JPH0972887A - Flaw detection of pipe by ultrasonic surface acoustic sh wave - Google Patents

Flaw detection of pipe by ultrasonic surface acoustic sh wave

Info

Publication number
JPH0972887A
JPH0972887A JP7256774A JP25677495A JPH0972887A JP H0972887 A JPH0972887 A JP H0972887A JP 7256774 A JP7256774 A JP 7256774A JP 25677495 A JP25677495 A JP 25677495A JP H0972887 A JPH0972887 A JP H0972887A
Authority
JP
Japan
Prior art keywords
tube
pipe
wave
probe
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7256774A
Other languages
Japanese (ja)
Inventor
Keiji Yokoyama
計次 横山
Hiroo Ando
碩夫 安東
Mikio Mizumoto
幹雄 水本
Toshihiko Matsuura
十四彦 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON ARM KK
SAKAI TEKKOSHO KK
Original Assignee
NIPPON ARM KK
SAKAI TEKKOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON ARM KK, SAKAI TEKKOSHO KK filed Critical NIPPON ARM KK
Priority to JP7256774A priority Critical patent/JPH0972887A/en
Publication of JPH0972887A publication Critical patent/JPH0972887A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately detect the flaw on the rear side of a pipe by allowing ultrasonic surface acoustic SH waves to be incident on the pipe being an object to be tested in the peripheral or spiral direction of the pipe and detecting the reflected waves from a flaw such as a crack. SOLUTION: A transmission probe 6 and a receiving probe 7 are arranged in the direction of the pipe axis I of a pipe at an angle θ so that the bottom surfaces of them come into close contact with the surface of a test object 10. Lateral ultrasonic pulses obliquely incident on the pipe axis I from the probe 6 are refracted on the surface of the test object 10 to become surface acoustic SH wave pulses and this pulses sprirally advance along the outer and inner surfaces of the pipe while generates multiple reflection between both surfaces. These pulses are reflected by the crack in the circumferential direction on the rear side of the pipe 8 to advance along the surface opposite to a forward passage of the pipe 8 to be detected by the probe 7. With respect to the crack 4 in the direction of the pipe axis I, the probes 6, 7 are arranged on the plane vertical to the pipe axis I at the same angle α with respect to the pipe axis I in a face symmetric manner so as to be opposed to each other on the same straight line in the direction of the pipe axis I to calculate the position and depth of the crack.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、表面SH波による
ボイラー等の炉壁管等の水管の探傷法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flaw detection method for water pipes such as furnace wall pipes of boilers and the like by surface SH waves.

【0002】[0002]

【従来の技術】火力発電用ボイラーの炉壁は予熱水管を
互いに密接して配列し、炉壁からの熱損失を防止するよ
うに構成されているが、繰り返し作用する熱応力による
管の周方向のクラックや応力腐食割れ等によるクラック
が発生する。このクラックをプラントの定期修理時等に
定期的に検査して、所定の安全基準を越えると、炉壁を
改修する。従って炉壁の水管のクラックの位置と深さを
正確に測定する必要がある。
2. Description of the Related Art In a furnace wall of a thermal power generation boiler, preheated water pipes are arranged in close contact with each other to prevent heat loss from the furnace wall. Cracks or cracks due to stress corrosion cracking occur. The cracks are regularly inspected at the time of periodic repair of the plant, etc., and if the predetermined safety standard is exceeded, the furnace wall is repaired. Therefore, it is necessary to accurately measure the position and depth of cracks in the water pipe on the furnace wall.

【0003】火力発電所のボイラーの炉壁ケーシングの
内側に溶接されて炉壁を構成する炉壁管は図1に示すよ
うに、炉壁管1を付着金物2に溶接して組立てられてい
るが、図2に示すように、炉壁管1の溶接部3に接する
部分の内側にクラック4が発生する場合が多い。
As shown in FIG. 1, a furnace wall tube which is welded to the inside of a furnace wall casing of a boiler of a thermal power plant to form a furnace wall is constructed by welding a furnace wall tube 1 to a metal deposit 2. However, as shown in FIG. 2, cracks 4 often occur inside the portion of the furnace wall tube 1 that contacts the welded portion 3.

【0004】一方、超音波探傷法が広く用いられている
が、超音波が固体中を伝播する振動には、固体を構成す
る粒子が超音波の進行方向に動く縦波と、音の進行方向
に対して垂直方向に振動する横波があり、更にこの横波
には、固体表面に対して垂直に振動するSV波と、固体
表面に対して平行に振動するSH波とがある。表面に沿
って進行するSH波を表面SH波という。表面SH波は
探傷面から約15°の広がりをもって進む剪断波であ
る。
On the other hand, the ultrasonic flaw detection method is widely used. For vibrations in which an ultrasonic wave propagates in a solid, longitudinal particles in which particles constituting the solid move in the traveling direction of the ultrasonic wave and a traveling direction of the sound There is a transverse wave that oscillates in the vertical direction, and the transverse wave includes an SV wave that oscillates perpendicularly to the solid surface and an SH wave that oscillates parallel to the solid surface. SH waves traveling along the surface are called surface SH waves. The surface SH wave is a shear wave traveling with a spread of about 15 ° from the flaw detection surface.

【0005】従来、炉壁管1のクラック4等の欠陥の検
出法として、超音波のSV波による探傷法が提案されて
いるが、その方法は図2に示すように、クラック4が炉
壁管1の円周方向に沿ったクラック4の場合は炉壁管1
内に水17を満たし、炉壁管1の炉内側の周面に探触子
5を密着し、炉壁管1の管壁及び炉壁管1内の水17を
通して超音波を発射して、クラック4からの反射波を同
じ探触子5により検出する方法が試みられている。
Conventionally, as a method of detecting defects such as cracks 4 in the furnace wall tube 1, a flaw detection method using an ultrasonic SV wave has been proposed. As shown in FIG. In case of crack 4 along the circumferential direction of tube 1, furnace wall tube 1
The inside of the furnace wall tube 1 is filled with water 17, the probe 5 is closely attached to the peripheral surface of the furnace wall tube 1 inside the furnace, and ultrasonic waves are emitted through the tube wall of the furnace wall tube 1 and the water 17 in the furnace wall tube 1, An attempt has been made to detect a reflected wave from the crack 4 by the same probe 5.

