JPH09318605A - Method for testing welded part by ultrasonic surface sh wave - Google Patents

Method for testing welded part by ultrasonic surface sh wave

Info

Publication number
JPH09318605A
JPH09318605A JP8160610A JP16061096A JPH09318605A JP H09318605 A JPH09318605 A JP H09318605A JP 8160610 A JP8160610 A JP 8160610A JP 16061096 A JP16061096 A JP 16061096A JP H09318605 A JPH09318605 A JP H09318605A
Authority
JP
Japan
Prior art keywords
wave
probe
ultrasonic
defect
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8160610A
Other languages
Japanese (ja)
Inventor
Keiji Yokoyama
計次 横山
Toshihiko Matsuura
十四彦 松浦
Yuichiro Yoshikawa
雄一郎 吉川
Noriyuki Okajima
則行 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON ARM KK
SAKAI IRON WORKS
SAKAI TEKKOSHO KK
Original Assignee
NIPPON ARM KK
SAKAI IRON WORKS
SAKAI TEKKOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON ARM KK, SAKAI IRON WORKS, SAKAI TEKKOSHO KK filed Critical NIPPON ARM KK
Priority to JP8160610A priority Critical patent/JPH09318605A/en
Publication of JPH09318605A publication Critical patent/JPH09318605A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic testing method capable of individually detecting the defective portions of a welded part caused by incomplete penetration or uneven penetration from the surface of a side opposite the route part of the welded part. SOLUTION: In a method for testing the defective portion of the back side of the welded part of a tested body 8 from the outside by ultrasonic waves, a probe 10 for producing an ultrasonic pulse composed of a horizontal wave vibrated in parallel with the surface 9 of the tested body 8 and perpendicular to an advancing direction is stuck to the outer surface 9 of the tested body 8, a surface SH wave is made incident in the surface 9 from the probe 10 by a shallow angle, the surface SH wave is brought to the defective portion of the back side of the tested body 8, a reflection wave from the defective portion is detected by the probe 10 or a different receiving probe and thus the detective portion is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超音波の表面SH
波による発電所等のボイラー等の蒸気・水管等と管台等
を溶接した後に外部から溶接部を検査する方法に関する
ものである。
TECHNICAL FIELD The present invention relates to an ultrasonic surface SH of an ultrasonic wave.
The present invention relates to a method of inspecting a welded portion from outside after welding steam / water pipes and the like of a boiler or the like of a power plant by waves and the like.

【0002】[0002]

【従来の技術】原子力、火力発電用等の配管に小口径管
を溶接する場合は図1に示すように蒸気・水管1の母管
2に管台3の基端を溶接し、管台3の先端に目的とする
小口径管4を溶接する。母管2と管台3との溶接部16
は図1に示す形状に予め開先加工を施して、この部分に
溶接を施す。その際溶接部16の内側のルート部5に図
2に示すように溶込み不良による溝6が残ったり、図3
に示すように溶融金属のタレ込みによる余盛7が生じ
る。この溶接部16の欠陥の種類と大きさを正確に検出
する必要がある。
2. Description of the Related Art When welding a small-diameter pipe to a pipe for nuclear power, thermal power generation, etc., as shown in FIG. 1, a base end of a nozzle base 3 is welded to a mother pipe 2 of a steam / water pipe 1 to form a nozzle base 3 The target small-diameter pipe 4 is welded to the tip of the. Welded portion 16 between mother pipe 2 and nozzle base 3
Is pre-grooved into the shape shown in FIG. 1 and welded to this portion. At that time, as shown in FIG. 2, a groove 6 due to poor penetration may remain in the root portion 5 inside the welded portion 16, or
As shown in FIG. 5, extra metal 7 is generated due to sagging of molten metal. It is necessary to accurately detect the type and size of the defect in the welded portion 16.

