず異種金属の溶接境界も含まれる。そ
のため反射エコーの時間と高さという情報のみからは、
不連続部が欠陥てあるか、異種金属の溶接境界てあるか
を区別することがほとんどできない。溶接境界があらか
じめはつきりしているか、欠陥が溶接境界より相当離れ
たところにある場合は、反射工コーの時間からエコー源
の座標を計算し、純幾何学的1三、ずれによる反射エコ
ーであるかを判定できるが、実際には溶液境界が不明で
、しかも、欠陥が溶接境界に非常に近接している場合が
多い。このように従来の超音波探傷方法には異種金属の
溶接境界と欠陥の識別が不可能に近いという欠点がある
。フ 本発明の目的は、上記した従来技術の欠点をなく
し、異種金属溶接部の欠陥を識別できる異種金属溶接部
の超音波探傷方法およびその装置を提供することにある
Conventional ultrasonic flaw detection methods transmit ultrasonic pulses to the object to be inspected, and estimate the location and size of the discontinuity based on the time and height of the echoes reflected from the acoustic discontinuity in the object. Ta. However, the acoustic discontinuity, that is, the density of the material, includes not only so-called defects but also weld boundaries between dissimilar metals. Therefore, from only the information of the time and height of the reflected echo,
It is almost impossible to distinguish whether a discontinuity is a defect or a weld boundary between dissimilar metals. If the weld boundary is sharp in advance or the defect is located at a considerable distance from the weld boundary, the coordinates of the echo source are calculated from the time of the reflection echo, and the reflected echo due to misalignment is calculated based on pure geometric 13. However, in reality, the solution boundary is unknown and, moreover, the defect is often very close to the weld boundary. As described above, conventional ultrasonic flaw detection methods have the drawback that it is nearly impossible to distinguish between weld boundaries and defects between dissimilar metals. An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide an ultrasonic flaw detection method for dissimilar metal welds and an apparatus therefor, which can identify defects in dissimilar metal welds.

本発明の特徴は、音響的不連続部からの超音波ク反射エ
コーの位相が、被検査体の材質の粗密あるには音響イン
ピーダンスの大小により発信超音波パルスと同相であつ
たり反転したりすることに着目し、音響的不連続部の音
響インピーダンスの大小関係が逆になる位置からそれぞ
れ超音波パルスを発信し、上記不連続部からの2つの反
射エコーの位相関係から異種金属溶接部の欠陥を探傷す
るようにした点にある。本発明の第2の特徴は、異種金
属境界を挟んだ2つの位置に同時または時間を違えて超
音波探触子を配置し、それぞれの位置に超音波探触子が
あるときの反射エコーの位相および伝播時間を記憶して
おき、一方、超音波探触子の位置と超音波パルスの屈折
角をそれぞれ検出し、伝播時間と探触子の位置と屈折角
から反射エコー源の座標を算定し、それぞれの座標が所
定の範囲内で一致しているときに、それぞれの反射エコ
ーの位相を比較し、位相が同一のとき欠陥ありの信号を
送出するようにした点にある。以下本発明を第1図ない
し第4図および第5図、第6図に示した実施例を用いて
詳細に説明する。
A feature of the present invention is that the phase of the ultrasonic reflected echo from the acoustic discontinuity is in phase with the transmitted ultrasonic pulse or reversed depending on the density of the material of the object to be inspected or the magnitude of the acoustic impedance. Focusing on this, ultrasonic pulses are transmitted from positions where the acoustic impedance magnitude relationship of the acoustic discontinuities is opposite, and defects in dissimilar metal welds are detected from the phase relationship of the two reflected echoes from the discontinuities. The reason is that it is designed to detect flaws. The second feature of the present invention is that ultrasonic probes are placed at two positions across a dissimilar metal boundary at the same time or at different times, and the reflected echo when the ultrasonic probe is at each position is The phase and propagation time are memorized, while the position of the ultrasound probe and the refraction angle of the ultrasound pulse are detected respectively, and the coordinates of the reflected echo source are calculated from the propagation time, the position of the probe, and the refraction angle. However, when the respective coordinates match within a predetermined range, the phases of the respective reflected echoes are compared, and when the phases are the same, a signal indicating a defect is sent out. The present invention will be explained in detail below using the embodiments shown in FIGS. 1 to 4, and FIGS. 5 and 6.