【0006】又従来のSV波による探傷法により管軸方
向に沿ったクラック4を検出する場合には、図3に示す
ようにSV波を管軸に垂直な面内で管の表面に対して斜
めに入射して、管の外面と内面で何度も反射させて、ク
ラック4に到達させ、往路を逆進して戻る反射波を受信
する方法が試みられた。
Further, when the crack 4 along the pipe axis direction is detected by the conventional flaw detection method using the SV wave, as shown in FIG. 3, the SV wave is applied to the surface of the pipe in a plane perpendicular to the pipe axis. An attempt has been made to receive a reflected wave that is obliquely incident, is repeatedly reflected by the outer surface and the inner surface of the tube, reaches the crack 4, and travels backward in the outward path and returns.

【0007】一方、鉄道車輛用車軸等の大きな荷重を受
ける鋼材に必要な定期的検査に際し、微細な亀裂等の発
生の有無を検査するために、表面SH波を用いることが
提案されている(戸田裕己ら著、「鉄道車輛用車軸のフ
レッティング疲労き裂の表面SH波による定量評価」、
非破壊検査、第40巻、第3号、第158〜164頁
(平成3年3月、社団法人日本非破壊検査協会発
行))。
On the other hand, it has been proposed to use surface SH waves in order to inspect for the presence or absence of fine cracks during the periodic inspection required for steel materials subject to large loads such as axles for railway vehicles. Yuki Toda et al., "Quantitative Evaluation of Fretting Fatigue Cracks on Railroad Vehicle Axles by Surface SH Waves",
Nondestructive inspection, Volume 40, No. 3, pages 158 to 164 (March 1991, published by the Japan Nondestructive Inspection Association).

【0008】又、表面SH波による鋼板のすみ肉溶接部
の探傷法が提案されている(横山計次著、「表面SH波
によるすみ肉溶接ヒール部のき裂探傷」、超音波TEC
NO、第6巻(1994年)、2月号、第15〜18
頁)。
Further, a flaw detection method for a fillet weld portion of a steel sheet by a surface SH wave has been proposed (Kenji Yokoyama, "Flaw flaw detection in a fillet weld heel portion by a surface SH wave", ultrasonic TEC.
NO, Volume 6 (1994), February Issue, 15-18
page).

【0009】[0009]

【発明が解決しようとする課題】上記図2に示す従来の
超音波のSV波による炉壁管1の円周に沿うクラック4
の探傷法では、図2に示すように発射された超音波が鋼
−水−鋼−水−鋼というように何度も音響インピーダン
スの大きく異なる媒質を交互に移動して伝播してくるた
め、その媒質の境界面での反射や超音波の縦波と横波の
モード変換によるエネルギーの減衰、ノイズの発生によ
り、目的とするクラック4からの反射波を明瞭に検出す
ることは不可能であった。
The crack 4 along the circumference of the furnace wall tube 1 due to the conventional SV wave of ultrasonic waves shown in FIG.
In the flaw detection method, the ultrasonic waves emitted as shown in FIG. 2 are propagated by alternately moving through mediums having greatly different acoustic impedances such as steel-water-steel-water-steel. It was impossible to clearly detect the target reflected wave from the crack 4 due to reflection at the boundary surface of the medium, attenuation of energy due to mode conversion of ultrasonic longitudinal wave and transverse wave, and generation of noise. .

【0010】又図3に示すSV波による炉壁管1の管軸
に沿うクラック4の探傷法では、管の外面と内面で何度
もSV波が反射する結果、超音波多重反射の際のモード
変換によるエネルギーの減衰、ノイズの発生により、こ
の場合も目的とするクラック4からの反射波を明瞭に検
出することが困難であった。
Further, in the flaw detection method of the crack 4 along the tube axis of the furnace wall tube 1 by the SV wave shown in FIG. 3, the SV wave is repeatedly reflected on the outer surface and the inner surface of the tube, and as a result, the ultrasonic multiple reflection occurs. In this case as well, it was difficult to clearly detect the target reflected wave from the crack 4 due to attenuation of energy due to mode conversion and generation of noise.

【0011】従って本発明は、ボイラーの炉壁管等の管
の欠陥を欠陥の反対側の管表面から超音波を用いて非破
壊的に正確に検出することができる探傷法を提供するこ
とを目的とする。
Therefore, the present invention provides a flaw detection method capable of nondestructively and accurately detecting a defect of a tube such as a furnace wall tube of a boiler from the surface of the tube opposite to the defect using ultrasonic waves. To aim.

【0012】[0012]

【課題を解決するための手段】上記目的を達成すべく、
本発明者らは鋭意研究を重ねた結果、探触子より試験体
表面に平行な方向に振動する横波の超音波パルスを管表
面に対して浅い角度で管表面に沿って伝播する表面SH
波として入射すると、表面SH波は管の外面と内面の両
面で多重反射しつつ全体として曲面状の管表面に沿って
自然に進路を彎曲して進み、入射点から見て管の裏側に
あるクラックまで到達し、クラックで反射する表面SH
波の反射波を送信用と同一の探触子又は送信用探触子と
別個の受信用探触子により検出することができること、
表面SH波はSV波と異なり、管の表面で反射する際に
モード変換をしないため、多重反射しても減衰せず、ノ
イズの発生も少なく、明瞭に欠陥を検出しうることを見
出し、本発明を完成するに至った。
In order to achieve the above object,
As a result of intensive studies by the present inventors, a surface SH that propagates a transverse ultrasonic pulse oscillating in a direction parallel to the surface of the test body from the probe along the tube surface at a shallow angle with respect to the tube surface.
When incident as a wave, the surface SH wave is naturally reflected along the curved surface of the tube as a whole while undergoing multiple reflection on both the outer surface and the inner surface of the tube, and is on the back side of the tube as seen from the incident point. Surface SH that reaches and is reflected by cracks
The reflected wave of the wave can be detected by the same probe as that for transmission or the probe for reception and a probe for reception which are separate from each other,
Unlike SV waves, surface SH waves do not undergo mode conversion when reflected on the surface of the tube, so they are not attenuated even with multiple reflections, generate little noise, and can clearly detect defects. The invention was completed.