【0003】非破壊検査法として、超音波探傷法が広く
用いられているが、超音波が固体中を伝播する振動に
は、固体を構成する粒子が超音波の進行方向に動く縦波
と、音の進行方向に対して垂直方向に振動する横波があ
り、更にこの横波には、固体表面に対して垂直に振動す
るSV波と、固体表面に対して平行に振動するSH波と
がある。表面に沿って進行するSH波を表面SH波とい
う。表面SH波は探傷面から約15°の広がりをもって
進む剪断波である。
As a non-destructive inspection method, an ultrasonic flaw detection method is widely used. For vibrations in which an ultrasonic wave propagates in a solid, a longitudinal wave in which particles constituting the solid move in the traveling direction of the ultrasonic wave, There is a transverse wave that oscillates in a direction perpendicular to the traveling direction of sound, and the transverse wave includes an SV wave that oscillates perpendicularly to the solid surface and an SH wave that oscillates parallel to the solid surface. SH waves traveling along the surface are called surface SH waves. The surface SH wave is a shear wave traveling with a spread of about 15 ° from the flaw detection surface.

【0004】従来、継手の溶接部の欠陥の非破壊検査法
としては、社団法人日本非破壊検査協会発行の雑誌「非
破壊検査」第44巻第12号(1995)第946−6
50頁に記載されるように、超音波のSV波による斜角
探傷法及び超音波の表面SH波による探傷法が知られて
いる。
Conventionally, as a nondestructive inspection method for defects in welded portions of joints, the magazine "Nondestructive Inspection", Vol. 44, No. 12 (1995), No. 946-6, issued by the Japan Nondestructive Inspection Association.
As described on page 50, a beveled flaw detection method using an ultrasonic SV wave and a flaw detection method using an ultrasonic surface SH wave are known.

【0005】[0005]

【発明が解決しようとする課題】従来の超音波の斜角探
傷法では、上記の溶込み不良とタレ込みの区別ができな
かった。また従来の超音波表面SH波による溶接部の検
査法は溶接欠陥の存在するルート部の面から探傷する方
法のみが知られ、ルート部の反対側の表面からは検査を
行うことはできないとされていた。従って従来の超音波
表面SH波による溶接部の検査法は、図1に示す溶接部
の如く、内面のルート部からは検査することができず、
ルート部5と反対側の表面から検査を行わねばならない
場合には適用できないと考えられてきた。これは超音波
表面SH波は超音波を探触子から試験体に入射すると、
超音波は入射した試験体の表面に沿って伝播し、反射し
てくる超音波を検出するのであるから、入射側の表面の
欠陥のみを検出することができ、裏側の欠陥は検出でき
ないと考えられてきた。
In the conventional ultrasonic oblique angle flaw detection method, it was not possible to distinguish between the above penetration failure and sagging. In addition, the conventional method for inspecting a welded portion using an ultrasonic surface SH wave is only known to detect flaws from the surface of the root portion where a welding defect exists, and it is said that inspection cannot be performed from the surface opposite to the root portion. Was there. Therefore, the conventional method for inspecting a welded portion using an ultrasonic surface SH wave cannot inspect from the root portion of the inner surface like the welded portion shown in FIG.
It has been considered that this is not applicable when the inspection must be performed from the surface opposite to the root portion 5. This is because when the surface SH wave of the ultrasonic wave enters the test body from the ultrasonic wave,
Since ultrasonic waves propagate along the surface of the incident specimen and detect reflected ultrasonic waves, it is possible to detect only defects on the incident side surface and not on the back side. Has been.

【0006】従って本発明は、溶接部のルート部の反対
側の表面から、溶込み不良及びタレ込みによる溶接部の
欠陥を区別して検出することができる超音波探傷法を提
供することを目的とする。
Therefore, an object of the present invention is to provide an ultrasonic flaw detection method capable of distinguishing and detecting defects in a welded part due to poor penetration and sagging from the surface of the welded part opposite to the root part. To do.

【0007】更に本発明は溶接部の溶込み不良の欠陥に
ついて、その欠陥の深さも欠陥の反対側の表面から推定
しうる検出法を提供することを目的とする。
A further object of the present invention is to provide a method of detecting a defect of poor penetration in a welded portion, by which the depth of the defect can be estimated from the surface on the opposite side of the defect.