第1図ないし第4図は本発明の原理を説明するための図
て、第1図は被検査体の断面を示し、第1図において、
1は被検査体、2は超音波探触子、破線13で示してあ
る部分は金属11とこれと異種の金属12との境界を示
し、探傷検査当初は不明である部分である。
1 to 4 are diagrams for explaining the principle of the present invention, and FIG. 1 shows a cross section of an object to be inspected.
1 is an object to be inspected, 2 is an ultrasonic probe, and a portion indicated by a broken line 13 indicates a boundary between the metal 11 and a different metal 12, which is an unknown portion at the beginning of the flaw detection test.

いま、金属11の音響ンインピーダンスZllは、金属
12の音響インピーダンスZl2より小さいとする。そ
して金属11の境界13に近い場所に欠陥fがあつたと
する。このとき超音波探触子2から第2図に示す超音波
パルスTを発信すると、音響的不連続部である欠3陥f
または異種金属の境界13からの反射エコーR1が探触
子2で受信される。このときの反射エコーR1の伝播時
間t1は、探触子2との距離関係で決まる。反射エコー
R1の位相φ1は、進行波の理論による次式より明らか
なように、 3入射側材質の音響インピーダン
スZ,が反射側材質の音響インピーダンスZrより大き
い(小さい)場合は、発信パルスTの位相と逆(同じ)
に・なる。第2図の例では、Z,=乙,,Zr=42と
なつており、境界13からのものでないことがわかるが
、欠陥fからのものであるかどうかは、欠陥部分の音響
インピーダンスが一般的に不明であるため確証できない
It is now assumed that the acoustic impedance Zll of the metal 11 is smaller than the acoustic impedance Zl2 of the metal 12. Assume that a defect f is located near the boundary 13 of the metal 11. At this time, when the ultrasonic pulse T shown in FIG. 2 is transmitted from the ultrasonic probe 2, a defect 3 which is an acoustic discontinuity is detected.
Alternatively, a reflected echo R1 from the boundary 13 of different metals is received by the probe 2. The propagation time t1 of the reflected echo R1 at this time is determined by the distance relationship with the probe 2. As is clear from the following equation based on the theory of traveling waves, the phase φ1 of the reflected echo R1 is: 3. If the acoustic impedance Z of the material on the incident side is larger (smaller) than the acoustic impedance Zr of the material on the reflective side, the phase φ1 of the transmitted pulse T Opposite (same) as phase
become. In the example of Fig. 2, Z,=Otsu,, Zr=42, indicating that the defect is not from boundary 13, but whether or not it is from the defect f can be determined by the fact that the acoustic impedance of the defect is generally It cannot be confirmed because it is unknown.

そこで、本発明においては、以下の順序にしたがつて従
来困難とされていた異種金属境界と欠陥との識別を行な
うようにした。
Therefore, in the present invention, discrimination between dissimilar metal boundaries and defects, which has been considered difficult in the past, is carried out in accordance with the following order.

探触子2の位置がX1のとき反射エコーR1を受信した
ら、(1)反射エコーR1の位相φ1および伝播時間t
1を記憶する。
When the position of the probe 2 is X1 and the reflected echo R1 is received, (1) the phase φ1 and propagation time t of the reflected echo R1
Remember 1.

(2)探触子位置X1、探触子屈折角θおよび伝播時間
ちから反射エコー源の座標Xl,Ylを(3)、(4)
式から算出する。
(2) From the probe position X1, probe refraction angle θ, and propagation time, calculate the coordinates Xl, Yl of the reflected echo source using (3), (4)
Calculate from the formula.

ここに、k1は金属11の材質によつて定まる常数。Here, k1 is a constant determined by the material of the metal 11.