【0013】即ち、本発明は管よりなる試験体の内外面
のクラック、孔等の欠陥を検出する超音波探傷法におい
て、該管表面に平行で進行方向に垂直に振動する横波よ
りなる超音波パルスを発生する送信探触子を該管表面に
密着して、該送信探触子から該管表面に対し浅い角度で
表面SH波を該管の円周方向に、又は該管の管軸に対し
斜め方向に入射して、該表面SH波を管の円周方向に沿
って又は管の周面の螺旋方向に沿って進行させて欠陥に
到達せしめ、該欠陥からの反射波を該送信探触子又は別
個の受信探触子により検出して、欠陥を検出することを
特徴とする超音波表面SH波による管の探傷法を要旨と
する。
That is, the present invention provides an ultrasonic flaw detection method for detecting defects such as cracks and holes on the inner and outer surfaces of a test body made of a pipe, wherein an ultrasonic wave composed of transverse waves oscillating parallel to the pipe surface and perpendicular to the traveling direction. A transmitting probe that generates a pulse is brought into close contact with the tube surface, and surface SH waves are emitted from the transmitting probe at a shallow angle to the tube surface in the circumferential direction of the tube or to the tube axis of the tube. On the other hand, the surface SH wave is made incident on the oblique direction and travels along the circumferential direction of the tube or along the spiral direction of the circumferential surface of the tube to reach the defect, and the reflected wave from the defect is transmitted to the transmission probe. A gist is a flaw detection method for a tube by an ultrasonic surface SH wave, which is characterized by detecting a defect by a probe or a separate receiving probe.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0014】次に本発明の超音波による固体表面の探傷
方法の実施の形態について、図面により具体的に説明す
る。図4は本発明の超音波表面SH波による管の探傷法
により、管の円周方向に沿ったクラック4よりなる欠陥
を検出する方法の説明図である。試験体10は複数の管
8を図4bの断面図に示すように連結板9を溶接して互
いに連結してなる。
An embodiment of the ultrasonic flaw detection method for a solid surface of the present invention will be described in detail with reference to the drawings. FIG. 4 is an explanatory diagram of a method of detecting defects formed by cracks 4 along the circumferential direction of the pipe by the flaw detection method for the pipe using the ultrasonic surface SH wave of the present invention. The test body 10 is formed by welding a plurality of tubes 8 to each other by welding a connecting plate 9 as shown in the sectional view of FIG. 4b.

【0015】本発明で用いられる送信探触子6及び受信
探触子7の振動子としては、それぞれ水晶をYカットし
た横波用圧電素子、その他各種セラミックスよりなる圧
電素子が用いられる。送信探触子6及び受信探触子7の
圧電素子14は、例えば図10に示すようにポリメタク
リル酸メチル樹脂等の合成樹脂よりなる楔15と合成樹
脂等よりなる背面材16の間に挟着して、探触子を構成
する。圧電素子14の底面に対する角度、即ち試験体1
0への超音波の入射角λは、鋼材等の試験体10に入射
する超音波の屈折角が丁度90度となる臨界角と呼ばれ
る角度に略等しい角度とするのが送受信効率を上げるた
めに必要である。
As the transducers of the transmitting probe 6 and the receiving probe 7 used in the present invention, a transverse wave piezoelectric element in which a crystal is Y-cut, and other piezoelectric elements made of various ceramics are used. The piezoelectric elements 14 of the transmitting probe 6 and the receiving probe 7 are sandwiched between a wedge 15 made of a synthetic resin such as polymethylmethacrylate resin and a backing material 16 made of a synthetic resin as shown in FIG. Wear and configure the probe. The angle with respect to the bottom surface of the piezoelectric element 14, that is, the test body 1
In order to improve transmission and reception efficiency, the incident angle λ of the ultrasonic wave at 0 is set to be substantially equal to the angle called the critical angle at which the refraction angle of the ultrasonic wave incident on the test body 10 such as steel material is just 90 degrees. is necessary.

【0016】送信探触子6及び受信探触子7を管8の管
軸Iに沿った方向に向かって逆ハ字状に管軸I方向に対
し対称的にそれぞれ角度θだけ末広がりに向けて並べて
配置する。送信探触子6及び受信探触子7の底面に、粘
稠液よりなる音響結合剤を薄く塗布して試験体10表面
に密着させ、その音響結合剤の薄層を介して超音波をで
きるだけ効率よく伝達させる。送信探触子6から管8の
表面11に対して平行に振動する横波を、表面11に対
し表面SH波の発生する臨界角に近い浅い角度で、管軸
Iに斜めに入射された横波の超音波パルスは、試験体1
0表面で屈折して、表面SH波のパルスとなり、図10
に示すように試験体内を表面11から約15°の範囲の
広がりをもって進行する横波として伝播する。管8の表
面に沿って進行する表面SH波は、光ファイバー中を進
む光のように、管8の外面と内面の間で多重反射しつ
つ、管8の表面に沿って螺旋状に進行し、入射点から見
て管8の裏側にある管軸Iに対して垂直面内にある円周
方向のクラック4に到達してここで反射され、その反射
波は往路とは管8の反対側の表面に沿って螺旋状に進
み、受信探触子7に到達して検出される。
The transmitting probe 6 and the receiving probe 7 are directed toward the direction along the tube axis I of the tube 8 in an inverted C-shape symmetrically with respect to the tube axis I direction and directed toward the end by an angle θ. Place them side by side. An acoustic binder made of a viscous liquid is thinly applied to the bottom surfaces of the transmission probe 6 and the reception probe 7 to be in close contact with the surface of the test body 10, and ultrasonic waves can be transmitted through the thin layer of the acoustic coupling agent as much as possible. To transmit efficiently. Transverse waves that oscillate parallel to the surface 11 of the tube 8 from the transmission probe 6 are transmitted to the surface 11 at a shallow angle close to the critical angle at which surface SH waves are generated, and the transverse waves obliquely incident on the tube axis I are transmitted. Ultrasonic pulse, test body 1
The light is refracted at the 0 surface and becomes a pulse of the surface SH wave.
As shown in FIG. 5, it propagates in the test body as a transverse wave traveling with a spread of about 15 ° from the surface 11. The surface SH wave traveling along the surface of the tube 8 travels spirally along the surface of the tube 8 while undergoing multiple reflection between the outer surface and the inner surface of the tube 8 like light traveling in an optical fiber. When it reaches the crack 4 in the circumferential direction in the plane perpendicular to the tube axis I on the back side of the tube 8 when viewed from the incident point and is reflected here, the reflected wave is on the opposite side of the tube 8 from the outward path. It advances spirally along the surface, reaches the reception probe 7, and is detected.