【0008】[0008]

【課題を解決するための手段】上記目的を達成すべく、
本発明者らは鋭意研究を重ねた結果、探触子より試験体
表面に平行な方向に振動する横波の超音波パルスを管表
面に対して浅い角度で管表面に沿って伝播する表面SH
波として入射すると、表面SH波は図4に示すような放
射特性を以て試験体内に進入し、約15°の広がりをも
って進むため、探触子と溶接部の位置関係を適当に選択
すれば、試験体の裏側にある溶接欠陥も表面SH波によ
り検出可能であることを見出し、本発明を完成するに至
った。
In order to achieve the above object,
As a result of intensive studies by the present inventors, a surface SH that propagates a transverse ultrasonic pulse oscillating in a direction parallel to the surface of the test body from the probe along the tube surface at a shallow angle with respect to the tube surface.
When incident as a wave, the surface SH wave enters the test body with a radiation characteristic as shown in FIG. 4 and advances with a spread of about 15 °. Therefore, if the positional relationship between the probe and the weld is properly selected, the test We have found that welding defects on the back side of the body can also be detected by surface SH waves, and have completed the present invention.

【0009】即ち、本発明は試験体の溶接部の裏側の欠
陥を外側より超音波により検査する検査法において、該
試験体表面に平行で進行方向に垂直に振動する横波より
なる超音波パルスを発生する探触子を該試験体の外側表
面に密着して、該探触子から該表面に対し浅い角度で表
面SH波を入射して、該表面SH波を該試験体裏側の欠
陥に到達せしめ、該欠陥からの反射波を該探触子又は別
個の受信用探触子により検出して、欠陥を検出すること
を特徴とする超音波表面SH波による溶接部の検査法を
要旨とする。
That is, according to the present invention, in an inspection method for inspecting a defect on the back side of a welded portion of a test body from the outside by ultrasonic waves, an ultrasonic pulse composed of transverse waves vibrating parallel to the surface of the test body and perpendicular to the traveling direction is used. The generated probe is brought into close contact with the outer surface of the test body, and the surface SH wave is incident from the probe at a shallow angle with respect to the surface, and the surface SH wave reaches the defect on the back side of the test body. In summary, a method of inspecting a welded portion by an ultrasonic surface SH wave is characterized in that a reflected wave from the defect is detected by the probe or a separate receiving probe to detect the defect. .

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0010】次に本発明の超音波による溶接部の検査法
の実施の形態について、図面により具体的に説明する。
図5は本発明の超音波表面SH波による溶接部の検査法
により、溶込み不良による溝6を有する試験体8(図5
a)、又はタレ込みによる余盛7を有する試験体8(図
5b)の欠陥を検出する方法の説明図である。溶接欠陥
の溝6と反対側の試験体8の表面9に超音波を送受信す
る探触子10を密着する。
Next, an embodiment of the method for inspecting a welded portion by ultrasonic waves according to the present invention will be specifically described with reference to the drawings.
FIG. 5 shows a test body 8 having a groove 6 due to poor penetration by the inspection method of the welded portion by the ultrasonic surface SH wave of the present invention (FIG. 5).
It is explanatory drawing of the method of detecting the defect of the test body 8 (FIG. 5b) which has the surplus 7 by a) or sag. A probe 10 for transmitting and receiving ultrasonic waves is brought into close contact with the surface 9 of the test body 8 on the side opposite to the welding defect groove 6.