(3)探触子2を上記座標X,,Y,のX,を中心とし
て位置X1と対象となる位置?に移動させ、同時に屈折
角は一θとなるようにする。
(3) Place the probe 2 at the position X1 of the above coordinates X, Y, as the center? , and at the same time the refraction angle becomes 1θ.

このとき位置X1とX2は、第1図の異種金属境界13
の表面Bを挾むようになることが必要条件で、この条件
が満たされない場合には屈折角−θを他の屈折角にして
もよい。なお、このときのXl,X2,Xlの関係は、
次式のようになる。(4)探触子2の位置が?のときに
受信した反射エコーR2の位相φおよび伝播時間しを記
憶する。
At this time, positions X1 and X2 are located at the dissimilar metal boundary 13 in FIG.
It is a necessary condition that the refraction angle -θ be sandwiched between the surfaces B of 1 and 2, and if this condition is not satisfied, the refraction angle −θ may be set to another refraction angle. In addition, the relationship between Xl, X2, and Xl at this time is
It becomes as follows. (4) What is the position of probe 2? The phase φ and propagation time of the reflected echo R2 received at the time are stored.

(5) (2)のステップと同様にして、反射エコー源
の座標X2,Y2を(6)、(7)式から算出する。こ
こに、K2は金属12の材質によつて定まる常数。(6
)座標関係が、次式を満足すること、すなわち、探触子
2を移動させて得られたそれぞれの反射エコー源が同一
であることを確認する。
(5) Similarly to step (2), the coordinates X2 and Y2 of the reflected echo source are calculated from equations (6) and (7). Here, K2 is a constant determined by the material of the metal 12. (6
) Check that the coordinate relationship satisfies the following equation, that is, that each reflected echo source obtained by moving the probe 2 is the same.

ここに、εは定数である。(7)上記位相φ1とφ2を
比較し、同相であれば座標Xl,Ylに欠陥が存在する
とし、逆位相であれば異種金属境界であると判定する。
次に(7)に示すように判定できる理由について、第3
図、第4図を用いて明確に説明する。
Here, ε is a constant. (7) Compare the phases φ1 and φ2, and if the phases are the same, it is determined that a defect exists at the coordinates Xl and Yl, and if the phases are opposite, it is determined that there is a boundary between different metals.
Next, we will explain the third reason for the determination as shown in (7).
This will be clearly explained using FIG.

第3図は探触子位置Xl,X2、欠陥f1異種金属境界
13の位置関係を示す被検査体の断面図で、第4図は第
3図の場合に得られる反射エコーの波形図である。欠陥
fの場合は、探触子2がどの位置にあろうとも音響的不
連続部の音響インピーダンスに変化はない。したがつて
、第4図に示すように、探触子2がXl,X2に位置す
るときのそれぞれの反射エコーR,,R2に位相の変化
が見られない。これに対し、異種金属境界13の音響イ
ンピーダンスは、探触子2が位置X1にあるときはZl
l→Zl。、位置X2にあるときは乙,→′A1のよう
に変化するから、反射エコーの位相が逆転する。よつて
、位相φ1とφ2を比較し、同相であれば欠陥があると
判定でき、異種金属溶接部の超音波探傷が可能になる。
第5図は本発明の異種金属溶接部の超音波探傷装置の一
実施例を示すブロック図で、第1図において、1は被検
査体、2は超音波を発信する送波子と反射エコーを受信
する受波子とからなる超音波探触子で、超音波送受信器
3からの一定の周期Lの発信パルスTで励振されて超音
波を発信し、また、被検体1の内部の音響的不連続部(
欠陥、異種金属境界など)からの反射エコーR1を受信
し、それを電気値に変換して超音波送受信器3に入力す
る。
Fig. 3 is a cross-sectional view of the object to be inspected showing the positional relationship between the probe positions Xl and X2 and the defect f1 dissimilar metal boundary 13, and Fig. 4 is a waveform diagram of the reflected echo obtained in the case of Fig. 3. . In the case of defect f, the acoustic impedance of the acoustic discontinuity remains unchanged no matter where the probe 2 is located. Therefore, as shown in FIG. 4, no phase change is observed in the reflected echoes R, R2 when the probe 2 is located at Xl and X2. On the other hand, the acoustic impedance of the dissimilar metal boundary 13 is Zl when the probe 2 is at position X1.
l→Zl. , when it is at position X2, it changes as B,→'A1, so the phase of the reflected echo is reversed. Therefore, the phases φ1 and φ2 can be compared, and if they are in the same phase, it can be determined that there is a defect, and ultrasonic flaw detection of dissimilar metal welds becomes possible.
FIG. 5 is a block diagram showing an embodiment of the ultrasonic flaw detection apparatus for dissimilar metal welds according to the present invention. In FIG. It is an ultrasonic probe consisting of a receiving wave receiver, which is excited by a transmission pulse T with a constant period L from an ultrasonic transmitter/receiver 3, and emits ultrasonic waves, and also detects acoustic disturbances inside the subject 1. Continuous part (
It receives a reflected echo R1 from a defect, a boundary between dissimilar metals, etc., converts it into an electrical value, and inputs it to the ultrasonic transceiver 3.