【0017】パルス発射からエコーの検出までの時間
と、エコーの強度をオシロスコープ等の表示装置上に表
示し、又は記録して読み取る。送信探触子6から超音波
パルスを一定間隔で発射してそのエコーを検出しつつ、
送信探触子6及び受信探触子7の相対位置を一定に保ち
つつ、これを試験体10の表面11に沿って走査し、観
測されるエコーの位置と大きさから、クラックの位置と
深さを求める。
The time from pulse emission to echo detection and the echo intensity are displayed on a display device such as an oscilloscope or recorded and read. While emitting ultrasonic pulses from the transmission probe 6 at regular intervals to detect the echo,
While keeping the relative position of the transmitting probe 6 and the receiving probe 7 constant, the scanning is performed along the surface 11 of the test body 10, and from the position and the size of the observed echo, the position and depth of the crack are determined. Ask for

【0018】送信探触子6及び受信探触子7の管軸方向
に対する角度θは管8の直径によって異なり、超音波が
送信探触子6からクラック4にまで到るビーム路程が5
0〜200mm更に好ましくは150〜200mm程度にな
るように選択される。例えば管8の直径が20〜60mm
のとき、角度θは15〜50°が好ましく、更に好まし
くは20〜40°である。この角度θが小さいと、探触
子からクラック4までのビーム路程が長くなり過ぎて、
その間の表面SH波の減衰が大きくなり欠陥の検出精度
が低下する。角度θが大き過ぎると連結板9からのノイ
ズが大きくなり、クラック4からの反射波との判別が困
難となる。
The angle θ of the transmitting probe 6 and the receiving probe 7 with respect to the tube axis direction differs depending on the diameter of the tube 8, and the beam path of ultrasonic waves from the transmitting probe 6 to the crack 4 is 5
It is selected to be 0 to 200 mm, more preferably about 150 to 200 mm. For example, the diameter of the pipe 8 is 20-60 mm
In this case, the angle θ is preferably 15 to 50 °, more preferably 20 to 40 °. If this angle θ is small, the beam path from the probe to the crack 4 becomes too long,
During that time, the surface SH wave is greatly attenuated and the defect detection accuracy is lowered. If the angle θ is too large, noise from the connecting plate 9 becomes large, and it becomes difficult to distinguish the reflected wave from the crack 4.

【0019】図5は本発明の超音波表面SH波による管
の探傷法により、管8の管軸I方向に沿ったクラック4
よりなる欠陥を検出する方法の説明図である。試験体1
0は管の中心を挟んで管の両側に対称的に管軸に沿って
細長い板状の溶接突出片12を溶接したものである。送
信探触子6と受信探触子7は管8の表面の管軸I方向に
沿った同一直線上に対向して、且つ管軸Iに対し同一角
度αだけ傾けて、両探触子を管軸Iに垂直な平面に対し
て面対称に配設する。角度αは30〜60°が好まし
い。角度αが小さ過ぎると、探触子からクラック4まで
のビーム路程が長くなり過ぎて、その間の表面SH波の
減衰が大きくなり欠陥の検出精度が低下する。また角度
αが大き過ぎると、溶接突出片12からのノイズが大き
くなり、クラック4からの反射波との判別が困難とな
る。送信探触子6と受信探触子7の間隔dを、管8の外
径を2rとするとき、2πr/tanαに略等しい距離にと
ると、管8の両探触子の丁度反対側にあるクラック4が
検出される。
FIG. 5 shows a crack 4 along the tube axis I direction of the tube 8 by the flaw detection method of the tube by the ultrasonic surface SH wave of the present invention.
It is explanatory drawing of the method of detecting the defect which consists of. Test body 1
The reference numeral 0 indicates that the elongated plate-shaped welding projection pieces 12 are welded symmetrically along the tube axis on both sides of the tube with the center of the tube sandwiched therebetween. The transmitting probe 6 and the receiving probe 7 face each other on the same straight line along the tube axis I direction on the surface of the tube 8 and are inclined at the same angle α with respect to the tube axis I, so that both probes are They are arranged symmetrically with respect to a plane perpendicular to the tube axis I. The angle α is preferably 30 to 60 °. If the angle α is too small, the beam path from the probe to the crack 4 becomes too long, the attenuation of surface SH waves during that time increases, and the defect detection accuracy decreases. Further, if the angle α is too large, noise from the welding protruding piece 12 becomes large, and it becomes difficult to distinguish it from the reflected wave from the crack 4. When the distance d between the transmitting probe 6 and the receiving probe 7 is set to be a distance approximately equal to 2πr / tanα when the outer diameter of the tube 8 is 2r, the distance between the two transducers of the tube 8 is just opposite. A crack 4 is detected.