【0011】本発明で用いられる探触子10の振動子と
しては、水晶をYカットした横波用圧電素子、その他各
種セラミックスよりなる圧電素子が用いられる。探触子
10の圧電素子11は、例えば図6に示すようにポリメ
タクリル酸メチル樹脂等の合成樹脂よりなる楔12と合
成樹脂等よりなる背面材13の間に挟着して、探触子1
0を構成する。圧電素子11の底面に対する角度、即ち
試験体8への超音波の入射角λは、鋼材等の試験体8に
入射する超音波の屈折角が丁度90度となる臨界角と呼
ばれる角度に略等しい角度とするのが送受信効率を上げ
るために必要である。
As the vibrator of the probe 10 used in the present invention, a transverse wave piezoelectric element obtained by Y-cutting a crystal, and other piezoelectric elements made of various ceramics are used. The piezoelectric element 11 of the probe 10 is sandwiched between a wedge 12 made of synthetic resin such as polymethylmethacrylate resin and a backing material 13 made of synthetic resin as shown in FIG. 1
0. The angle with respect to the bottom surface of the piezoelectric element 11, that is, the incident angle λ of the ultrasonic wave on the test body 8 is substantially equal to the angle called the critical angle at which the refraction angle of the ultrasonic wave incident on the test body 8 such as a steel material is just 90 degrees. The angle is necessary to improve the transmission / reception efficiency.

【0012】探触子10の底面に、粘稠液よりなる音響
結合剤を薄く塗布して試験体8の表面9に密着させ、そ
の音響結合剤の薄層を介して超音波をできるだけ効率よ
く伝達させる。探触子10から試験体8の表面9に対し
て平行に振動する横波を、表面9に対し表面SH波の発
生する臨界角に近い浅い角度で入射された横波の超音波
パルスは、試験体8表面で屈折して、表面SH波のパル
スとなり、図6に示すように試験体8内を表面9から約
15°の範囲の広がりをもって進行する横波として伝播
する。約15°の範囲で試験体8内に拡がった横波の一
部は溝6で反射して、入射経路を逆に辿り、探触子10
に到達して検出される。上記受信用の探触子は超音波を
発射した探触子10と同一探触子を受信用に兼用して用
いるのが好ましいが、別個の受信用探触子を用いてもよ
い。
A thin acoustic coupling agent made of a viscous liquid is thinly applied to the bottom surface of the probe 10 and brought into close contact with the surface 9 of the test body 8, and ultrasonic waves are transmitted through the thin layer of the acoustic coupling agent as efficiently as possible. Make it communicate. An ultrasonic pulse of a transverse wave that is oscillated from the probe 10 in parallel with the surface 9 of the test body 8 is incident on the surface 9 at a shallow angle close to the critical angle at which the surface SH wave is generated. 8 is refracted on the surface to become a pulse of the surface SH wave, and propagates as a transverse wave traveling in the test body 8 with a spread of about 15 ° from the surface 9 as shown in FIG. A part of the transverse wave that spreads in the test body 8 within a range of about 15 ° is reflected by the groove 6 and traces the incident path in the opposite direction, and the probe 10
Is reached and detected. It is preferable to use the same probe as the probe 10 that has emitted ultrasonic waves for reception as the above-mentioned reception probe, but a separate reception probe may be used.

【0013】パルス発射からエコーの検出までの時間
と、エコーの強度をオシロスコープ等の表示装置上に表
示し、又は記録して読み取る。探触子10から超音波パ
ルスを一定間隔で発射してそのエコーを検出しつつ、探
触子10を試験体8の表面9に沿って走査し、観測され
るエコーの位置と大きさから、欠陥の位置を求める。
The time from pulse emission to echo detection and the echo intensity are displayed on a display device such as an oscilloscope or recorded and read. While the ultrasonic pulse is emitted from the probe 10 at a constant interval to detect its echo, the probe 10 is scanned along the surface 9 of the test body 8 and, from the position and size of the observed echo, Find the location of the defect.

【0014】[0014]