その信号は次段の波形記憶器4に送られ、波形記憶器4
は反射エコーR1の位相φ1および伝播時間t1を記憶
し、発信パルスTが送出される周期L毎にその記憶内容
を更新する。5は探触子2の位置を検出する位置検出器
で、その位置X1および屈折角θを検出して、それを位
置変換器6に入力する。
The signal is sent to the next stage waveform memory 4, and the waveform memory 4
stores the phase φ1 and propagation time t1 of the reflected echo R1, and updates the stored contents every cycle L when the transmission pulse T is sent. Reference numeral 5 denotes a position detector for detecting the position of the probe 2, which detects the position X1 and the refraction angle θ, and inputs them to the position converter 6.

位置変換器6は入力信号X1およびθをデジタル量に変
換する。7は入力器で、入力器7は波形記憶器4に記憶
されているデータφ1,t1、位置変換器6からのデー
タXl,Oおよび外部からの入力データ(定数ε,Kl
,k2)を少なくとも周期Lより長い周期て取込み、計
算器8に送る。
Position converter 6 converts input signals X1 and θ into digital quantities. 7 is an input device, and the input device 7 includes data φ1, t1 stored in the waveform memory 4, data Xl, O from the position converter 6, and external input data (constants ε, Kl).
, k2) at a period longer than the period L and sends it to the calculator 8.

計算器8は、第6図に示すフローチャートにしたがつて
計算を実行する。
Calculator 8 performs calculations according to the flowchart shown in FIG.

探触子位置および屈折角変更に対する指令は、計算器8
から駆動ユニット10に送る。駆動ユニット10は、上
記指令とX,θの現在値とを比較し、探触子2の位置決
めと、屈折角θの設定を行なう。なお、被検査体1の探
傷走査のシーケンスは、外部から位置設定値21を与え
て行なうようにする。計算器8の最終計算結果、すなわ
ち、第6図のフローチャートの最終ステップの゛境界゛
、“欠陥゛あるいは“゜判定不能゛などのメッセージは
、表示器9に音響的不連続部の座標X,Yとともに表示
される。表示器9は適切な形式、例えば、Bスコープ、
Cスコープ等で表示する。上記した本発明の実施例によ
れば、上記した異種金属溶接部の超音波探傷方法を着実
に実行しているから、異種金属溶接部の異種金属境界近
傍の欠陥をも確実に探傷することができる。
Commands for changing the probe position and refraction angle are sent to the calculator 8.
from there to the drive unit 10. The drive unit 10 compares the above command with the current values of X and θ, and positions the probe 2 and sets the refraction angle θ. Incidentally, the flaw detection scanning sequence of the object to be inspected 1 is performed by applying the position setting value 21 from the outside. The final calculation result of the calculator 8, that is, a message such as ``boundary'', ``defect'', or ``unable to determine'' in the final step of the flowchart of FIG. Displayed with Y. The display 9 is of a suitable type, e.g.
Display with C scope etc. According to the embodiment of the present invention described above, since the above-described ultrasonic flaw detection method for dissimilar metal welds is steadily carried out, it is possible to reliably detect defects near dissimilar metal boundaries in dissimilar metal welds. can.