【0020】送信探触子6より発射された横波の超音波
パルスは図4の場合と同様に管8表面に沿って螺旋状に
進み、管軸I方向のクラック4に到達すると、そこで反
射され、往路とは逆廻りの螺旋状に進み、受信探触子7
に到達して検出される。
The transverse ultrasonic pulse emitted from the transmitting probe 6 advances spirally along the surface of the tube 8 as in the case of FIG. 4, and when it reaches the crack 4 in the tube axis I direction, is reflected there. , A spiral that goes in the opposite direction to the forward path, and the receiving probe 7
Is reached and detected.

【0021】図4及び図5に示す探傷法の場合は連結板
9や溶接突出片12のような管8に溶接された溶接部が
あっても、探傷に支障がない。
In the case of the flaw detection method shown in FIGS. 4 and 5, even if there is a welded portion welded to the pipe 8 such as the connecting plate 9 and the welding projection piece 12, there is no problem in flaw detection.

【0022】図6は本発明の超音波表面SH波による管
の探傷法により、管8の管軸I方向に沿ったクラック4
を検出する他の方法の説明図である。送信探触子6を受
信用にも兼用し、管表面に平行に振動する横波の超音波
パルスを管8の表面11に沿って、管軸Iに垂直な方向
の表面SH波として入射する。入射された表面SH波は
管8の円周方向に沿って、管8の裏側まで廻り込みクラ
ック4に到達し、ここで反射された表面SH波は往路を
戻り、探触子6により検出される。
FIG. 6 shows a crack 4 along the direction of the tube axis I of the tube 8 by the flaw detection method of the tube by the ultrasonic surface SH wave of the present invention.
It is explanatory drawing of the other method of detecting. The transmission probe 6 is also used for reception, and a transverse ultrasonic pulse vibrating parallel to the tube surface is incident along the surface 11 of the tube 8 as a surface SH wave in a direction perpendicular to the tube axis I. The incident surface SH wave travels along the circumferential direction of the tube 8 to the back side of the tube 8 and reaches the crack 4. The surface SH wave reflected here returns on the outward path and is detected by the probe 6. It

【0023】上記各方法による実際の探傷の際には、各
探触子を管軸I方向に沿って走査しつつ超音波パルスを
発射して探傷することができる。
In actual flaw detection by each of the above-mentioned methods, each probe can be scanned along the tube axis I direction while emitting ultrasonic pulses for flaw detection.

【0024】[0024]

【実施例】【Example】

〔実施例1〕図4に示す外径32mm、肉厚6.6mm、長
さ200mmの管3本を中心間の間隔45mmで平行に並
べ、各管の間隙に厚み7mmの連結板9を溶接して全体を
一体に成形し、中央の管8の片側の管端から20mmの位
置に、管軸Iに対して垂直面内に円周に沿って深さ3mm
長さ20mm幅0.2mmの切込溝よりなるクラック4を人
工的に設け試験体10とした。試験体10のクラック4
とは反対側の面の管8の表面に図示のごとく送信探触子
6及び受信探触子7を逆ハ字状に管軸I方向に対する角
度θを18°、27°、45°の3種の角度に設定し、
逆ハ字の送信探触子6及び受信探触子7の各中心線を延
長した交点Oからクラック4までの管軸I方向の距離D
が、管8の半径をrとするとき、D=πr/tanθとなる
ように設定する。送信探触子6より表面11に平行に振
動する横波の超音波パルスを発射して表面SH波として
入射し、受信探触子7により検出した反射波をパルス発
射からの時間に対して記録し、図7の探傷図形に示す。
aはθが18°、bはθが27°、cはθが45°の結
果を示す。図7で反射波Fがクラック4からの反射波で
ある。ピークTは管端からの反射波であり、長尺の実際
の炉壁管1の場合には現れることのない反射波のピーク
である。
[Embodiment 1] Three tubes having an outer diameter of 32 mm, a wall thickness of 6.6 mm and a length of 200 mm shown in FIG. 4 are arranged in parallel with a center-to-center spacing of 45 mm, and a connecting plate 9 having a thickness of 7 mm is welded in the space between the tubes. Then, the whole is integrally molded, and at a position 20 mm from the pipe end on one side of the central pipe 8, a depth of 3 mm along the circumference in a plane perpendicular to the pipe axis I.
A test piece 10 was prepared by artificially providing a crack 4 having a cut groove having a length of 20 mm and a width of 0.2 mm. Crack 4 of test piece 10
The transmitting probe 6 and the receiving probe 7 are formed in an inverted C shape on the surface of the tube 8 on the opposite side to the angle θ with respect to the tube axis I direction of 18 °, 27 °, and 45 °. Set the seed angle,
The distance D in the pipe axis I direction from the intersection point O, which is an extension of each center line of the inverted probe C of the transmitting probe 6 and the receiving probe 7, to the crack 4.
Is set so that D = πr / tan θ, where r is the radius of the tube 8. A transverse ultrasonic pulse oscillating parallel to the surface 11 is emitted from the transmitting probe 6 and is incident as a surface SH wave, and the reflected wave detected by the receiving probe 7 is recorded with respect to the time from the pulse emission. , Shown in the flaw detection pattern of FIG.
a shows a result of θ of 18 °, b shows a result of 27 °, and c shows a result of θ of 45 °. In FIG. 7, the reflected wave F is the reflected wave from the crack 4. The peak T is a reflected wave from the tube end, which is a peak of a reflected wave that does not appear in the case of the long actual furnace wall tube 1.