【実施例】【Example】

〔実施例1〕図5aに示す幅100mm、長さ150mm、
厚さ16mmの鋼板よりなる試験体8の片面に幅6mm、深
さ2mmの溝6を幅方向に設け、溝6と反対側の表面9に
探触子10を密着させる。溝6から探触子10迄の水平
距離W=50mmの位置に探触子10を置き、探触子10
より表面9に平行に振動する横波の超音波パルスを発射
して表面SH波として入射し、そのSH波のエコーを同
じ探触子10により検出して、横軸にパルス入射からエ
コー検出までの時間を、縦軸にエコーの強度を表示する
と図7の探傷図形が得られる。図7においてAは溝6か
らの反射波、Tは試験体8の端面14からの反射波であ
る。
Example 1 A width of 100 mm and a length of 150 mm shown in FIG.
A groove 6 having a width of 6 mm and a depth of 2 mm is provided in the width direction on one surface of a test body 8 made of a steel plate having a thickness of 16 mm, and a probe 10 is brought into close contact with a surface 9 opposite to the groove 6. The probe 10 is placed at a position where the horizontal distance W = 50 mm from the groove 6 to the probe 10,
A transverse ultrasonic pulse vibrating more parallel to the surface 9 is emitted to enter as a surface SH wave, the echo of the SH wave is detected by the same probe 10, and from the pulse incidence to echo detection on the horizontal axis. By displaying the time and the intensity of the echo on the vertical axis, the flaw detection figure of FIG. 7 is obtained. In FIG. 7, A is a reflected wave from the groove 6, and T is a reflected wave from the end face 14 of the test body 8.

【0015】探触子10の位置を溝6の方向に対して直
角方向に少しずつ移動させて図7と同様にエコーの検出
し、その溝6からのエコーAの高さを縦軸に、探触子1
0の基準点からの距離を横軸にとって点綴すると図8が
得られる。
The position of the probe 10 is gradually moved in a direction perpendicular to the direction of the groove 6 to detect an echo as in FIG. 7, and the height of the echo A from the groove 6 is plotted on the vertical axis. Probe 1
If the distance from the reference point of 0 is plotted along the abscissa as the dotted line, FIG. 8 is obtained.

【0016】図8において2つのピークが認められる
が、この2つのピークの間隔dは溝6の深さhに応じて
変化する。即ち表面SH波の入射角をθとすると、 h=d cosθ (1) が成り立つ。これは探触子10から入射された表面SH
波は溝6の探触子10側の垂直壁面15で反射され、こ
れがエコーとして観測されるが、垂直壁面15全面で均
一に反射が起こるのではなく、溝6の探触子10側の垂
直壁面の下端及び上端の出隅部及び入隅部からの反射が
強いため、探触子10と溝6の距離Wと入射角θとが一
定の関係にあるときにエコーの強度が大きくなるためで
ある。
Although two peaks are recognized in FIG. 8, the interval d between these two peaks changes depending on the depth h of the groove 6. That is, if the incident angle of the surface SH wave is θ, then h = d cos θ (1) holds. This is the surface SH incident from the probe 10.
The wave is reflected by the vertical wall surface 15 of the groove 6 on the probe 10 side, and this is observed as an echo. However, the reflection does not occur uniformly on the entire surface of the vertical wall 15, but the vertical direction of the groove 6 on the probe 10 side. Since the reflections from the projecting and entering corners at the lower and upper ends of the wall surface are strong, the echo intensity increases when the distance W between the probe 10 and the groove 6 and the incident angle θ have a constant relationship. Is.

【0017】従って図8から溝6の深さhを求めること
ができる。例えば、図8においてd=3mm、θ=71°
より、h≒1mmが求められる。
Therefore, the depth h of the groove 6 can be obtained from FIG. For example, in FIG. 8, d = 3 mm, θ = 71 °
Therefore, h≈1 mm is required.