なお、第5図の実施例では、1つの探触子2を用いて、
それを移動させることによつて欠陥の探傷を行なうよう
にしているが、最初から2つの探触子を用い、それを被
検査体1の表面の異種金属境界を挾んだ位置に対向させ
て設けるようにしてもよく、それによつて効果が変るこ
とはない。
In addition, in the embodiment shown in FIG. 5, one probe 2 is used,
Defects are detected by moving the probes, but from the beginning two probes are used and placed opposite to each other across the boundary between different metals on the surface of the object to be inspected 1. It may be provided, but the effect will not change.

以上説明したように、本発明によれば、超音波エコーが
、異種金属溶接部の異種金属境界からのものであるか、
欠陥からのものてあるかを、正確、迅速に識別できるの
で、異種金属溶接部の異種金属境界近傍の欠陥でもそれ
を確実に探傷できるという顕著な効果がある。
As explained above, according to the present invention, whether the ultrasonic echo is from the dissimilar metal boundary of the dissimilar metal welding part,
Since it is possible to accurately and quickly identify whether the defect is caused by a defect, it has the remarkable effect of being able to reliably detect defects even in the vicinity of the boundary between dissimilar metals in a welded joint of dissimilar metals.

【図面の簡単な説明】[Brief explanation of the drawing]

ノ 第1図ないし第4図は本発明の原理を説明するため
の図、第5図は本発明の異種金属溶接部の超音波探傷装
置の一実施例を示すブロック図、第6図は第5図の計算
器の動作のフローチャートである。 一1・・・・・・被検査体、2・・・・・・超音波探触
子、3・・・超音波送受信器、4・・・・・・波形記憶
器、5・・・・・・位置検出器、7・・・・・・入力器
、8・・・・・・計算器、9・・・・・・表示器、10
・・・・・・駆動ユニット。
Figures 1 to 4 are diagrams for explaining the principle of the present invention, Figure 5 is a block diagram showing an embodiment of the ultrasonic flaw detection device for dissimilar metal welds of the present invention, and Figure 6 is a diagram for explaining the principle of the present invention. 6 is a flowchart of the operation of the calculator of FIG. 5; 11...Object to be inspected, 2...Ultrasonic probe, 3...Ultrasonic transmitter/receiver, 4...Waveform memory, 5... ... Position detector, 7 ... Input device, 8 ... Calculator, 9 ... Display device, 10
・・・・・・Drive unit.

Claims (1)

【特許請求の範囲】 1 被検査体の表面の異種金属境界を挾んだ2つの位置
から超音波パルスを発信し、前記被検査体内からのそれ
ぞれの反射エコーの位相が同一ならば欠陥ありと判定す
ることを特徴とする異種金属溶接部の超音波探傷方法。 2 被検査体の表面の異種金属境界を挾んだ2つの位置
に同時または時間を違えて配置した超音波探触子と、前
記2つの位置のうち一方の位置および他方の位置に前記
超音波探触子があるときに前記被検査体内からのそれぞ
れの反射エコーの位相および伝播時間を記憶する第1の
装置と、前記超音波探触子の位置と該超音波探触器から
発信される超音波パルスの屈折角をそれぞれ検出する第
2の装置と、前記第1の装置からの伝播時間と前記第2
の装置からの探触子位置と屈折角から反射エコー源の座
標を算定し、前記それぞれの座標が所定の範囲内で一致
しているときに前記それぞれの反射エコーの位相を比較
し、位相が同一のとき欠陥ありと判定する第3の装置と
からなることを特徴とする異種金属溶接部の超音波探傷
装置。
[Claims] 1. Ultrasonic pulses are transmitted from two positions sandwiching the boundary between dissimilar metals on the surface of the object to be inspected, and if the phases of the respective reflected echoes from the object to be inspected are the same, it is determined that there is a defect. An ultrasonic flaw detection method for dissimilar metal welds, characterized by: 2 Ultrasonic probes placed simultaneously or at different times at two positions sandwiching the boundary between dissimilar metals on the surface of the object to be inspected, and the ultrasonic probe placed at one position and the other of the two positions. a first device for storing the phase and propagation time of each reflected echo from the examined body when a probe is present; and a first device for storing the phase and propagation time of each reflected echo from the examined body; a second device for respectively detecting the refraction angle of the ultrasound pulse; and a second device for detecting the refraction angle of the ultrasonic pulse;
The coordinates of the reflected echo source are calculated from the probe position and refraction angle from the device, and when the respective coordinates match within a predetermined range, the phases of the respective reflected echoes are compared, and the phase is determined. and a third device that determines that there is a defect when they are the same.
JP51117168A 1976-10-01 1976-10-01 Ultrasonic flaw detection method and device for dissimilar metal welds Expired JPS6044618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51117168A JPS6044618B2 (en) 1976-10-01 1976-10-01 Ultrasonic flaw detection method and device for dissimilar metal welds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51117168A JPS6044618B2 (en) 1976-10-01 1976-10-01 Ultrasonic flaw detection method and device for dissimilar metal welds