【0025】〔実施例2〕図5に示す外径32mm、肉厚
6.6mm、長さ200mmの管の両側に厚み7mm幅10mm
の溶接突出片12を溶接したものを試験体10とする。
試験体10の片側の管8中央部に管軸I方向に沿って、
長さ30mm、深さ1.5mm、幅0.2mmの切込溝よりな
るクラック4を人工的に設ける。試験体10のクラック
4とは反対側の管8表面の管軸Iに平行な直線上に、ク
ラック4の中心を通る管軸Iに垂直な平面に対して面対
称の位置に、送信探触子6及び受信探触子7を管軸I方
向に対して角度α=45°だけ傾けて斜めに対向するよ
うに配置した。両探触子間の距離dは、管8の半径をr
とするとき、2πr/tanαに略等しい距離にとる。送信
探触子6より表面11に平行に振動する横波の超音波パ
ルスを発射して表面SH波として入射し、受信探触子7
により検出した反射波をパルス発射からの時間に対して
記録した結果を図8の探傷図形に示す。クラック4から
の反射波ピークFのみが大きく検出される。
Example 2 A tube having an outer diameter of 32 mm, a wall thickness of 6.6 mm and a length of 200 mm shown in FIG.
The test piece 10 is obtained by welding the welding projection piece 12 of FIG.
Along the tube axis I direction at the center of the tube 8 on one side of the test body 10,
A crack 4 consisting of a cut groove having a length of 30 mm, a depth of 1.5 mm and a width of 0.2 mm is artificially provided. The transmission probe is arranged on a straight line parallel to the pipe axis I on the surface of the pipe 8 on the side opposite to the crack 4 of the test body 10 and at a position symmetrical with respect to a plane perpendicular to the pipe axis I passing through the center of the crack 4. The probe 6 and the reception probe 7 are arranged so as to be diagonally opposed to each other with an angle α = 45 ° with respect to the tube axis I direction. The distance d between the two probes is the radius of the tube 8 r
Then, the distance is approximately equal to 2πr / tanα. A transverse ultrasonic pulse oscillating in parallel with the surface 11 is emitted from the transmitting probe 6 and is incident as a surface SH wave, and the receiving probe 7
The result of recording the reflected wave detected by the method with respect to the time from the pulse emission is shown in the flaw detection figure of FIG. Only the reflected wave peak F from the crack 4 is largely detected.

【0026】〔実施例3〕図6に示す外径50.8mm、
厚み6.5mm、長さ455mmの管8の外面に管軸I方向
に沿って幅2mm、深さ3mmの切込溝よりなる外面クラッ
ク4aを人工的に管の全長にわたって設け、更に管8の
内面に管軸I方向に沿って幅3mm、深さ3mmの切込溝よ
りな内面クラック4bを外面クラック4aから120°
離れた位置に人工的に管の全長にわたって設け、その外
面クラック4a及び内面クラック4bから管の円周に沿
って120°離れた位置に径4mmのドリル孔13を管壁
を貫通して設け試験体10とした。内面クラック4bの
丁度反対側の管8表面に送信探触子6をドリル孔13を
含む管軸Iに垂直な平面内でドリル孔13の方に向く円
周方向に向けて配置する。送信探触子6を受信探触子と
兼用する。送信探触子6より表面11に平行に振動する
横波の超音波パルスを発射して表面SH波として入射
し、探触子6により検出した反射波をパルス発射からの
時間に対して記録した結果を図9の探傷図形に示す。ド
リル孔13からの反射ピークF1、内面クラック4bか
らの反射ピークF2、外面クラック4aからの反射ピー
クF3が分離して検出される。この探傷法によれば、超
音波の経路に障害物がない場合、ドリル孔13や管8の
内面及び外面の管軸I方向のクラック4が全て検出可能
である。
[Embodiment 3] An outer diameter of 50.8 mm shown in FIG.
The outer surface of the tube 8 having a thickness of 6.5 mm and a length of 455 mm is artificially provided along the tube axis I direction with an outer surface crack 4a consisting of a cut groove having a width of 2 mm and a depth of 3 mm. An inner surface crack 4b formed by a notch having a width of 3 mm and a depth of 3 mm on the inner surface along the direction of the pipe axis I is 120 ° from the outer surface crack 4a.
A test is performed by artificially providing a distant position over the entire length of the pipe, and providing a drill hole 13 having a diameter of 4 mm through the pipe wall at a position 120 ° away from the outer surface crack 4a and the inner surface crack 4b along the circumference of the pipe. Body 10 The transmitting probe 6 is arranged on the surface of the tube 8 just opposite to the inner surface crack 4b in the circumferential direction toward the drill hole 13 in the plane perpendicular to the tube axis I including the drill hole 13. The transmitting probe 6 also serves as the receiving probe. A result of recording a reflected wave detected by the probe 6 with respect to the time from the pulse emission by emitting a transverse ultrasonic wave pulse vibrating in parallel to the surface 11 from the transmission probe 6 and making it incident as a surface SH wave. Is shown in the flaw detection pattern of FIG. The reflection peak F1 from the drill hole 13, the reflection peak F2 from the inner surface crack 4b, and the reflection peak F3 from the outer surface crack 4a are separately detected. According to this flaw detection method, if there are no obstacles in the ultrasonic wave path, all the cracks 4 in the pipe axis I direction on the inner and outer surfaces of the drill hole 13 and the pipe 8 can be detected.

【0027】[0027]

【発明の効果】本発明の超音波表面SH波による管の探
傷法によれば、炉壁管のごとく欠陥位置に探触子を近づ
けることができない場合でも、管の反対側から周方向又
は螺旋方向に超音波の表面SH波を入射することによ
り、管の裏側の正確な探傷が可能となる。
According to the method of flaw detection of a tube by the ultrasonic surface SH wave of the present invention, even when the probe cannot be brought close to the defect position like a furnace wall tube, it is circumferentially or spiraled from the opposite side of the tube. By injecting the surface SH wave of the ultrasonic wave in the direction, accurate flaw detection on the back side of the tube becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】火力発電所用ボイラーの炉壁の一部断面斜視図
である。
FIG. 1 is a partial cross-sectional perspective view of a furnace wall of a boiler for a thermal power plant.

【図2】従来の炉壁管の円周方向のクラックの検出方法
の説明図である。
FIG. 2 is an explanatory diagram of a conventional method for detecting cracks in the circumferential direction of a furnace wall tube.

【図3】従来の炉壁管の管軸方向のクラックの検出方法
の説明図である。
FIG. 3 is an explanatory view of a conventional crack detection method in the axial direction of a furnace wall tube.