【0018】〔実施例2〕次に図5bに示す幅100m
m、長さ150mm、厚さ16mmの試験体8の片面に、幅
6mm、高さ4.5mmの直線状に盛り上がった余盛7を設
け、余盛7と反対側の表面9に探触子10を密着させ
る。余盛7から探触子10までの水平距離W=50mmの
位置に探触子10を密着し、実施例1と同様に探触子1
0より横波の超音波パルスを発射し、そのSH波のエコ
ーを検出して、横軸にパルス入射からエコー検出までの
時間を、縦軸にエコーの強度を表示すると図9が得られ
る。図9においてBは余盛7からの反射波、Tは試験体
8の端面14からの反射波である。図9は図7と同じ感
度で検出した探傷図形であるが、図9の余盛7からの反
射波が極めて小さいので、その検出感度を上げて表示す
ると図10のようになる。図7の溶込み不良による溝6
からのエコーと図9のタレ込みの余盛7からのエコーで
は30dBの感度差があり、1mmの溶込み不良の溝6の検
出感度では、タレ込みによる余盛7は検出されない。こ
のように溝6からのエコーと余盛7からのエコーはその
強度が大きく異なるのでので、両者は明瞭に区別するこ
とができる。
[Embodiment 2] Next, a width of 100 m shown in FIG. 5b.
On a single side of a test body 8 having a length of m, a length of 150 mm, and a thickness of 16 mm, a linear ridge 6 having a width of 6 mm and a height of 4.5 mm is provided, and a probe is provided on a surface 9 opposite to the ridge 7. Stick 10 together. The probe 10 is closely attached to a position where the horizontal distance W = 50 mm from the extra scale 7 to the probe 10, and the probe 1 is attached in the same manner as in the first embodiment.
9 is obtained by emitting an ultrasonic pulse of a transverse wave from 0, detecting the echo of the SH wave, displaying the time from pulse incidence to echo detection on the abscissa, and the intensity of the echo on the ordinate. In FIG. 9, B is a reflected wave from the extra scale 7, and T is a reflected wave from the end surface 14 of the test body 8. FIG. 9 shows a flaw detection pattern detected with the same sensitivity as in FIG. 7. However, since the reflected wave from the extra scale 7 in FIG. 9 is extremely small, the detection sensitivity is increased and displayed as shown in FIG. Groove 6 due to poor penetration in FIG.
There is a sensitivity difference of 30 dB between the echoes from No. 1 and the echo from the sag 7 of FIG. 9, and the surplus 7 due to sagging is not detected by the detection sensitivity of the groove 6 with a penetration failure of 1 mm. In this way, the echoes from the groove 6 and the echoes from the extra layer 7 have greatly different intensities, so that they can be clearly distinguished.

【0019】[0019]

【発明の効果】本発明の超音波表面SH波による溶接部
の検査法によれば、蒸気・水管等への小口径管の溶接部
のごとく溶接部の内側に探触子を近づけることができな
い場合でも、小口径管の外側から超音波の表面SH波を
入射することにより、裏側の溶接部の欠陥を検出するこ
とができ、溶込み不良による溝とタレ込みによる余盛と
を明瞭に区別することができ、また溶込み不良による溝
の深さを求めることができる。
According to the method for inspecting a welded portion by the ultrasonic surface SH wave of the present invention, the probe cannot be brought close to the inside of the welded portion like the welded portion of a small diameter pipe to a steam / water pipe or the like. Even if the surface SH wave of the ultrasonic wave is incident from the outside of the small-diameter pipe, it is possible to detect the defect of the welded part on the back side, and clearly distinguish the groove due to poor penetration and the excess due to sagging. It is also possible to obtain the depth of the groove due to defective penetration.

【図面の簡単な説明】[Brief description of drawings]

【図1】原子力、火力発電所用ボイラー等の配管に管台
を溶接した溶接部の断面図である。
FIG. 1 is a cross-sectional view of a welded portion in which a nozzle is welded to a pipe of a nuclear power or thermal power plant boiler or the like.

【図2】溶込み不良の溶接部の断面図である。FIG. 2 is a cross-sectional view of a welded portion having a poor penetration.

【図3】タレ込みの生じた溶接部の断面図である。FIG. 3 is a cross-sectional view of a welded portion where sagging occurs.

【図4】表面SH波の放射特性図である。FIG. 4 is a radiation characteristic diagram of surface SH waves.

【図5】本発明の超音波表面SH波による溶接部の検査
法の説明図である。
FIG. 5 is an explanatory diagram of a method for inspecting a welded portion by an ultrasonic surface SH wave of the present invention.

【図6】探触子から発射された超音波表面SH波として
の伝播を示す断面図である。
FIG. 6 is a cross-sectional view showing propagation as an ultrasonic surface SH wave emitted from a probe.