Publications (2)

Publication Number Publication Date
JPS5343586A JPS5343586A (en) 1978-04-19
JPS6044618B2 true JPS6044618B2 (en) 1985-10-04

Family

ID=14705122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51117168A Expired JPS6044618B2 (en) 1976-10-01 1976-10-01 Ultrasonic flaw detection method and device for dissimilar metal welds

Country Status (1)

Country Link
JP (1) JPS6044618B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136951A (en) * 1979-04-12 1980-10-25 Hitachi Ltd Controlling method of ultrasonic flaw detecting and picture display thereof
JPS5750655A (en) * 1980-09-11 1982-03-25 Toshiba Corp Ultrasonic flaw detector
JPS58135450A (en) * 1982-02-05 1983-08-12 Hitachi Ltd Method and device for discrimination of defect by using ultrasonic wave
JP5091811B2 (en) * 2008-09-03 2012-12-05 株式会社京三製作所 Rail break inspection method and rail break inspection apparatus

Also Published As

Publication number Publication date
JPS5343586A (en) 1978-04-19

Similar Documents

Publication Publication Date Title
US6155117A (en) Edge detection and seam tracking with EMATs
CN104792866A (en) Ultrasonic detecting and positioning method and device based on TOFD (time of flight diffraction) and phased array
KR101921685B1 (en) Apparatus for inspecting defect and mehtod for inspecting defect using the same
JP5456259B2 (en) Welding inspection method and apparatus
JPS6044618B2 (en) Ultrasonic flaw detection method and device for dissimilar metal welds
JP4672441B2 (en) Ultrasonic flaw detection method and flaw detection apparatus
JPH02129544A (en) Ultrasonic flaw detecting device
JP2002243703A (en) Ultrasonic flaw detector
JPS58213248A (en) Method and apparatus for discriminating defect by ultrasonic wave
KR20150023434A (en) Steel material quality evaluation method and quality evaluation device
JP2008164397A (en) Flaw detection method and flaw detector used therein
JPS63221211A (en) Ultrasonic thickness measuring method for laminar body
JPH0419558A (en) Image processing method for ultrasonic flaw detection test
JP2943567B2 (en) Pipe shape inspection device
CN216955868U (en) Phased array ultrasonic detection test block
EP4012401A2 (en) Ultrasonic probe alignment using ultrasound signals
JPH05172789A (en) Ultrasonic flaw detector
JPH0550706B2 (en)
JP3207740B2 (en) Defect position estimation device
GB2104219A (en) Measuring sizes by means of ultrasonic waves
JPS5831871B2 (en) Ultrasonic flaw detection method
JPS5896247A (en) Detector for welded part
JP2006132981A (en) Ultrasonic wall-thickness measuring instrument and ultrasonic wall-thickness measuring method
JPS6057250A (en) Discriminating method of welding defect
JPS61266907A (en) Detector for surface condition