【図4】本発明の超音波表面SH波による管の探傷法に
よる、管の円周方向に沿ったクラックの検出方法の説明
図である。
FIG. 4 is an explanatory diagram of a method for detecting cracks along the circumferential direction of a pipe by a flaw detection method for a pipe using an ultrasonic surface SH wave of the present invention.

【図5】本発明の超音波表面SH波による管の探傷法に
よる、管軸方向に沿ったクラックの検出方法の説明図で
ある。
FIG. 5 is an explanatory diagram of a method for detecting cracks along the tube axis direction by a flaw detection method for a tube using an ultrasonic surface SH wave according to the present invention.

【図6】本発明の超音波表面SH波による管の探傷法に
よる、管軸方向に沿ったクラックの他の検出方法の説明
図である。
FIG. 6 is an explanatory diagram of another method for detecting cracks along the tube axis direction by the flaw detection method for a tube using the ultrasonic surface SH wave of the present invention.

【図7】図4に示す本発明の超音波表面SH波による管
の探傷法による一例の探傷図形である。
FIG. 7 is an example of a flaw detection figure by a flaw detection method for a tube using the ultrasonic surface SH wave of the present invention shown in FIG.

【図8】図5に示す本発明の超音波表面SH波による管
の探傷法による一例の探傷図形である。
FIG. 8 is an example of a flaw detection figure by a flaw detection method for a tube using the ultrasonic surface SH wave of the present invention shown in FIG.

【図9】図6に示す本発明の超音波表面SH波による管
の探傷法による一例の探傷図形である。
9 is an example of a flaw detection figure obtained by the flaw detection method for a tube using the ultrasonic surface SH wave of the present invention shown in FIG.

【図10】送信探触子から発射された超音波の表面SH
波としての伝播を示す正面断面図である。
FIG. 10: Surface SH of ultrasonic waves emitted from the transmission probe
It is a front sectional view showing propagation as a wave.

【符号の説明】[Explanation of symbols]

1 炉壁管 2 付着金物 3 溶接部 4 クラック 5 探触子 6 送信探触子 7 受信探触子 8 管 9 連結板 10 試験体 11 表面 12 溶接突出片 13 ドリル孔 14 圧電素子 15 楔 16 背面材 17 水 DESCRIPTION OF SYMBOLS 1 Furnace wall tube 2 Adhesive metal 3 Welding part 4 Crack 5 Probe 6 Transmitting probe 7 Receiving probe 8 Tube 9 Connecting plate 10 Test body 11 Surface 12 Welding protruding piece 13 Drill hole 14 Piezoelectric element 15 Wedge 16 Rear surface Material 17 water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水本 幹雄 大阪市福島区海老江2丁目10番20号 株式 会社日本アーム内 (72)発明者 松浦 十四彦 大阪府堺市出島西町3番地の1 株式会社 酒井鉄工所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mikio Mizumoto 2-10-20 Ebie, Fukushima-ku, Osaka Within Japan Arm Co., Ltd. (72) Inventor, Toshihiko Matsuura 1-3, Dejimanishimachi, Sakai City, Osaka Prefecture Sakai Iron Works Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】管よりなる試験体の内外面のクラック、孔
等の欠陥を検出する超音波探傷法において、該管表面に
平行で進行方向に垂直に振動する横波よりなる超音波パ
ルスを発生する送信探触子を該管表面に密着して、該送
信探触子から該管表面に対し浅い角度で表面SH波を該
管の円周方向に、又は該管の管軸に対し斜め方向に入射
して、該表面SH波を管の円周方向に沿って又は管の周
面の螺旋方向に沿って進行させて欠陥に到達せしめ、該
欠陥からの反射波を該送信探触子又は別個の受信探触子
により検出して、欠陥を検出することを特徴とする超音
波表面SH波による管の探傷法。
1. In an ultrasonic flaw detection method for detecting defects such as cracks and holes on the inner and outer surfaces of a test body made of a tube, an ultrasonic pulse consisting of a transverse wave oscillating parallel to the surface of the tube and perpendicular to the traveling direction is generated. The transmitting probe is brought into close contact with the tube surface, and surface SH waves are emitted from the transmitting probe at a shallow angle to the tube surface in the circumferential direction of the tube or in an oblique direction with respect to the tube axis of the tube. Incident on the transmitting SH or the surface SH wave to propagate along the circumferential direction of the tube or along the spiral direction of the circumferential surface of the tube to reach the defect, and the reflected wave from the defect is transmitted to the transmitting probe or A method for flaw detection of a pipe by an ultrasonic surface SH wave, which is characterized by detecting by a separate receiving probe and detecting a defect.
【請求項2】該欠陥が該管の円周方向に延びるクラック
であり、該送信探触子及び受信探触子を該管の同一円周
上に該管軸方向に対して同一角度θだけ傾けて逆ハ字状
に末広がりに向けて並べ、両探触子を管軸を含む平面に
対して面対称に配置する請求項1記載の超音波表面SH
波による管の探傷法。
2. The defect is a crack extending in the circumferential direction of the pipe, and the transmitting probe and the receiving probe are arranged on the same circumference of the pipe by the same angle θ with respect to the pipe axial direction. The ultrasonic surface SH according to claim 1, wherein the probes are inclined and arranged in an inverted C-shape so as to be directed toward the end and the probes are arranged symmetrically with respect to a plane including the tube axis.
Wave tube flaw detection.
【請求項3】該欠陥が該管の管軸方向に延びるクラック
であり、該送信探触子及び受信探触子を該管表面の管軸
方向の同一直線上に一定距離を隔てて互いに対向して且
つ該管軸方向に対して同一角度αだけ傾けて、両探触子
を管軸に垂直な平面に対して面対称に配置する請求項1
記載の超音波表面SH波による管の探傷法。
3. The defect is a crack extending in the tube axis direction of the tube, and the transmitting probe and the receiving probe are opposed to each other at a constant distance on the same straight line of the tube surface in the tube axis direction. And both the probes are tilted by the same angle α with respect to the tube axis direction, and the two probes are arranged symmetrically with respect to a plane perpendicular to the tube axis.
A flaw detection method for a tube using the described ultrasonic surface SH wave.
【請求項4】該送信探触子を該管の円周方向に向けて配
置し、該管の円周方向に表面SH波を入射して、該欠陥
で反射した表面SH波が往路を戻り、該送信探触子と兼
用する受信探触子により検出する請求項1記載の超音波
表面SH波による管の探傷法。
4. The transmission probe is arranged in the circumferential direction of the tube, and the surface SH wave is incident in the circumferential direction of the tube, and the surface SH wave reflected by the defect returns on the outward path. The method for flaw detection of a pipe by an ultrasonic surface SH wave according to claim 1, wherein the detection is performed by a reception probe that also serves as the transmission probe.
【請求項5】該試験体がボイラーの炉壁管である請求項
1、2、3又は4記載の超音波表面SH波による管の探
傷法。
5. The method for flaw detection of a tube by ultrasonic surface SH waves according to claim 1, 2, 3 or 4, wherein the test body is a furnace wall tube of a boiler.
JP7256774A 1995-09-07 1995-09-07 Flaw detection of pipe by ultrasonic surface acoustic sh wave Pending JPH0972887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7256774A JPH0972887A (en) 1995-09-07 1995-09-07 Flaw detection of pipe by ultrasonic surface acoustic sh wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7256774A JPH0972887A (en) 1995-09-07 1995-09-07 Flaw detection of pipe by ultrasonic surface acoustic sh wave