【図7】本発明の超音波表面SH波による溶接部の検査
法による、溶込み不良の溶接部の探傷図形である。
FIG. 7 is a flaw detection figure of a welded portion having a poor penetration by the inspection method of the welded portion by the ultrasonic surface SH wave of the present invention.

【図8】図6の探傷図形のピーク高さを探触子の位置に
対して点綴したグラフである。
FIG. 8 is a graph in which the peak height of the flaw detection figure of FIG. 6 is dotted with respect to the position of the probe.

【図9】本発明の超音波表面SH波による溶接部の検査
法による、タレ込みの生じた溶接部の探傷図形である。
FIG. 9 is a flaw detection figure of a welded portion caused by sag by a method for inspecting a welded portion using an ultrasonic surface SH wave of the present invention.

【図10】図9の感度を上げて示した探傷図形である。FIG. 10 is a flaw detection figure shown with increased sensitivity in FIG.

【符号の説明】[Explanation of symbols]

1 蒸気・水管 2 母管 3 管台 4 小口径管 5 ルート部 6 溝 7 余盛 8 試験体 9 表面 10 探触子 11 圧電素子 12 楔 13 背面材 14 端面 15 垂直壁面 16 溶接部 1 Steam / water pipe 2 Mother pipe 3 Pipe base 4 Small diameter pipe 5 Root part 6 Groove 7 Overfill 8 Test body 9 Surface 10 Probe 11 Piezoelectric element 12 Wedge 13 Backing material 14 End face 15 Vertical wall surface 16 Welding part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉川 雄一郎 大阪市福島区海老江2丁目10番20号 株式 会社日本アーム内 (72)発明者 岡島 則行 大阪市福島区海老江2丁目10番20号 株式 会社日本アーム内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yuichiro Yoshikawa, 2-10-20 Ebie, Fukushima-ku, Osaka City, Japan Stock Company (72) Noriyuki Okajima 2--10-20, Ebie, Fukushima-ku, Osaka Stock Company Inside the Japanese arm

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】試験体の溶接部の裏側の欠陥を外側より超
音波により検査する検査法において、該試験体表面に平
行で進行方向に垂直に振動する横波よりなる超音波パル
スを発生する探触子を該試験体の外側表面に密着して、
該探触子から該表面に対し浅い角度で表面SH波を入射
して、該表面SH波を該試験体裏側の欠陥に到達せし
め、該欠陥からの反射波を該探触子又は別個の受信用探
触子により検出して、欠陥を検出することを特徴とする
超音波表面SH波による溶接部の検査法。
1. A test method for ultrasonically inspecting a defect on the back side of a welded portion of a test body from the outside, which generates an ultrasonic pulse composed of a transverse wave oscillating parallel to the surface of the test body and perpendicular to the traveling direction. Adhere the tentacle to the outer surface of the test piece,
A surface SH wave is incident from the probe at a shallow angle with respect to the surface to cause the surface SH wave to reach a defect on the back side of the test body, and a reflected wave from the defect is received by the probe or a separate reception. A method for inspecting a welded portion by an ultrasonic surface SH wave, which is characterized by detecting a defect with a probe for ultrasonic waves.
【請求項2】該欠陥が開先部の溶込み不良による溝状の
欠陥である請求項1記載の超音波表面SH波による溶接
部の検査法。
2. The method for inspecting a welded portion by an ultrasonic surface SH wave according to claim 1, wherein the defect is a groove-shaped defect due to defective penetration in the groove.
【請求項3】該探触子を試験体表面に沿って移動しつつ
溝状欠陥よりの該反射波のピーク高さを測定し、該探触
子の移動位置に対して該ピーク高さを点綴したときに生
ずる2つのピークの間隔から、該溝状欠陥の深さを求め
る請求項2記載の超音波表面SH波による溶接部の検査
法。
3. The peak height of the reflected wave from the groove-like defect is measured while moving the probe along the surface of the test body, and the peak height is measured with respect to the moving position of the probe. The method for inspecting a welded portion by ultrasonic surface SH waves according to claim 2, wherein the depth of the groove-like defect is obtained from the interval between two peaks generated when dot-stitching.
【請求項4】該欠陥が開先部のタレ込みによる欠陥であ
る請求項1記載の超音波表面SH波による溶接部の検査
法。
4. The method for inspecting a welded portion by an ultrasonic surface SH wave according to claim 1, wherein the defect is a defect due to sagging of a groove portion.
JP8160610A 1996-05-30 1996-05-30 Method for testing welded part by ultrasonic surface sh wave Pending JPH09318605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8160610A JPH09318605A (en) 1996-05-30 1996-05-30 Method for testing welded part by ultrasonic surface sh wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8160610A JPH09318605A (en) 1996-05-30 1996-05-30 Method for testing welded part by ultrasonic surface sh wave

Publications (1)

Publication Number Publication Date
JPH09318605A true JPH09318605A (en) 1997-12-12

Family

ID=15718666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8160610A Pending JPH09318605A (en) 1996-05-30 1996-05-30 Method for testing welded part by ultrasonic surface sh wave

Country Status (1)

Country Link
JP (1) JPH09318605A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030550A1 (en) * 2004-09-13 2006-03-23 Shin Caterpillar Mitsubishi Ltd. Attachment boss structure and method of assembling the same
WO2013076850A1 (en) * 2011-11-24 2013-05-30 トヨタ自動車株式会社 Method for inspecting weld penetration depth
JPWO2013076850A1 (en) * 2011-11-24 2015-04-27 トヨタ自動車株式会社 Weld penetration depth inspection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030550A1 (en) * 2004-09-13 2006-03-23 Shin Caterpillar Mitsubishi Ltd. Attachment boss structure and method of assembling the same
WO2013076850A1 (en) * 2011-11-24 2013-05-30 トヨタ自動車株式会社 Method for inspecting weld penetration depth
CN103959011A (en) * 2011-11-24 2014-07-30 丰田自动车株式会社 Method for inspecting weld penetration depth
JPWO2013076850A1 (en) * 2011-11-24 2015-04-27 トヨタ自動車株式会社 Weld penetration depth inspection method

Similar Documents

Publication Publication Date Title
US7369250B2 (en) System and method to inspect components having non-parallel surfaces
US3895685A (en) Method and apparatus for ultrasonic inspection of weldments
JP2001021542A (en) Measuring of weld line transverse crack defect length
JP5285845B2 (en) Defect detection apparatus and defect detection method
JP7353545B2 (en) Bonded interface evaluation method and bonded interface evaluation device
JPH0273151A (en) Ultrasonic probe
JPH09318605A (en) Method for testing welded part by ultrasonic surface sh wave
JP2002214204A (en) Ultrasonic flaw detector and method using the same
KR101139592B1 (en) longitudinal wave transducer wedge to maintain couplant layer and longitudinal wave transducer using the same
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP3761883B2 (en) Ultrasonic flaw detection method
Long et al. Further development of a conformable phased array device for inspection over irregular surfaces
JP2001083123A (en) Local immersion type ultrasonic probe and ultrasonic inspection device equipped with it
JPH1144675A (en) Ultrasonic measuring method for assembled and welded part in wheel
JPH0972887A (en) Flaw detection of pipe by ultrasonic surface acoustic sh wave
JP3754669B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP2001124746A (en) Ultrasonic inspection method
JP2001324484A (en) Ultrasonic flaw detection method and apparatus
JPS63298054A (en) Ultrasonic flaw detecting method for screw joint part of pipe
JPH0136130Y2 (en)
JP2605352B2 (en) Ultrasonic flaw detector
JP2001165916A (en) Pencil-shaped local water penetrating ultrasonic probe and method of detecting flaw of welded part using the same
SU1310710A1 (en) Method of quality control of acoustic contact in ultrasonic flaw detection
JPH10332649A (en) Method and apparatus for inspection of inside detect of water-wall pipe
JP2545974B2 (en) Spectrum ultrasound microscope