Publications (1)

Publication Number Publication Date
JPH0972887A true JPH0972887A (en) 1997-03-18

Family

ID=17297266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7256774A Pending JPH0972887A (en) 1995-09-07 1995-09-07 Flaw detection of pipe by ultrasonic surface acoustic sh wave

Country Status (1)

Country Link
JP (1) JPH0972887A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007024001A1 (en) * 2005-08-26 2007-03-01 Sumitomo Metal Industries, Ltd. Ultrasonic flaw detection method and method of producing seamless tube
JP2013079843A (en) * 2011-10-03 2013-05-02 Kanagawa Noriyo Method for inspecting metal drum and apparatus therefor
JP2013124919A (en) * 2011-12-14 2013-06-24 Kobe Steel Ltd Surface flaw inspection device and surface flaw inspection method
JP2017203704A (en) * 2016-05-12 2017-11-16 株式会社日立製作所 Piping inspection device
CN113514553A (en) * 2021-07-13 2021-10-19 中国大唐集团科学技术研究院有限公司中南电力试验研究院 Piezoelectric guided wave detection method for steel pipe of water wall of boiler
JP2022052580A (en) * 2020-09-23 2022-04-04 Jfeスチール株式会社 Ultrasonic flaw detection method for tubular analyte

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007024001A1 (en) * 2005-08-26 2007-03-01 Sumitomo Metal Industries, Ltd. Ultrasonic flaw detection method and method of producing seamless tube
US8495915B2 (en) 2005-08-26 2013-07-30 Nippon Steel & Sumitomo Metal Corporation Ultrasonic testing method and manufacturing method of seamless pipe or tube
JP2013079843A (en) * 2011-10-03 2013-05-02 Kanagawa Noriyo Method for inspecting metal drum and apparatus therefor
JP2013124919A (en) * 2011-12-14 2013-06-24 Kobe Steel Ltd Surface flaw inspection device and surface flaw inspection method
JP2017203704A (en) * 2016-05-12 2017-11-16 株式会社日立製作所 Piping inspection device
JP2022052580A (en) * 2020-09-23 2022-04-04 Jfeスチール株式会社 Ultrasonic flaw detection method for tubular analyte
CN113514553A (en) * 2021-07-13 2021-10-19 中国大唐集团科学技术研究院有限公司中南电力试验研究院 Piezoelectric guided wave detection method for steel pipe of water wall of boiler
CN113514553B (en) * 2021-07-13 2023-09-19 中国大唐集团科学技术研究院有限公司中南电力试验研究院 Piezoelectric guided wave detection method for steel pipe of water-cooled wall of boiler

Similar Documents

Publication Publication Date Title
US7926349B2 (en) Detection of defects in welded structures
US4685334A (en) Method for ultrasonic detection of hydrogen damage in boiler tubes
JP2012117875A (en) Device and method of ultrasonic flaw detection for small-diameter pipe
AU2004288099B2 (en) Method for checking a weld between two metal pipelines
JPH0972887A (en) Flaw detection of pipe by ultrasonic surface acoustic sh wave
JPH08261997A (en) Surface wave probe
US4149139A (en) Ultrasonic transmission device
JPH08136512A (en) Ultrasonic flaw detection method at seam welded part of steel pipe
JP2004077292A (en) Method and device for inspecting stress corrosion cracking
JP2008216125A (en) Ultrasonic probe
JPH1194806A (en) Ultrasonic flaw detection method end surface or side face of steel material
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
JP3761883B2 (en) Ultrasonic flaw detection method
JP3581015B2 (en) Crack evaluation device and probe for welded part to be inspected
JPS63298054A (en) Ultrasonic flaw detecting method for screw joint part of pipe
JPH09318605A (en) Method for testing welded part by ultrasonic surface sh wave
JP4636967B2 (en) Ultrasonic flaw detection method
JP3023642B2 (en) Insertion depth measurement method for welded pipe joints
JPH06317567A (en) Ultrasonic flaw-detection apparatus
JPH07325070A (en) Ultrasonic method for measuring depth of defect
JPH095304A (en) Ultrasonic flaw detection method in welded part between straight pipe and elbow
JPH07181170A (en) Evaluation method of congested cracks on surface of solid by ultrasonic waves
JPH0810793Y2 (en) Attenuator Material Probe
Călţaru et al. Inspection of the Petroleum Pipelines Welded Joint by Using the Phased Array Ultrasonic Nondestructive Testing.
JP2001165916A (en) Pencil-shaped local water penetrating ultrasonic probe and method of detecting flaw of welded part using the same